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Supernovae (SNe)

» 8Mp S M, <

~

25Mg — neutron star (NS);
» E, =10erg (Lsn ~ Lgalaxy);
» E, =3 x 10%3 erg (matter opaque to neutrinos!);
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Supernovae (SNe)

» 8Mp S M, <

~

25Mg — neutron star (NS);

> E, =10°%erg (Lsx = Lgalaxy):

» E, =3 x 10%3 erg (matter opaque to neutrinos!);

» Fe core supported by electrons Fermi pressure;

> when More > Moy, = 1.44 M — core collapse;

» increasing density — nucleons Fermi pressure ng =~ ng;

» outer-core bounce — shock wave;
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Proto-neutron star (PNS)

PNSs are the SN contracting cores:
» very early evolution (PHASE I): core bounce + ~ 0.2s:

>

vV vy VvVyy

fully relativistic, highly dynamical codes;

mass accretion;

PNS contraction 150 km — 30km;

high-temperature PNS envelope;

neutrinos are trapped in the low-temperature PNS core.
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PNSs are the SN contracting cores:
» very early evolution (PHASE I): core bounce + ~ 0.2s:
» fully relativistic, highly dynamical codes;
» mass accretion;
» PNS contraction 150 km — 30 km;
> high-temperature PNS envelope;
> neutrinos are trapped in the low-temperature PNS core.
» early evolution (PHASE Il): ~ 0.2s + minutes:
» relativistic, quasi-stationary evolution;
beta equilibrium;
deleptonization stage (heating of the inner core);
cooling stage.
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PNSs are the SN contracting cores:
» very early evolution (PHASE I): core bounce + ~ 0.2s:
» fully relativistic, highly dynamical codes;
» mass accretion;
» PNS contraction 150 km — 30 km;
> high-temperature PNS envelope;
> neutrinos are trapped in the low-temperature PNS core.
» early evolution (PHASE Il): ~ 0.2s + minutes:
» relativistic, quasi-stationary evolution;
beta equilibrium;
deleptonization stage (heating of the inner core);
cooling stage.

v vy

» minutes: birth of a mature neutron star (neutrino
transparent).

We are interested in the gravitational wave emission (from rotation
or stellar oscillations) of the PNS in PHASE II.
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PNS evolution: general facts

> ina “cold” NS the EoS is barotropic: P — (ng,e,...)
» ina PNS the T ~ 40MeV 2> Ep ~ 10 MeV and therefore the
EoS is non-barotropic (s, Yi,P) — (nB,e, T, Yy, ...)
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» ina PNS the T ~ 40MeV 2> Ep ~ 10 MeV and therefore the
EoS is non-barotropic (s, Yi,P) — (nB,e, T, Yy, ...)

» PNS structure from general relativistic TOV equations
(spherical metric) with a given finite-temperature EoS
e(s, Y1, P);

» v transport (Boltzmann-Lindquist Egs, BLE) with
[b-equilibrium to evolve the profiles of entropy s and lepton
number Y;;
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PNS evolution: general facts
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in a “cold” NS the EoS is barotropic: P — (ng,¢,...)

in a PNS the T ~ 40MeV 2 Ep ~ 10 MeV and therefore the
EoS is non-barotropic (s, Yi,P) — (nB,e, T, Yy, ...)

PNS structure from general relativistic TOV equations
(spherical metric) with a given finite-temperature EoS

e(s, Y1, P);

v transport (Boltzmann-Lindquist Egs, BLE) with
[b-equilibrium to evolve the profiles of entropy s and lepton
number Y;;

the neutrino number and energy fluxes depend on the EoS
and on the neutrino diffusion coefficients;

neutrino diffusion coefficients depend on the neutrino cross
sections (and therefore on the EoS...);
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PNS evolution: general facts

> ina “cold” NS the EoS is barotropic: P — (ng,e,...)

» ina PNS the T ~ 40MeV 2> Ep ~ 10 MeV and therefore the
EoS is non-barotropic (s, Yi,P) — (nB,e, T, Yy, ...)

» PNS structure from general relativistic TOV equations
(spherical metric) with a given finite-temperature EoS
e(s, Y1, P);

» v transport (Boltzmann-Lindquist Egs, BLE) with
[b-equilibrium to evolve the profiles of entropy s and lepton
number Y;;

> the neutrino number and energy fluxes depend on the EoS
and on the neutrino diffusion coefficients;

» neutrino diffusion coefficients depend on the neutrino cross
sections (and therefore on the EoS...);

» For now, only mean-field EoSs have been used (e.g., GM3
Glendenning & Moszkowski, “Reconciliation of Neutron-Star Masses and

Binding of the A in Hypernuclei”, PRL 67:2414-2417 [1991]).

GWs from PNS evolution: Introduction



PNS evolution: our code

Our code reproduces the results of Pons, Reddy, Prakash, Lattimer &
Miralles, “Evolution of proto-neutron stars”, ApJ 513:780-804 [1999]:

» low T core;

T [MeV]

> high T envelope;
> trapped v;

> inner core heating;

» cooling;

Y, #]

» deleptonization.

r (km]

Figure: PNS evolution, GM3 EoS (our code).
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Effective inclusion of rotation: the procedure

We have extended the work of Villain, Pons, Cerda-Duran & Gourgoulhon,
“Evolutionary sequences of rotating protoneutron stars”, A&A 418:283-294 [2004]:
Camelio, Gualtieri, Pons & Ferrari, “Spin evolution of a proto-neutron star”, PRD 94,

024008 (2016), arXiv:1601.02945 [astro-ph.HE].
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We have extended the work of Villain, Pons, Cerda-Duran & Gourgoulhon,
“Evolutionary sequences of rotating protoneutron stars”, A&A 418:283-294 [2004]:
Camelio, Gualtieri, Pons & Ferrari, “Spin evolution of a proto-neutron star”, PRD 94,
024008 (2016), arXiv:1601.02945 [astro-ph.HE].

First, evolve the non-rotating star:

» fix the total baryon mass My;
» the finite-temperature EoS is (s, Y1, P);

» the (non-rotating) evolution gives s(t, a), Y.(t,a).
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Effective inclusion of rotation: the procedure

We have extended the work of Villain, Pons, Cerda-Durén & Gourgoulhon,
“Evolutionary sequences of rotating protoneutron stars”, A&A 418:283-294 [2004]:
Camelio, Gualtieri, Pons & Ferrari, “Spin evolution of a proto-neutron star”, PRD 94,
024008 (2016), arXiv:1601.02945 [astro-ph.HE].
First, evolve the non-rotating star:
» fix the total baryon mass My;
» the finite-temperature EoS is (s, Y1, P);
» the (non-rotating) evolution gives s(t, a), Y.(t,a).
To effectively include the rotation:
1. fix an initial angular momentum J;, = J(t = 0);
2. “effective” EoS at time t: €,(a, P) = e(s(t, a), Y.(t, a), P);
3. using €}, solve Hartle-Torne (structure equations of a slowly
rigidly rotating PNS) at time t with fixed M} and J(t);
4. determine J(t + dt) using the Epstein formula;
5. t — t +dt, back to point 2.
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Effective inclusion of rotation: results

M,=1.6 Mg

1km ~ 4 x 108 ergs
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Camelio, Gualtieri, Pons & Ferrari, “Spin evolution of a proto-neutron star”, PRD 94,

024008 (2016), arXiv:1601.02945 [astro-ph.HE]
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Effective inclusion of rotation: results
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of rotation: results
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EoS dependence: general facts

» previous PNS evolution studies used relativistic mean-field
EoSs; we want to use a general EoS, e.g. a nuclear
ma ny—body theory EoS (Lovato & Benhar, “An effective interaction from

Argonne-Urbana nuclear forces”, in preparation);
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» from the free energy per baryon f(T,np, Yy) you can obtain
all the other thermodynamical quantities with derivatives!
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EoS dependence: general facts

» previous PNS evolution studies used relativistic mean-field
EoSs; we want to use a general EoS, e.g. a nuclear
many-body theory EoS (Lovato & Benhar, “An effective interaction from
Argonne-Urbana nuclear forces”, in preparation);

» from the free energy per baryon f(T,np, Yy) you can obtain
all the other thermodynamical quantities with derivatives!

» we want to obtain the EoS from the fit of the interacting part
of the baryon free energy

feos(T, N, Yp) = freegas( Ty nb, Yp) + (T, np, Yp),
fi(T,np, Yp) =4Yp(1 — Yp)fsnm(T, np)
+(1—2Y,) foxm(T, np),
foxm (T, np) = polynomial in T and np,
that is similar to how the bulk nuclear matter has been
treated in Lattimer & Swesty, “A generalized equation of state for hot, dense

matter”, Nucl.Phys.A 535:331 [1991].
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EoS dependence: results (preliminary!)

time: 00.2s PRELIMINARY!!!
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Camelio, Lovato, Gualtieri, Benhar, Pons, Fortin & Ferrari, “GW and neutrino

luminosity from proto-neutron stars with a nuclear many-body EoS", in preparation.
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EoS dependence: results (preliminary!)
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luminosity from proto-neutron stars with a nuclear many-body EoS", in preparation.
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EoS dependence: results (preliminary!)

10000 T
GM3 ——
bulkk ——
CBFEI ——
1000
94
100 B
)
-
10 P1 B
1k i
f
04 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

ts]

Camelio, Lovato, Gualtieri, Benhar, Pons, Fortin & Ferrari, “GW and neutrino

luminosity from proto-neutron stars with a nuclear many-body EoS", in preparation.
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Conclusions

Done:
» new PNS evolution code;

» GW emission from a rotating PNS and its angular momentum
evolution (effective inclusion of rotation), Camelio+[2016];

» generalization to other EoSs (in particular the nuclear
many-body theory EoS of Lovato&Benhar [in preparation]);
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Conclusions

Done:
» new PNS evolution code;

» GW emission from a rotating PNS and its angular momentum
evolution (effective inclusion of rotation), Camelio+[2016];

v

generalization to other EoSs (in particular the nuclear
many-body theory EoS of Lovato&Benhar [in preparation]);

v

GW from quasi-normal modes (stellar perturbation theory),
Camelio+[in preparation];

Outlooks:
» convection (mixing length theory);
> accretion;

» evolution in 14+1.5D (consistent inclusion of rotation).
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