Excitation of GW modes by motion: detecting the peculiar velocity of galaxies using EMRIs

Based on: arXiv:2010.15856 & arXiv:2010.15842

Alejandro Torres-Orjuela

November 26, 2020

Contents

1. Moving sources

Why are GWs sources moving?

2. Templates & motion

Can current templates describe motion? What are the consequences?

3. The effect of motion on gravitational radiation

Effect on the radiation pattern and excitation of modes

4. Detecting the motion of EMRIs

How accurate can we detect the velocity?

Moving sources

Moving sources

Velocity dispersion of clusters

Velocity dispersion of galaxy clusters [Amaro-Seoane+2020]

- GWs located inside host systems!
- galaxies in clusters with deep potential
- average velocity dispersion
 ≈ 1000 km/s

Bulk flow

Bulk flow: motion of the Milky Way relative to the background [Scrimgeour+2016] Milky Way moves relative to background (≈ 400 km/s)

 motion relative to particular clusters can be higher

Interaction with third body

BBH orbiting SMBH [Chen+2018]

- interaction of GWs source with third body induces motion
- more relevant for BBHs, but up to highly relativistic velocities [Chen+2018, ArcaSedda2020, Tagawa+2019]

Templates & motion

Templates & motion

GWs templates

First GW detection [LIGO2016]

templates are essential for the detection and interpretation of GWs sources

Forma.	NR	Post- Newt.	Self- Force	EOB	Phenom
CoM motion	yes, but restricted	usually not	usually not	restricted by NR, PN & SF	restricted by NR, PN & SF

 no formalism describes general motion of CoM [SXS2019, Blanchet2006, Barack+2019, Buonanno+1999, Santamaria+2010]

Mass-redshift degeneracy

Mass & distance of LIGO detections (GWTC-1) [Chen+2019] $\begin{array}{l} \textbf{mass-redshift} \\ \textbf{degeneracy of GWs} \\ [Chen+2019]: \\ \mathcal{M}_o = (1+v)\mathcal{M} \\ d_o = (1+v)d \end{array}$

 detections could be distorted by motion... but we do not know

Motion & GW detections

- motion can distort results from GW detection
- detecting motion allows extraction of more information about the source and its environment
- Can we break the mass-redshift degeneracy and detect the motion of GW sources?

The effect of motion on gravitational radiation

The effect of motion on gravitational radiation

Source shape vs. wave modes

Sketches of a regular and a deformed orbit and their associated waveforms

- shape of the source affects form of the wave
- change in wave expresses as change in modes

Deformed radiation patterns

Radiation patterns for +- & \times -polarization of a source at rest and a moving one [Torre-Orjuela+2020]

CoM motion → aberration of rays, rotation of polarization
 & Doppler shift of frequency [Torres-Orjuela+2019]

The effect of motion on gravitational radiation

Spin-2 spherical harmonics

Spin-2 spherical harmonics (S2SH) [Wolfram Demonstration]

► decompose GWs in modes using S2SH:

$$H^{\ell,m} := \int [h_+(\theta, \phi) - ih_{\times}(\theta, \phi)]_{-2} \bar{Y}^{\ell,m}(\theta, \phi) d\Omega$$

Excitation of modes

Waveforms for +- & ×-polarization of a source at rest and a moving one [Torre-Orjuela+2020]

amplitude and phase change in time dependent manner!

Detecting the motion of EMRIs

Detecting the motion of EMRIs

What we consider

Extreme mass ratio inspiral (EMRI) [Barack+2019] Stellar BH (10 M_☉) on non-eccentric orbit around SMBH (10⁶ M_☉)

- observation time of 5 yr
- compare moving EMRI (1000 km/s) to one at rest

Mismatch between the waveforms

Mismatch between waveforms from a moving EMRI and one at rest [Amaro-Seoane+2020]

- mismatch quantifies difference between waveforms
- for EMRIs mismatch $\gtrsim 10^{-4}$ can be resolved
- peculiar velocity of galaxies is detectable

To cut a long story short

To cut a long story short

- Peculiar velocity of host galaxy → GWs sources move with velocity ≈ 1400 km/s (+ e.g. orbital motion)
- CoM motion excites GWs modes → mass-redshift degeneracy is broken
- velocity of GWs sources and their hosts(!) detectable up to high redshifts

Many thanks for your attention!

References

- Scrimgeour+2016: M. I. Scrimgeour et al., MNRAS 455 (2016)
- Chen+2018: X. Chen & W.-B. Han, Communications Physics 1 (2018)
- Arca-Sedda2020: M. Arca Sedda, ApJ 891 (2020)
- Tagawa+2019: H. Tagawa et al., ApJ 898 (2020)
- LIGO2016: B. P. Abbott et al., Phys. Rev. L 116 (2016)
- SXS2019: M. Boyle et al., Class. Quant. Grav. 36 (2019)
- Blanchet2006: L. Blanchet, Living Rev. Relativ. 9 (2006)
- Barack+2019: L. Barack & A. Pound, Rep. Prog. Phys. 82 (2019)

References

- Buonanno+1999: A. Buonanno and T. Damour, Phys. Rev. D 59 (1999)
- Santamaria+2010: L. Santamaria et al., Phys. Rev. D 82 (2010)
- Chen+2019: X. Chen et al., MNRAS Letters 1 (2019)
- Torres-Orjuela+2019: A. Torres-Orjuela et al., Phy. Rev. D 100 (2019)
- Amaro-Seoane+2020: P. Amaro-Seoane et al., arXiv:2010.15842
- Torres-Orjuela+2020: A. Torres-Orjuela et al., arXiv:2010.15856 (2020)