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Abstract

Brandenburger et al. (2008) establish epistemic foundations for admissibility, or the avoid-

ance of weakly dominated strategies, by using lexicographic type structures and the notion of

rationality and common assumption of rationality (RCAR). Their negative result that RCAR is

empty whenever the type structure is complete and continuous suggests that iterated admissi-

bility (IA) requires players to have prior knowledge about each other, and therefore is a strong

solution concept, not at the same level as iterated elimination of strongly dominated strategies

(IEDS). We follow an alternative approach, using standard type structures and the notion of

event-rationality. We characterize the set of strategies that are generated under event-rationality

and common belief of event-rationality (RCBER) and show that, in a complete structure, it con-

sists of the strategies that are admissible and survive iterated elimination of dominated strategies

(Dekel and Fudenberg (1990)). By requiring that agents believe that themselves are E-rational

at each level of mutual belief we construct and characterize RCBeER and show that in a com-

plete structure it generates the IA strategies. Contrary to the negative result in Brandenburger

et al. (2008), we show that RCBER and RCBeER are nonempty in complete, continuous and

compact type structures, therefore providing an epistemic criterion for IA.

Keywords: Epistemic game theory; Admissibility; Iterated weak dominance; Common

Knowledge; Rationality; Completeness.

1 Introduction

As noted by Samuelson (1992) and many others, there is an intrinsic impossibility in dealing with

common knowledge of admissibility in games, which is known as the inclusion-exclusion problem.

The reason is that a strategy is admissible if and only if it is a best response to a conjecture

with full support. If we capture knowledge by the support of the agent’s belief and assume that
∗We are grateful to seminar participants at Collegio Carlo Alberto, Rochester, Southampton, Stony Brook and

the Fall 2009 Midwest International Economics and Economic Theory Meetings.
†Department of Economics, University of Rochester.
‡Economics Division, University of Southampton.
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she is rational, that is, she optimizes given her belief, then playing an admissible strategy implies

that she does not know much: she must necessarily consider all strategies of the other players as

possible, including the strategies that are not admissible. So she cannot know that her opponents

play admissible strategies, that is, cannot exclude from consideration their inadmissible strategies.

The most appealing approach to dealing with this issue is provided by Brandenburger et al.

(2008), henceforth BFK. Using lexicographic probability systems (LPS) and the notion of assump-

tion, BFK separate “knowledge” about who plays admissible strategies from the support of the

conjecture that is used when choosing a best response. In particular, BFK work with lexicographic

type structures, where a type of a player, say Ann, is associated with an LPS (µ0, . . . , µn−1) over

the strategy-type pairs of the other player, say Bob. The first conjecture, µ0, is Ann’s primary

hypothesis. If she is not able to decide between two of her strategies according to the marginal of

µ0 over Bob’s strategies, then she moves on to her secondary hypothesis, µ1, and so on. That is,

Ann looks for a strategy that is a lexicographic best response to the marginals of (µ0, . . . , µn−1)

over Bob’s strategies. Her LPS has full support if the union of the supports of µ0, . . . , µn−1 is

equal to the set of all strategy-type pairs of Bob. A strategy-type of Ann is called rational if the

associated LPS has full support and the strategy is a lexicographic best response to the marginals

of (µ0, . . . , µn−1) over Bob’s strategies.

BFK replace the notion of probability one belief with that of assumption. In particular, Ann

assumes an event E at level j if E is assigned probability 1 by each of the measures µ1, . . . , µj

and probability zero by the remaining measures µj+1, . . . , µn−1. Ann assumes an event E if she

assumes it at some level j. Hence, rational Ann considers everything to be possible when choosing

an admissible strategy (because the union of the supports of her measures is the entire state space)

and at the same time “knows” (through assumption) that Bob is rational, even though Bob’s

rationality is described by an event which is a strict subset of the state space. Common knowledge

of admissibility is then approximated by the notion of rationality and common assumption of

rationality (RCAR).

However, RCAR can be empty. In fact, BFK shows that RCAR is empty when the type structure

is complete and continuous. One reason seems to be that the LPS’s always contain finitely many

measures, allowing only finitely many statements of the type “Ann assumes that Bob assumes . . . ”

to be assumed. To see this, note that BFK’s notion of rationality implies that the supports of

the agent’s measures form a partition of the state space. Suppose that the set describing m + 1

rounds of mutual assumption of rationality is a strict subset of the set describing m rounds. If

the agent assumes the latter set at level j, he has to assume the former set at a lower level, thus

“losing” some measures. Eventually, the agent’s assumption reaches the “bottom”, or her primary

hypothesis. One immediate way out may be to allow for infinitely many measures. BFK mention

such an alternative, but do not pursue it. Yang (2009) proposes a weaker notion of assumption,
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that handles some measurability issues in BFK, and obtains a possibility result. Keisler (2009) and

Lee (2009) independently show that RCAR is not empty in a complete structure if continuity is

dropped.

All the aforementioned papers use lexicographic type structures. We propose an alternative

approach that employs standard type structures, so that each type is associated with a unique

measure. Moreover, instead of assumption we use standard probability 1 belief. As a result,

we avoid problems such as the violation of the monotonicity property (by assumption and weak

assumption) or continuity and technicalities arising from the use of lexicographic structures. Our

only departure from the standard model is that we use event-rationality instead of rationality and

this is enough to provide epistemic foundations for both the solution concept proposed by Dekel and

Fudenberg (1990) (S∞W ) and iterated admissibility (IA). Finally, by modifying only the notion

of rationality and not that of belief it is easier to compare the epistemic conditions of S∞W and

IA with those of iterated elimination of dominated strategies (IEDS), as they share the same type

space. This is not necessarily the case with LPS-based approaches.

In order to provide some intuition about event-rationality, note that if a strategy sa of Ann’s

is rational then it is a best response to some conjecture, v ∈ ∆(Sb), where Sb is the set of Bob’s

strategies. If sa is inadmissible and therefore weakly dominated by some strategy σa, then both

give the same payoff for all strategies of Bob on the support of v while σa is strictly better than

sa for all conjectures with support on the complement of the support of v. Hence, whenever Ann

chooses an admissible strategy, it is as if she optimizes given her conjecture, as usual, but when

she is totally indifferent between two strategies she compares them using a measure with support

on the difference between Sb and the support of her conjecture. In other words, she “breaks ties”

using the event Sb. Whenever these conditions are met, sa is called Sb-rational.

But there is nothing particular about Sb when defining event-rationality. Formally, let Eb be

a set of Bob’s strategies. We say that sa is Eb-rational if sa is a best response to some conjecture

of Ann, and Ann uses Eb to break ties. In particular, if another strategy σa gives the same payoff

as sa for any of Bob’s strategies that are considered possible given Ann’s conjecture, then sa must

be better under some conjecture with support on the difference between Eb and the support of

Ann’s initial conjecture. In other words, Ann is confident in trusting her belief, just like any other

rational agent. But if two of her strategies are equivalent under her belief, she chooses the one that

is also optimal for strategies outside her belief but inside the tie-breaking set.

Given E = Ea×Eb, we can define rationality and common belief of event-rationality (RCBER)

in the standard way, as the intersection of infinitely many events: Ann is Eb-rational and Bob is

Ea-rational. Ann is certain (assigns probability one to the event) that Bob is Ea-rational and Bob

is certain that Ann is Eb-rational; Ann is certain that Bob is certain that Ann is Eb-rational. And

so on. Common belief of extended event-rationality (RCBeER) is constructed if on the procedure
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above we also require that at each level of mutual belief, Ann believes that she is E-rational, (breaks

ties using E), where E is the set of strategies played by the types of Bob she considers possible.

And similarly for Bob.

Since the tie-breaking sets need not be the supports of conjectures, we do not run into any

inclusion-exclusion problems in the construction. Moreover, we have a degree of flexibility that

resembles lexicographic beliefs in that the tie-breaking sets need not be fixed as we move to higher

order levels of mutual knowledge.

Our results are as follows. Using E = Sa × Sb as the set of all strategies, we characterize the

strategies that are compatible with RCBER by a solution concept, hypo-admissible sets (HAS),

which is related to the self-admissible sets (SAS) of BFK but it is neither weaker or stronger. In a

complete structure, RCBER produces the set of strategies that survive one round of elimination of

non admissible strategies followed by iterated elimination of strongly dominated strategies (S∞W ).

We characterize RCBeER with a solution concept we call hypo-iteratively admissible sets (HIA). In

a complete type structure, the resulting set of strategies is precisely the set of iterated admissible

strategies (IA). We then show that strategies played under RCBeER constitute an SAS, but the

converse is not necessarily true, meaning that the RCBeER construction is more restrictive than

the RCAR construction of BFK. Nevertheless, we show that the RCBER and the RCBeER are

nonempty whenever the type structure is complete, continuous and compact, whereas the RCAR is

empty in a complete and continuous (lexicographic) type structure when the agent is not indifferent.

Our approach provides an alternative, effective and simple perspective in dealing with common

“knowledge” of admissibility in games. The solution to the inclusion-exclusion problem lies in

separating what a player knows from the strategies that she includes in her conjectures. This

separation can also be obtained with LPS-based approaches as in BFK, Brandenburger (1992),

Stahl (1995) and Yang (2009). But LPS-based approaches may add technical elements that are

not necessarily relevant for the issue.1 For instance, BFK’s impossibility result suggests that IA is

a solution concept that requires that the players are experienced enough with each other so that

the type structure used to describe their beliefs is not complete (Brandenburger and Friedenberg

(forthcoming)). In other words, it suggests that IA is to be viewed as a strong solution concept, that

is not at the same level as iterated elimination of dominated strategies (IEDS) but rather closer

to Nash equilibria, whose epistemic conditions require incomplete type structures (see Aumann

and Brandenburger (1995) and Barelli (2009)). But this suggestion is an artifact of the technical

details of BFK’s LPS-based approach. In fact, RCBeER is more restrictive than RCAR, and it is

nonempty in a complete, continuous and compact type structure.
1A simple example is that lexicographic type structures typically fail to be compact, whereas the universal type

structure, without lexicographic beliefs, is compact.
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1.1 Related Literature

Bernheim (1984) and Pearce (1984) provide epistemic foundations for the iteratively undominated

strategies via the concept of rationality and common belief in rationality. Admissibility, or the

avoidance of weakly dominated strategies, has a long history in decision and game theory (see

Kohlberg and Mertens (1986)). However, Samuelson (1992) shows that common knowledge of

admissibility is not equivalent to iterated admissibility and does not always exist. Foundations

for the S∞W strategies (Dekel and Fudenberg (1990)) are provided by Börgers (1994) (using

approximate common knowledge), Brandenburger (1992) (using lexicographic probability systems

(Blume et al. (1991)) and 0-level belief) and Ben-Porath (1997) (in extensive form games). Stahl

(1995) defines the notion of lexicographic rationalizability and shows that it is equivalent to iterated

admissibility.

BFK use lexicographic probability systems and characterize rationality and common assumption

of rationality (RCAR) by the solution concept of self-admissible sets. They show that rationality

and m-th order assumption of rationality is characterized by the strategies that survive m+1 rounds

of elimination of inadmissible strategies. Finally, RCAR is empty in a complete and continuous

lexicographic type structure when the agent is not indifferent. Hence, although the IA set can be

captured by RmAR, for big enough m (note that games are finite), BFK do not provide an epistemic

criterion for IA. Yang (2009) provides an epistemic criterion for IA, with an analogous version of

BFK’s RCAR, that makes use of a weaker notion of “assumption”. Keisler (2009) and Lee (2009)

independently show that the emptiness of RCAR can be overcome if one drops continuity. The

message from Yang (2009), Keisler (2009) and Lee (2009) is that continuity strengthens the notion

of caution implied by fully supported LPS. The notion of caution implied by Event-Rationality is

independent of continuity.

The paper is organized as follows. In the following section we illustrate the differences between

the various notions of rationality and belief through examples. In Sections 3 and 4 we set up the

framework and provide the relevant definitions, including event-rationality, RCBER and RCBeER.

In Section 5 we characterize RCBER and show that RmBER (m rounds of mutual belief) generates

S∞W , for big enough m. In Section 6 we characterize RCBeER, show that it is more restrictive

than RCAR of BFK and show that RmBeER generates the IA set, for big enough m. In Section

7 we show that RCBER and RCBeER are always nonempty in compact, complete and continuous

type structures, therefore providing epistemic criteria for S∞W and IA. Finally, some decision

theoretic remarks are presented in the Appendix.
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2 Examples

In order to illustrate the differences between the BFK approach and that of the present paper,

consider the following game from Samuelson (1992) and BFK. There are two players, Ann and

Bob.

1 [1]

L R

1 U 1, 1 0, 1

[1] D 0, 2 1, 0

From Bernheim (1984) and Pearce (1984) we know that rationality and common belief of ratio-

nality (RCBR) is characterized by the best response sets (BRS) and, in a complete structure, the

strategies that survive iterated deletion of strongly dominated strategies.2 Can we get a similar

result for the admissible strategies and the iteratively admissible strategies if we modify the notions

of belief and of rationality? Recall that a strategy is admissible if and only if it is a best response

to a full support measure (no action of the other player is excluded). Then, the obvious solution is

to specify that rationality incorporates full support beliefs.

But such a specification does not always work. In the game above, if Ann is rational, she assigns

positive probability to Bob playing L and R. If Bob is rational, he assigns positive probability to

Ann playing U and D. Hence, Bob plays L. If Ann knows that Bob is rational, she assigns positive

probability only on Bob playing L. But then, Ann is not rational! In other words, the modified

RCBR set is empty for this game.

BFK solve the problem by introducing lexicographic probabilities.3 Suppose Ann’s primary

hypothesis assigns probability 1 to Bob playing L, and her secondary hypothesis assigns probability

1 to Bob playing R. Bob’s primary hypothesis assigns 1 on U and his secondary hypothesis assigns

1 on D. Then, Bob playing L is rational because he is indifferent between L and R given his primary

measure, but strictly prefers L given his secondary measure.4 Ann playing U is rational because

U is the best response given her primary measure. She assumes that Bob is rational, because she

considers Bob playing L infinitely more likely than Bob playing R. Similarly, Bob assumes that Ann

is rational. As a result, rationality and common assumption of rationality (RCAR) is nonempty.

A similar result can be obtained if we use the definition of event-rationality in the context of

standard type structures. Suppose Ann’s belief assigns probability 1 to Bob playing L and Bob’s
2Qa ×Qb is a BRS if each sa ∈ Qa is strongly undominated with respect to Sa ×Qb and likewise for b.
3The same example is analyzed at great length in BFK.
4In the terminology of BFK, the associated sequence of payoffs under L is lexicographically greater than the

sequence under R.
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belief µ assigns probability 1 to Ann playing U. Bob playing L is Sa-rational because he is playing

best response given his beliefs and whenever he is indifferent between L and R, L is better given a

conjecture with support Sb \ supp µ. Similarly, Ann is Sb-rational. Finally, Ann believes that Bob

is Sa-rational and Bob believes that Ann is Sb-rational. Hence, rationality and common belief of

event-rationality (RCBER) is nonempty.

In the game above RCAR and RCBER produce the same strategies because the IA and the

S∞W sets are equal. However, this is not always true. Consider the following game which illustrates

the difference between RCBER (which yields the S∞W set) and RCBeER (which yields the IA

set).

L R

U 1, 0 1, 3

M 0, 2 2, 2

D 0, 4 1, 1

Since D is strongly dominated, no Sb-rational type plays that strategy. In a complete structure

though, Ann’s Sb-rational types play U or M and Bob’s Sa-rational types play L or R. For example,

Ann’s type is Sb-rational if she plays U, while assigning probability 1 to Bob playing L. Ann’s type

is also Sb-rational if she plays M, while assigning probability 1 to Bob playing R. Moreover, for both

U and M there are Sb-rational types of Ann’s who assign positive probability to Sa-rational types

of Bob playing L or R. And similarly for Bob. In other words, these types of Ann believe the event

“Bob is Sa-rational”, Bob’s types believe the event “Ann is Sb-rational”, and so on for any finite

order of beliefs about beliefs. Hence, Sa × Sb-rationality and common belief of Sa × Sb-rationality

(RCBER) yields the S∞W set, {U,M} × {L,R}.
Suppose we repeat the same procedure but also require that at every level m of mutual belief,

Ann believes that she is E-rational, where E is the set of strategies played by Bob’s types who

survivem levels of mutual belief (and similarly for Bob).Then, imposing common belief of rationality

will give us RCBeER. Which strategies are generated by RCBeER? The first round of RCBeER

yields the set of Sb-rational types for Ann and Sa-rational types for Bob, just like RCBER.

But the second round of RCBeER requires that, in addition to believing the event “Bob is

rational”, each of Ann’s Sb-rational types uses the strategies played by Bob’s rational types as her

tie-breaking set. Then all types playing L are excluded. To see this, note that any Sa-rational type

playing L must assign probability 1 to Ann playing M. Although Bob’s type believes the event “Ann

is rational” and Ann’s rational types play either U or M, Bob playing L is not {U,M}-rational.

For example, given Bob’s beliefs (probability 1 on M) he is indifferent between L and R. Yet, if he

compares L and R against U (which is the tie-breaking set {U,M} minus the support of his beliefs,
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M), L is worse. Once all types playing L are excluded, only types who believe Sa-rational types

playing R survive in the third round of RCBeER . Hence, playing U is no longer Sa-rational for

Ann. Finally, RCBeER yields the IA set, which is {M} × {R}.

3 Set Up

Let (Sa, Sb, πa, πb) be a two player finite strategic form game, with πa : Sa × Sb → R, and

similarly for b (as usual, a stands for Ann, and b stands for Bob). For any given topologi-

cal space X, let ∆(X) denote the space of probability measures defined on the Borel subsets

of X, endowed with the weak* topology. We extend πa to ∆(Sa) × ∆(Sb) in the usual way:

πa(σa, σb) =
∑

(sa,sb)∈Sa×Sb σa(sa)σb(sb)πa(sa, sb). Similarly for πb.

3.1 Admissibility and Event-Rationality

The following definition and Lemma are taken from BFK.

Definition 1. Fix X × Y ⊆ Sa × Sb. A strategy sa ∈ X is weakly dominated with respect to

X × Y if there exists σa ∈ ∆(Sa), with σa(X) = 1, such that πa(σa, sb) ≥ πa(sa, sb) for every

sb ∈ Y and πa(σa, sb) > πa(sa, sb) for some sb ∈ Y . Otherwise, say sa is admissible with respect

to X × Y . If sa is admissible with respect to Sa × Sb, simply say that sa is admissible.

Lemma 1. A strategy sa ∈ X is admissible with respect to X × Y if and only if there exists

σb ∈ ∆(Sb), with supp σb = Y , such that πa(sa, σb) ≥ πa(ra, σb) for every ra ∈ X.

Lexicographic beliefs have been used in dealing with the inclusion-exclusion issue identified by

Samuelson (1992) (see BFK, Brandenburger (1992), Stahl (1995) and Yang (2009)). Instead, we

will use the following construction. For a given conjecture v ∈ ∆(Sb), let σa∼supp vs
a denote that

the mixed strategy σa ∈ ∆(Sa) satisfies πa(σa, sb) = πa(sa, sb) for every sb ∈ supp v.

Definition 2. Let Eb ⊂ Sb. A strategy sa ∈ Sa is Eb-rational if there exists a conjecture v ∈ ∆(Sb)

such that sa is a best response to v and, if Eb\supp v 6= ∅, then for each mixed strategy σa ∈ ∆(Sa)

such that σa∼supp vs
a there exists a conjecture v′ ∈ ∆(Sb) with supp v′ = Eb \ supp v such that

πa(sa, v′) ≥ πa(σa, v′). Likewise for b.

The idea is that Ann uses the set Eb to break ties: whenever she has a conjecture v ∈ ∆(Sb)

over Bob’s choices under which sa is an optimal choice and sa is outcome equivalent to a (mixed)

strategy σa in supp v, Ann uses Eb as the “tie-breaking hypothesis”: there has to exist a conjecture

v′ in what is in Eb and not considered by v that supports the choice of sa. Ann is fully confident

in her assessment v and in her best response sa to v as long as there is no σa that is outcome

equivalent to sa in supp v. In that case, her probabilistic assessments are irrelevant, for whichever
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other conjecture v̂ with supp v̂ = supp v would not help Ann breaking ties between sa and σa. In

that case, Ann uses the tie breaking set Eb.

It is important to note that, although the “tie-breaking conjecture” supported in Eb \ supp v

is a secondary measure that Ann uses to guide her choices, it does not play the role of a secondary

hypothesis in a lexicographic framework. If sa is indifferent to σa according to v, but not outcome

equivalent in supp v, then there is no need to break ties. The following lemma shows the connection

between admissibility and event-rationality.

Lemma 2. A strategy sa ∈ Sa is admissible with respect to Sa×Eb if and only if it is Eb-rational

for v such that supp v ⊆ Eb.

Proof. Suppose that sa is Eb-rational for v such that supp v ⊆ Eb. Suppose there exists σa ∈ ∆(Sa)

with π(σa, sb) ≥ πa(sa, sb) for every sb ∈ Eb, with strict inequality for some sb ∈ Eb. Then,

sa∼supp vσ
a, which implies that there exists v′ with supp v′ = Eb \ supp v, such that π(sa, v′) ≥

π(σa, v′), a contradiction. Conversely, if sa is admissible with respect to Sa × Eb then it is a best

response to a conjecture v with supp v = Eb, so Eb \ supp v = ∅, and sa is Eb-rational.

In particular, a strategy sa is admissible if and only if it is Sb-rational, for the requirement

supp v ⊆ Sb is trivially met. This will be the case in our analysis in later sections, where we take

E to be equal to Sa × Sb.

3.2 Type Structures and Beliefs

Fix a two-player finite strategic-form game 〈Sa, Sb, πa, πb〉.

Definition 3. An (Sa, Sb)-based type structure is a structure

〈Sa, Sb, T a, T b, λa, λb〉,

where λa : T a → ∆(Sb × T b), and similarly for b. Members of T a, T b are called types, members of

Sa × T a × Sb × T b are called states.

A type structure is complete when λa and λb are surjective and it is continuous when these

mappings are continuous.5 Because the strategy spaces are finite, it is without loss of generality

to work with complete and continuous type structures, where in addition T a and T b are compact

spaces (Mertens and Zamir (1985)). Such type structures are called complete, continuous and

compact type structures.
5Our definition of completeness is more restrictive than that of BFK; as with compactness and continuity below,

it follows directly from working with universal type structures, as in Mertens and Zamir (1985).
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As defined, a type ta of Ann has beliefs only about Bob’s types and strategies. However,

we will also need to describe Ann’s beliefs about her own strategies. So let νa : Sa × T a →
∆(Sa × T a × Sb × T b) be given by

νa(sa, ta) = δ(sa,ta) ⊗ λa(ta)

where δ(sa,ta) is the Dirac measure concentrated at (sa, ta), and define νb similarly. Hence, a

strategy-type pair (sa, ta) has beliefs λ(ta) over Bob’s types and strategies and assigns probability

1 on choosing strategy sa (and having type ta). In other words, each strategy-type pair of Ann

knows the strategy she takes.

Fix an event E ⊆ Sa × T a × Sb × T b and write

Ba(E) = {(sa, ta) ∈ Sa × T a : νa(sa, ta)(E) = 1}

as the set of strategy-type pairs that are certain of the event E. Note that this is the standard

definition of certainty (as 1-belief), which (unlike assumption and weak assumption, defined below)

satisfies monotonicity: if Ann is certain of E and E ⊂ F then Ann is also certain of F . The belief

operator Ba is a slight generalization of the standard operator Ba
0 (E) = {ta ∈ T a : λa(ta)(E) = 1},

where E ⊆ Sb × T b.

The LPS-based approach, on the other hand, uses the following construction. Let L+(X) be

the space of fully supported LPS’s over X, that is, the space of finite sequences σ = (µ0, . . . , µn−1),

for some integer n, where µi ∈ ∆(X) and
⋃n−1

i=0 supp µi = X. In addition, the measures µi in σ are

required to be non-overlapping, that is, mutually singular. A lexicographic type structure is a type

structure where λa : T a → L+(Sb× T b), and similarly for b. An event E is assumed if and only if

the closure of the event is equal to the union of the supports of j levels of the player’s LPS. That

is, there is a level j such that the player assigns probability one to the event E for all of his/her

hypothesis up to level j, and assigns probability zero to the event for all of his/her hypothesis of

levels higher than j. Yang (2009) uses a weaker notion that allows the levels higher than j to assign

positive (and strictly smaller than 1) weights to the event. The use of lexicographic beliefs is to be

contrasted with our use of standard beliefs.

3.3 RCBER - Common Belief of Event-Rationality

Definition 4. Let Eb ⊂ Sb. Say that a strategy-type pair (sa, ta) ∈ Sa × T a is Eb-rational if sa is

Eb-rational under the conjecture margSbλa(ta).

Let Ra
1 be the set of Eb-rational strategy-type pairs (sa, ta). For finite m, define Ra

m inductively

by

Ra
m+1 = Ra

m ∩Ba(Sa × T a ×Rb
m).
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Similarly for b, using Ea ⊂ Sa.

Note that Ba(Sa × T a ×Rb
m) are the strategy-type pairs of Ann that are certain of Rb

m.

Definition 5. If (sa, ta, sb, tb) ∈ Ra
m+1 ×Rb

m+1, say there is event-rationality and mth-order belief

of event-rationality (RmBER) at this state. If (sa, ta, sb, tb) ∈
⋂∞

m=1R
a
m ×

⋂∞
m=1R

b
m say there is

event-rationality and common belief of event-rationality (RCBER) at this state.

In words, there is RCBER at a state if Ann is Eb-rational, Ann believes that Bob is Ea-rational,

Ann believes that Bob believes that Ann is Eb-rational, and so on. Similarly for Bob. Believing

that Bob is Ea-rational means that Ann is certain that Bob only chooses strategies that are best

responses to Bob’s conjectures that Ann considers possible, and that Bob breaks ties using Ea.

Note that for a strategy-type pair (sa, ta) to belong to Ra
m the following conditions are satisfied.

Strategy sa is a best response to v = margSbλa(ta), and λa(ta)(Rb
m−1) = 1, and whenever σa ∼supp v

sa there exists a conjecture v′ in Eb\supp v (if Eb \ supp v 6= ∅) for which πa(sa, v′) ≥ πa(σa, v′).

Notice that Ann is certain that the conjectures of Bob are of the form v = margSaλb(tb), for

tb ∈ projT bRb
m−1, and knows that, for each such conjecture, Bob breaks each tie using some v′ in

Eb \ supp v. We show below that this flexibility implies that the set of strategies compatible with

RCBER are the ones that survive one round of elimination of inadmissible strategies followed by

iterated elimination of strongly dominated strategies.

3.4 RCBeER - Common Belief of extended Event-Rationality

Fix a type structure, set Eb ⊆ Sb and let Ra(Eb) be the set of strategy-type pairs of Ann who are

Eb-rational. For example, if Ra
1 is the set of Sb-rational strategy-type pairs (sa, ta) we have that

Ra
1 = Ra(Sb). For a given E = Ea × Eb, let Ra

1 = Ra(Eb) and define, for finite m,

R
a
m+1 = R

a
m ∩Ba(Ra(projSbR

b
m)×Rb

m).

Similarly for b, using Ea ⊂ Sa.

Note that Ba(Ra(projSbR
b
m) × Rb

m) are the strategy-type pairs of Ann that are certain that

Bob’s strategy-type pairs are in R
b
m and that Ann herself is projSbR

b
m-rational.

Consider Ra
3 for instance. This is Ann’s set of strategy-type pairs that are Eb-rational, believe

that they are projSb(R
b
1)-rational and projSb(R

b
2)-rational, together with the corresponding two

levels of mutual belief. That is, the strategies in projSaR
a
3 must satisfy three tie-breaking conditions.

It follows that the strategies in projSaR
a
m must satisfy m tie-breaking conditions.

A strategy-type pair of Ann that belongs to Ra
m+1 believes that Bob is m orders rational (as

in RCBER) and that she, herself, is E-rational, where E is the set of strategies played by the

strategy-type pairs of Bob that are m orders rational.
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Definition 6. If (sa, ta, sb, tb) ∈ Ra
m+1 × R

b
m+1, say there is extended event-rationality and mth-

order belief of extended event-rationality (RmBeER) at this state. If (sa, ta, sb, tb) ∈
⋂∞

m=1R
a
m ×⋂∞

m=1R
b
m say there is extended event-rationality and common belief of extended event-rationality

(RCBeER) at this state.

Obviously, RCBeER requires more in terms of beliefs than RCBER, which implies that if they

are both defined for the same tie-breaking set E = Ea × Eb, we have RCBeER ⊆ RCBER.

4 Solution Concepts

4.1 Self-Admissible and Hypo-Admissible Sets

If Ann’s tie-breaking set is Sb and Bob’s tie-breaking set is Sa then all event-rational types play

admissible strategies. If, in addition, there is common belief of event-rationality, then the solution

concept is that of a hypo-admissible set (HAS) that we define below. We compare the HAS with

several solution concepts that have been proposed in the literature. But first a definition.

Definition 7. Say that ra supports sa given Qb if there exists some σa ∈ ∆(Sa) with ra ∈ supp σa

and πa(σa, sb) = πa(sa, sb) for all sb ∈ Qb. Write suQb(sa) for the set of ra ∈ Sa that supports sa

given Qb. Likewise for b.

This is a generalization of the definition in BFK of the support of a strategy sa, which they

denote su(sa). In particular, suSb(sa) = su(sa).

BFK characterize rationality and common assumption of rationality (RCAR) by the solution

concept of a self-admissible set (SAS).

Definition 8. The set Qa ×Qb ⊆ Sa × Sb is an SAS if:

• each sa ∈ Qa is admissible with respect to Sa × Sb,

• each sa ∈ Qa is admissible with respect to Sa ×Qb,

• for any sa ∈ Qa, if ra ∈ suSb(sa), then ra ∈ Qa.

Likewise for b.

In particular, BFK show that the projection of the RCAR into Sa × Sb is an SAS. Conversely,

given an SAS Qa ×Qb, there is a type structure such that the projection of RCAR into Sa × Sb is

equal to Qa ×Qb. BFK discuss the need for the third requirement in the definition of an SAS. In

particular, consider the weak best response sets (WBRS), which does not include a restriction on

convex combinations.

Definition 9. The set Qa ×Qb ⊆ Sa × Sb is a WBRS if:

12



• each sa ∈ Qa is admissible with respect to Sa × Sb,

• each sa ∈ Qa is not strongly dominated with respect to Sa ×Qb.

Likewise for b.

An “almost” characterization of the WBRS is obtained if, as in Brandenburger (1992) and

Börgers (1994), common assumption of rationality is relaxed to common belief at level 0 of ratio-

nality (RCB0R) (that is, believing E means µ0(E) = 1, where µ0 is the first measure of the agent’s

LPS). More specifically, on the one hand the projection of RCB0R into Sa × Sb is a WBRS. On

the other hand, given a WBRS Qa ×Qb, there is a type structure such that Qa ×Qb is contained

in (but not necessarily equal to) the projection of RCB0R into Sa × Sb.6

We are now ready to introduce the solution concept of hypo-admissible sets (HAS).

Definition 10. The set Qa ×Qb ⊆ Sa × Sb is an HAS if:

• each sa ∈ Qa is admissible with respect to Sa × Sb.

For each sa ∈ Qa there is nonempty Q0 ⊆ Qb such that

• sa is admissible with respect to Sa ×Q0,

• for any sa ∈ Qa, if ra ∈ suQ0(sa) and ra is admissible with respect to Sa × Sb then ra ∈ Qa.

Likewise for b.

Note that the first two properties for a WBRS are equivalent to the first two properties for an

HAS and they are implied by the first two properties for an SAS. Hence, the SAS and the HAS are

always WBRS but the opposite does not hold. Moreover, an SAS is not necessarily an HAS and

an HAS is not necessarily an SAS. The differences between the HAS and the SAS can be further

illustrated by the following two solution concepts. The first is S∞W , the set of strategies that

survive one round of deletion of inadmissible strategies followed by iterated deletion of strongly

dominated strategies (Dekel and Fudenberg (1990)).

Definition 11. Set SW i
1 = Si

1, for i = a, b be the set admissible strategies and define inductively

for m ≥ 1,

SW i
m+1 = {si ∈ SW i

m : si is not strongly dominated with respect to SW a
m × SW b

m}.

Let S∞W =
⋂∞

m=1 SW
a
m ×

⋂∞
m=1 SW

a
m.

The second is the set of strategies that survive iterated deletion of weakly dominated strategies,

the IA set.
6See Section 11 in BFK.
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Definition 12. Set Si
0 = Si for i = a, b and define inductively

Si
m+1 = {si ∈ Si

m : si is admissible with respect to Sa
m × Sb

m}.

A strategy si ∈ Si
m is called m-admissible. A strategy si ∈

⋂∞
m=0 S

i
m is called iteratively admissible

(IA).

We then have that the S∞W set is both an HAS and a WBRS (but not an SAS) and the IA

set is an SAS and a WBRS (but not a HAS). The following game from Section 2 illustrates the

various definitions.

L R

U 1, 0 1, 3

M 0, 2 2, 2

D 0, 4 1, 1

The IA set is {M} × {R}. It is an SAS but not an HAS, because although L ∈ su{M}(R) and

L is admissible, it does not belong to the IA set. Moreover, S∞W = {U,M} × {L,R} is an HAS

but not an SAS, because L is not admissible with respect to {U,M}. That is, in a sense the SAS

captures IA whereas the HAS captures S∞W .

4.2 Generalized Self-Admissible and Hypo-Iteratively Admissible Sets

In Section 5 we show that HAS characterizes RCBER with E = S. With a view to obtain a

characterization of RCBeER and to relate it to the concepts presented above, we introduce the

following two solution concepts.

Definition 13. The set Qa ×Qb ⊆ Sa × Sb is an SASP a×P b if:

• each sa ∈ Qa is admissible with respect to Sa × Sb,

• each sa ∈ Qa is admissible with respect to Sa ×Qb,

• for any sa ∈ Qa, if ra ∈ suP b(sa) and ra is admissible with respect to Sa × Sb, then ra ∈ Qa.

Likewise for b.

This is a generalization of the SAS, since the only difference is that the support suP b(sa) is with

respect to an abstract set P b, not Sb. This means that the SAS is equivalent to the SASSa×Sb .7

7Note that if ra ∈ suSb(sa) and sa is admissible, then ra is also admissible. Hence, the third condition for a

SASSa×Sb is identical to the third condition for a SAS.

14



Moreover, if Qa ×Qb ⊆ P a × P b then an SASQa×Qb is also an SASP a×P b , but the reverse may not

hold. This means that for any P a × P b, an SASP a×P b is also an SAS. Moreover, an SASQa×Qb

Qa ×Qb is also an HAS.

Definition 14. A set Qa×Qb is a hypo-iteratively admissible (HIA) set if there exist sequences of

sets {W a
i }∞i=0, {W b

i }∞i=0, with W a
0 = Sa, W b

0 = Sb, such that for each m ≥ 0,

• each sa ∈W a
m+1 is admissible with respect to Sa ×W b

m and belongs to W a
m,

• for any k, m, where k ≥ m, if sa ∈ W a
k+1, ra ∈ suW b

k
(sa) ∩W a

m and ra is admissible with

respect to Sa ×W b
m, then ra ∈W a

m+1,

• there is k such that for all m ≥ k, W a
m = Qa.

Likewise for b.

The HIA sets resemble the IA set, with the only difference that one starts with a subset of

admissible strategies and always includes the strategies that are equivalent (in the sense of suQ) to

strategies that survive subsequent rounds. Moreover, the HIA can be thought of as an analogue of

the best response set (BRS).8 If we replace admissible with strongly undominated in the definition

of HIA then we get a BRS. Conversely, each BRS Qa ×Qb can be written as a modified HIA (just

set W a
i = Qa and W b

i = Qb for all i ≥ 1).

5 Characterization of RCBER

In the definitions of RCBER and RCBeER, the initial tie-breaking set is left unspecified. In what

follows, we keep the convention that E = S. Our first result shows that HAS characterizes RCBER.

Proposition 1. Let Ra
1 be the set of strategy-type pairs (sa, ta) who are Sb-rational and Rb

1 the set

of strategy-type pairs (sb, tb) who are Sa-rational.

(i) Fix a type structure 〈Sa, Sb, T a, T b, λa, λb〉. Then projSa

⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m is an

HAS.

(ii) Fix an HAS Qa ×Qb. Then there is a type structure 〈Sa, Sb, T a, T b, λa, λb〉 with Qa ×Qb =

projSa

⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m.

Proof. For part (i), if Qa ×Qb = projSa

⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m is empty, then the conditions

for HAS are satisfied, so suppose that it is nonempty and fix sa ∈ Qa = projSa

⋂∞
m=1R

a
m. Then,

for some ta, (sa, ta) is Sb-rational, so sa is optimal under v = margSbλa(ta). Let Q0 = supp v.

8Recall that Qa×Qb is a BRS if each sa ∈ Qa is strongly undominated with respect to Sa×Qb and likewise for b.
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We have that sa is admissible with respect to Q0 = supp v, which is a subset of Qb =

projSb

⋂∞
m=1R

b
m. From Lemma 2 (sa, ta) ∈ Ra

1 implies that sa is admissible.

Suppose sa ∈ Qa, ra ∈ susupp v(sa) and ra is admissible with respect to Sa × Sb. From Lemma

D.2 in BFK, ra is optimal under v whenever (sa, ta) ∈ Ra
1.9 Suppose σa∼supp vr

a. If it is the

case that σa dominates ra on Sb \ supp v then ra is not admissible with respect to Sa × Sb, a

contradiction. Hence, (ra, ta) ∈ Ra
1. The same is true for all Ra

m, hence the third property for an

HAS is satisfied.

For part (ii) fix an HAS Qa × Qb and note that for each sa ∈ Qa which is admissible with

respect to Qsa ⊆ Qb, there is a v with supp v = Qsa under which sa is optimal. We can choose

v such that ra is optimal under v if and only if ra ∈ suQsa (sa) (Lemma D.4 in BFK).10 Define

type spaces T a = Qa, T b = Qb, with λa and λb chosen so that supp λa(sa) = {(sb, sb) : sb ∈ Qsa},
supp λb(sb) = {(sa, sa) : sa ∈ Qsb}, and v = margSbλa(sa) for the v found above (and similarly for

margSaλb(sb)).

First, we show that for each sa ∈ Qa, (sa, sa) is Sb-rational. By construction, sa is optimal

under v = margSbλa(sa). Suppose that for some σa we have that sa∼supp vσ
a. If it is the case

that sa is dominated by σa under Sb \ supp v, then sa is not admissible with respect to Sb, a

contradiction. Hence, (sa, sa) is Sb-rational and Qa ⊆ projSaRa
1. Suppose (ra, ta) ∈ Ra

1, where

ta = sa. Then, ra ∈ suQsa (sa) and ra is admissible with respect to Qsa . From Lemma 2, ra is

admissible. From the definition of an HAS this implies that ra ∈ Qa and Qa = projSaRa
1. Applying

similar arguments we have that Qb = projSbRb
1.

By construction, each ta ∈ Qa puts positive probability only to elements in the diagonal (sb, sb)

which consists of Sa-rational types, hence ta believes Rb
1 and (sa, sa) believes Sa × T a × Rb

1. This

implies that Ra
2 = Ra

1 and likewise for b. Thus, Ra
m = Ra

1 and Rb
m = Rb

1 for allm, by induction. Since

projSaRa
1 × projSbRb

1 = Qa ×Qb we also have Qa ×Qb = projSa

⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m.

That is, the strategies consistent with RCBER are the hypo-admissible strategies according

to the definition of an HAS. In a complete structure, m rounds of mutual belief generate the

SW a
m × SW b

m strategies.

Proposition 2. Fix a complete structure 〈Sa, Sb, T a, T b, λa, λb〉. Then, for each m,

projSaRa
m × projSbRb

m = SW a
m × SW b

m.

Proof. From Lemma 2 we have that (sa, ta) ∈ Ra
1 implies sa is admissible. Conversely, since we

have a complete structure, if sa is admissible then there exists ta such that (sa, ta) ∈ Ra
1. Hence,

9Lemma D.2 specifies that if F is a face of a polytope P and x ∈ F , then su(x) ⊆ F , where su(x) is the set of

points that support x. The geometry of polytopes is presented in Appendix D in BFK.
10Lemma D.4 specifies that if x belongs to a strictly positive face of a polytope P , then su(x) is a strictly positive

face of P .
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projSaRa
1 = Sa

1 = SW a
1 and projSbRb

1 = Sb
1 = SW b

1 . Suppose that for up to m we have that

projSaRa
m = SW a

m and projSbRb
m = SW b

m. Suppose sa ∈ SW a
m+1. Then, sa ∈ SW a

m = projSaRa
m.

Because sa is not strongly dominated with respect to SW a
m×SW b

m, it is also not strongly dominated

with respect to Sa × SW b
m. Hence, there is a v with supp v ⊆ SW b

m under which sa is optimal.

Hence, we can take (sa, ta) with supp λa(ta) ⊆ Rb
m and margSbλa(ta) = v. Because sa is admissible

with respect to Sb, (sa, ta) is Sb-rational. Since (sa, ta) ∈ Ba(Sa × T a × Rb
m) and Rb

m ⊆ Rb
k,

1 ≤ k ≤ m, we have that (sa, ta) ∈ Ra
m+1 and sa ∈ projSaRa

m+1.

Suppose sa ∈ projSaRa
m+1. Then, sa ∈ SW a

m = projSaRa
m and supp margSbλa(ta) ⊆ SW b

m =

projSbRb
m. Because sa is optimal under v, where supp v ⊆ SW b

m, sa is not strongly dominated with

respect to SW b
m and therefore sa ∈ SW a

m+1.

6 Characterization of RCBeER

The following two Propositions show that RCBeER is characterized by the HIA and RmBeER

generates the IA set in a complete type structure, for big enough m.

Proposition 3.

(i) Fix a type structure 〈Sa, Sb, T a, T b, λa, λb〉. Then projSa

⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m is an

HIA set.

(ii) Fix an HIA set Qa×Qb. Then there is a type structure 〈Sa, Sb, T a, T b, λa, λb〉 with Qa×Qb =

projSa

⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m.

Proof. For part (i), if Qa×Qb = projSa

⋂∞
m=1R

a
m× projSb

⋂∞
m=1R

b
m is empty, then the conditions

for an HIA set are satisfied, so suppose that it is nonempty.

Set W a
m = projSaR

a
m for m ≥ 1 and likewise for b. From Lemma 2, all strategies in projSbR

a
m+1

are admissible with respect to Sa ×W b
m and, by construction, belong to projSbR

a
m.

Suppose that for some k, m, where k ≥ m, we have that sa ∈ W a
k+1 = projSbR

a
k+1, ra ∈

suW b
k
(sa) ∩ W a

m and ra is admissible with respect to Sa × W b
m. This implies that for some ta,

(sa, ta) ∈ Ra
k+1 and supp margSbλa(ta) ⊆ W b

k . Because ra ∈ suW b
k
(sa) ∩W a

m and ra is admissible

with respect to Sa ×W b
m we have that (ra, ta) ∈ Ba(Ra(projSbR

b
l ) × R

b
l ) for all l ≤ m. Note that

(ra, ta) believing Ra(projSbR
b
l )× Sb × T b is equivalent to (ra, ta) ∈ Ra(projSbR

b
l ). To see that the

last part is true, note that ra ∈ W b
m implies that ra is admissible with respect to each projSbR

b
l .

But this implies that (ra, ta) ∈ Ra(projSbR
b
l ). Hence, (ra, ta) ∈ Ra

m and therefore (ra, ta) ∈ Ra
m+1.

The third condition is satisfied because projSa

⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m is nonempty and the

strategies are finite.

Fix an HIA set Qa ×Qb and construct the following type structure. For each m ≥ 1, for each

sa ∈ W a
m, find the measure v(sa,m) with support on W b

m−1 such that ra is a best response to
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v(sa,m) if and only if ra ∈ suW b
m−1

(sa). This is possible because of Lemma D.4 in BFK. The

type ta(sa,m) has a marginal v(sa,m) on Sb and assigns positive probability only to strategy-types

(sb, tb(sb,m − 1)), for sb ∈ W b
m−1. Finally, assign to each sa ∈ Sa type ta(ra, 0) which is equal to

ta(ra, k), for some ra ∈W a
k , k > 0.

We now show that RCBeER generates the HIA set. For m = 1, we show that projSaR
a
1 =

W a
1 . Suppose that sa ∈ W a

1 . Because sa is admissible and a best response to v(sa, 1), we have

(sa, ta(sa, 1)) ∈ Ra
1 and sa ∈ projSaR

a
1. Suppose ra ∈ projSaR

a
1. Then, ra is a best response to some

measure v(sa, k + 1), k ≥ 0, for sa ∈ W a
k+1 and ra ∈ suW b

k
(sa) ∩W a

0 . Moreover, (ra, ta(sa, k + 1))

is Sb-rational and therefore admissible, hence by the second property for an HIA set we have that

ra ∈W a
1 .

Assume that for up to m, projSaR
a
m = W a

m and projSbR
b
m = W b

m. Suppose that sa ∈W a
m+1. By

construction, sa is a best response to v(sa,m+1), which has a support of W b
m = projSbR

b
m, and it is

admissible with respect to Sa×W b
m. This implies that (sa, ta(sa,m+1)) ∈ Ba(Ra(projSbR

b
k)×Rb

k)

for all k ≤ m. Hence, sa ∈ projSaR
a
m+1. Suppose ra ∈ projSaR

a
m+1. Then, ra ∈ projSaR

a
m = W a

m.

By construction, the only measures that have support which is a subset of W b
m are measures that

are associated with strategies sa that belong to W a
k+1, where k + 1 > m. Hence, ra is a best

response to some measure v(sa, k + 1), k + 1 > m, for sa ∈ W a
k+1 and ra ∈ suW b

k
(sa). Moreover,

(ra, ta(sa, k + 1)) is Rb
m-rational and therefore admissible with respect to Sa ×W b

m. Hence, by the

second property for an HIA set we have that ra ∈W a
m+1.

Proposition 4. Fix a complete type structure 〈Sa, Sb, T a, T b, λa, λb〉. Then, for each m,

projSaR
a
m × projSbR

b
m = Sa

m × Sb
m.

Proof. For m = 1, Lemma 2 and a complete structure imply projSaR
a
1 = Sa

1 . Suppose that

for up to m we have that projSaR
a
m = Sa

m and projSbR
b
m = Sb

m. Suppose sa ∈ Sa
m+1. Then,

sa ∈ Sa
m = projSaR

a
m. Because sa is admissible with respect to Sa

m × Sb
m, it is also admissible with

respect to Sa × Sb
m and we can take (sa, ta) such that supp λa(ta) = R

b
m and sa is optimal under

margSbλa(ta). Note that (sa, ta) ∈ Ba(Ra(projSbR
b
k)×Rb

k) for each k ≤ m, because sa is admissible

with respect to every Sb
k and R

b
m ⊆ R

b
k. Hence, sa ∈ projSaR

a
m+1.

Suppose sa ∈ projSaR
a
m+1. Then, sa ∈ Sa

m = projSaR
a
m and supp margSbλa(ta) ⊆ Sb

m =

projSbR
b
m. Because (sa, ta) ∈ Ra(projSbR

b
m) we have that sa is admissible with respect to Sa

m×Sb
m

and sa ∈ Sa
m+1.

RCAR in BFK is characterized by the SAS and RmAR (m levels of mutual assumption) pro-

duces the IA set in a complete structure, for big enough m. Since RmBeER generates the IA set
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as well, it is important to know what is the relationship between RCAR and RCBeER in terms of

the solution concepts they generate. The following Proposition and examples show that RCBeER

generates a strict subclass of SAS, hence it is a more restrictive notion than RCAR. However,

as we show in the following section, RCBeER and RCBER are always nonempty in a complete,

continuous and compact structure, unlike RCAR. Let Aa and Ab be the set of Ann’s and Bob’s

admissible strategies, respectively.

Proposition 5.

(i) Fix a type structure 〈Sa, Sb, T a, T b, λa, λb〉. Then projSa

⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m is an

SASAa×Ab.

(ii) Fix an SASQa×Qb Qa ×Qb. Then there is a type structure 〈Sa, Sb, T a, T b, λa, λb〉 with Qa ×
Qb = projSa

⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m.

Proof. For part (i), if Qa×Qb = projSa

⋂∞
m=1R

a
m× projSb

⋂∞
m=1R

b
m is empty, then the conditions

for SASAa×Ab are satisfied, so suppose that it is nonempty. Because Rb
1 = Rb

1, Lemma 2 establishes

that sa ∈ Qa is admissible. Moreover, sa ∈ Qa is projSbR
b
m-rational for each m, so it is Qb-rational

for some ta. From Lemma 2 we then have that sa is admissible with respect to Sa ×Qb.

Suppose sa ∈ Qa, ra ∈ suAb(sa) and ra is admissible. This implies that for any ta, (sa, ta) ∈
R

a
1 ∩ R

a
2 implies that supp margSbλa(ta) ⊆ Ab and ra is optimal under v = margSbλa(ta) (Lemma

D.2 in BFK). Because ra is admissible we have that (ra, ta) ∈ Ra
1. For each m ≥ 2, (sa, ta) ∈ Ra

m

implies that (sa, ta) is projSbR
b
m−1-rational. But then, sa is optimal under a measure with support

projSbR
b
m−1, which is a subset of Ab. Since ra ∈ suAb(sa) we have that ra is optimal under a measure

with support projSbR
b
m−1. Hence, (ra, ta) is projSbR

b
m−1-rational and (ra, ta) ∈ R

a
m. Therefore,

ra ∈ Qa.

For part (ii) fix an SASQa×Qb Qa × Qb and note that for each sa ∈ Qa which is admissible

with respect to Qb, there is a v with supp v = Qb under which sa is optimal. We can choose v

such that ra is optimal under v if and only if ra ∈ suQb(sa) (Lemma D.4 in BFK). Define type

spaces T a = Qa, T b = Qb, with λa and λb chosen so that supp λa(sa) = {(sb, sb) : sb ∈ Qb} and

supp λb(sb) = {(sa, sa) : sa ∈ Qa}.
Note that an SASQa×Qb Qa×Qb is an HAS, where Qsa = Qb. Because the construction of types

is the same as in the proof of Proposition 1 and by definition Ra
1 = R

a
1, we can apply the same

arguments in order to get Qa = projSaR
a
1 and Qb = projSbR

b
1.

By construction, each type ta ∈ Qa puts positive probability only to elements in the diagonal

(sb, sb) which consists of Sa-rational types, hence ta believes Rb
1. Moreover, ta = sa is admissible

with respect to Qb = projSbR
b
1, hence (sa, sa) is Rb

1-rational. This implies that Ra
2 = R

a
1 and likewise
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for b. Thus, Ra
m = R

a
1 and Rb

m = R
b
1 for all m, by induction. Since projSaR

a
1×projSbR

b
1 = Qa×Qb

we also have Qa ×Qb = projSa

⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m.

In words, for a given type structure, the strategies compatible with RCBeER form a subclass of

all of the SAS, and there is a class of SAS (the Qa×Qb sets that are SASQa×Qb) whose strategies are

compatible with RCBeER for some type structure. Because an SASQa×Qb Qa×Qb is an SASAa×Ab

but the converse is not true, Proposition 5 does not provide a characterization of RCBeER. It

does show, however, that RCAR, which is characterized by SAS (BFK, Proposition 8.1), is less

restrictive than RCBeER.

In fact, the following game provides an example of an SAS that is not an SASAa×Ab and cannot

be generated by RCBeER for any type structure. Hence, RCBeER generates a strict subclass of

SAS.

L C R

U 1, 1 2, 1 1, 1

M 2, 2 0, 1 1, 0

D 0, 1 4, 2 0, 0

Note that all strategies except for R are admissible and that {U}×{L,C} is an SAS but not an

SASAa×Ab . The reason is that D and M are in the support of a mixed strategy (assigning weight

1/2 to each) that is equivalent to U given that Bob plays his admissible strategies L and C, but

not given the set of all strategies Sb. Since D and M are not included in {U} × {L,C}, this is not

an SASAa×Ab .

We now argue that {U}×{L,C} cannot be the outcome of RCBeER. First, note that if this were

the case, the types of Ann included in RCBeER should assign zero probability to Bob playing R.

Note also that U is a best response only when Pr(L) = 2
3 and Pr(C) = 1

3 and, for these conjectures,

also M and D are best responses. Hence, any rational type playing U is also rational when playing

M and D. Is it possible that M and D are excluded because types playing these strategies are not

{L,C}-rational or Sb-rational? No, because M and D are admissible with respect to both {L,C}
and Sb. Hence, under RCBeER, for any type structure, whenever U is included, M and D are

included as well.

In the following game all strategies are admissible, hence an SAS is equivalent to an SASAa×Ab .

L C R

U 1, 1 2, 1 1, 1

M 2, 2 0, 1 1, 5

D 0, 1 4, 2 0, 0
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The same arguments show that RCBeER cannot produce {U} × {L,C} which is both an SAS

and an SASAa×Ab but not an SASQa×Qb . Hence, we cannot have a tighter characterization in terms

of Proposition 5.

7 Possibility Results for RCBER and RCBeER

Since the games are assumed to be finite, Propositions 2 and 4 suggest that RmBER and RmBeER

generate the S∞W and IA sets, respectively, for big enough m and when the tie-breaking set E

is equal to S. However, an epistemic criterion for S∞W and IA has to be the same across all

games and therefore independent of m. Below we show that RCBER and RCBeER are nonempty,

whatever the tie-breaking sets, whenever the type structure is complete, continuous and compact

(and recall that the universal type structure (Mertens and Zamir (1985)) satisfies these properties),

hence providing an epistemic criterion for S∞W and IA.

Proposition 6. Fix a complete, continuous and compact type structure 〈Sa, Sb, T a, T b, λa, λb〉.
Then RCBER is nonempty for any tie-breaking sets Ea × Eb ⊂ Sa × Sb. Likewise, RCBeER is

nonempty for any sequence of tie-breaking sets.

Proof. We first show that Ra
1 and Rb

1 are nonempty. Take (sa, ta), v = margSbλa(ta), such that

supp v = Eb and sa is optimal under v. Because Eb \ supp v is empty, (sa, ta) is Eb-rational.

Suppose Ra
m and Rb

m are nonempty. There are two cases. First, projSbRb
m * Eb. Take

(sa, ta), v = margSbλa(ta), such that supp v ⊆ projSbRb
m \ Eb and sa is optimal under v. Because

Eb \ supp v is empty, (sa, ta) is Eb-rational and believes Sa × T a × Rb
k for each k ≤ m. Hence,

(sa, ta) ∈ Ra
m+1. Second, suppose that projSbRb

m ⊆ Eb. Note that there exists sa that is admissible

with respect to both Sa × projSbRb
m and Sa × Eb. This implies that sa is optimal under some

v, where supp v = projSbRb
m. Take (sa, ta), v = margSbλa(ta). Then (sa, ta) is Eb-rational and

believes Sa × T a ×Rb
k for each k ≤ m. Hence, (sa, ta) ∈ Ra

m+1.

Because T a is compact, Ra
1 is also compact: for any sequence (sa

n, t
a
n) in Ra

1, we have sa
n ∈

BR(va
n), where va

n = margSbλa(tan) and BR denotes best response. If (sa
n, t

a
n) → (sa, ta), then

va
n → va = margSbλa(ta), implying that sa ∈ BR(va). Further, since Sb is finite, we can choose

a subsequence such that supp va
n = supp va

m and a fortiori supp va
n = supp va. Hence, whenever

σa ∼supp va sa, we have σa ∼supp va
n
sa, and hence the existence of a v′ in Eb\supp va such that

πa(sa, v′) ≥ πa(σa, v′). That is, (sa, ta) ∈ Ra
1, so it is a closed subset of the compact space Sa×T a.

Now consider Ra
2 = Ra

1 ∩ Ba(Sa × T a × Rb
1), and pick a convergent sequence (sa

n, t
a
n) therein,

with limit (sa, ta). Because Rb
1 is closed and λa is continuous, we have lim suptan→ta λ

a(tan)(Rb
1) ≤

λa(ta)(Rb
1). Hence λa(ta)(Rb

1) = 1 because λa(tan)(Rb
1) = 1. Also, Eb-rationality follows from the
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same argument above, and we conclude that Ra
2 is compact. Inductively, Ra

m is compact for all

m. It follows that
⋂

m≥1R
a
m 6= ∅ because the family {Ra

m}m≥1 has the finite intersection property:

for any finite list {m1, . . . ,mK} of positive numbers, let mk be the largest. Then we know that

Ra
mk
6= ∅ and it is included in

⋂K
k=1R

a
mk

.

For the RCBeER, the same argument as above shows that Ra
1 and R

b
1 are nonempty. Assume

that Ra
m and Rb

m are nonempty. Let Ŝi
0 = Ei for i = a, b and define inductively Ŝi

m+1 = {si ∈ Ŝi
m :

si is admissible with respect to Ŝa
m × Ŝb

m}. We then have projSaR
a
m = Ŝa

m and projSbR
b
m = Ŝb

m.

Pick sa ∈ Ŝa
m+1. Then, sa ∈ Ŝa

m = projSaR
a
m. Because sa is admissible with respect to Ŝa

m × Ŝb
m,

it is also admissible with respect to Ŝa × Sb
m and we can take (sa, ta) such that supp λa(ta) = R

b
m

and sa is optimal under margSbλa(ta). Note that (sa, ta) ∈ Ba(Ra(projSbR
b
k)×Rb

k) for each k ≤ m,

because sa is admissible with respect to every Ŝb
k and R

b
m ⊆ R

b
k. Then (sa, ta) ∈ Ra

m+1.

Now pick a sequence (sa
n, t

a
n) in R

a
m converging to (sa, ta) and repeat the argument above to

conclude that λa(ta)(Rb
m−1) = 1, and that supp va

n = supp va, where va
n = margSbλa(tan) and

va = margSbλa(ta). Whenever σa ∼supp va sa, there exist conjectures v′j with j = 1, . . . ,m with

supp v′1 = Sb\supp va and supp v′j = projSbR
b
j−1\supp va for j = 2, . . . ,m such that πa(sa, v′j) ≥

πa(σa, v′j), for j = 1, . . . ,m. Hence Ra
m is compact, and the intersection

⋂∞
m=1R

a
m is not empty.

The same arguments apply to b.

8 Conclusion

We showed that event-rationality can be used to analyze common belief of admissibility in games.

In particular, an epistemic criterion for IA can be obtained and it places IA at the same level

as IEDS as a solution concept. IA does require that players know more about each other than

IEDS does (i.e. event-rationality instead of plain rationality), but it certainly does not require that

players know each other’s conjectures. The fact that each player can perform the IA procedure

on her own by considering that the other players only play admissible strategies, much as each

player can perform the IEDS procedure on her own (by considering that the other players only

play rational strategies), suggests that the epistemic requirements for IA ought not be much more

restrictive than those for IEDS, as we indeed show using RCBeER.

Also, because we adopt a perspective different from LPS-based approaches, our analysis is a

straightforward extension of the standard analysis of common knowledge of rationality. That is, by

noting that admissibility can be captured by breaking ties outside of one’s conjectures, we are able

to separate beliefs from conjectures and work with standard type spaces. LPS-based approaches,

on the other hand, analyze admissibility from the perspective of fully supported conjectures, and

separate beliefs from conjectures by means of lexicographic type spaces.
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A Decision Theoretic Properties

In terms of the underlying decision theoretic ideas, let us present a model of preferences that

captures the ideas of event-rationality.11 Let Ω be a finite set of states, C a finite set of consequences

and F = {x : Ω → ∆(C)} be the set of acts that a decision maker faces. Let xω denote the value

of the act x at the state ω ∈ Ω, and for each A ⊂ Ω let xA denote the tuple (xω)ω∈A. A preference

relation is a binary relation defined on F . Let AA denote the set of preference relations on F
satisfying the axioms in Anscombe and Aumann (1963). For a given preference relation % defined

on F , let %A denote conditional preference given A ⊂ Ω, that is, x %A y if there exists z ∈ F such

that (xA, zΩ\A) % (yA, zΩ\A). Let N(%) be the set of Savage-null events in Ω according to %, that

is, x ∼N(%) y for every pair of acts x, y ∈ F . An act is called constant if xω = c for every ω ∈ Ω,

for some c ∈ ∆(C).

Let ' ∈ AA and fix a set D ⊂ N('). Put C(') = {%̇ ∈ AA : x ' y ⇔ x %̇ y for all constant

acts x, y and N(%̇)c = D}. Let ∼, ≈, ∼̇ and �, >, �̇ denote the symmetric and asymmetric parts

of %, ' and %̇, respectively. Consider the following property:

Property 1. A preference relation % on F satisfies double checking of x over y if there exists

' ∈ AA such that x % y if and only if in addition to x ' y we also have that if xω = yω for all

ω ∈ N(')c then there exists %̇ ∈ C(') with x %̇ y.

The idea of double checking is that the decision maker uses ' to guide her choices of x over y,

but whenever x = y on the non Savage-null states according to ' she double checks with preference

relations %̇ whose Savage-null states include the states that are not Savage-null according to '.

The resulting preference relation is denoted by %.

A subjective expected utility is a pair (u, p) where u : ∆(C) → R and p ∈ ∆(Ω) such that the

expected utility of act x is given by Epu(x) =
∑

ω∈Ω u(xω)p(ω). Given a subjective expected utility

(u, p) and a set E ⊂ Ω, we say that x is event-rational relative to y if Epu(x) ≥ Epu(y) and if

xω = yω for all ω ∈ supp p then there exists a v ∈ ∆(Ω) with supp v = E\supp p (provided that

E\supp p 6= ∅) such that Evu(x) ≥ Evu(y).

Lemma 3. A preference relation % on F satisfies double checking of x over y if and only if there

exists a subjective expected utility (u, p) and a set E ⊂ Ω such that x % y if and only if x is

event-rational relative to y.

Proof. If % satisfies double checking of x over y then there is ' ∈ AA satisfying the conditions

in Property 1. Let ' be represented by (u, p), and let E = supp p ∪D. Then x % y means that
11Because we work with standard type structures, belief is the standard notion captured by events that are not

Savage-null - see definitions below. What we establish now is the properties that a preference relation ought to satisfy

for it to give rise to event-rational behavior. BFK (Yang (2009)) present axiomatizations of their notion of assumption

(weak assumption), whereas the axiomatization of lexicographic beliefs can be found in Blume et al. (1991).
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Epu(x) ≥ Epu(y) and if x = y on N(')c then there is %̇ ∈ C(') with x %̇ y. Because %̇ agrees

with ' on constant acts, its subjective expected utility representation is of the form (u, v). And

we have supp v = D = E\supp p and Evu(x) ≥ Evu(y), so x % y if and only if x is event-rational

relative to y.

Conversely, if % is such that there exists a subjective expected utility (u, p) and a set E ⊂ Ω

such that x % y if and only if x is event-rational relative to y then let ' ∈ AA be represented

by (u, p), and let D = E\supp p. Then x % y means that Epu(x) ≥ Epu(y) and that if xω = yω

for all ω ∈ supp p, then there exist v ∈ ∆(Ω) with supp v = D with Evu(x) ≥ Evu(y). Let %̇ be

represented by (u, v), so that it is in C(') and we are done.

We say that an act x is event-rational if it is event-rational relative to y for every act y. In the

context of normal form games, a strategy sa can be viewed as an act with state space Sb, and it is

straightforward to verify that a strategy sa is Eb-rational according to Definition 2 if and only if it

is Eb-rational as an act.
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