AdS Blacle Branes: A Sound Bound?
work in progress mith Aron Jansen, Umut Gürsoy, Romuce Roders (Barceloma) (Utrecht)
(Sonthampton)
0905.0900 Hohler + Stephanow
0905. 6903 Cherman, Cohen, Nellore
0905. 2969 Cherman + Nellore
hep-th10508220 Friess, Gubser, Mitra
$\left.\begin{array}{l}0904.1716 \\ 1010.5748\end{array}\right\}$ Buchel + Pugnutti
Holegraphic
1603.07724 Gürson etal. counter-examples
1603.05950 Tanik etal.

| 1609.03480 | Hoposivuovininetal. | chemical potertial $\mu \neq 0$ |
| :--- | :---: | ---: |
| 1611.05808 Mateos et al. | D7 branes/Landan pole |  |
| Ahoades + Ruffini PRL $32324(1974)$ | Nentronstar mans |  |
| Bedaque + Steiner PRL 114031103 (2015) 1408.5116 |  |  |

I. Review: Sound Modes in Flnids
II. A Bound on the Speed of Sound from Kolography?
III. Counterexamples from Nolography?
I. Review : Sound Modes in Fluids

Consider (3+1)-dimensiaial Minkoishi space
(although nothing that sollows is uniapue to $(3+1)$ dim.)
metric $\quad\left[r_{\mu v}\right]=\left(\begin{array}{cc}-1 & \\ & 1 \\ & 1 \\ & 1\end{array}\right) \quad$ (t, $\left.x^{i}\right) \quad i=1,2,3$

Consider a relativistic fluid
with consumed stress - every tensor

$$
\partial \mu\left\langle T^{\mu \nu}\right\rangle=0 \quad\left\langle T^{\mu \nu}\right\rangle=\left\langle T^{\nu \mu}\right\rangle
$$

in an isotropic, homoqueous thermal equilibrium state

$$
\begin{array}{lc}
\langle T t\rangle \equiv \varepsilon & \text { energy density } \\
\left\langle T^{i j}\right\rangle \equiv P \delta^{i j} \quad \text { pressure }
\end{array}
$$

and equation of state $\varepsilon(P)$ or $P(\varepsilon)$

Consider a small fluctuation of stress-nery

$$
\begin{aligned}
& \left\langle T^{t t}\right\rangle=\varepsilon+\left\langle\delta T^{t t}\right\rangle \\
& \left\langle T^{i j}\right\rangle=p \delta^{i j}+\left\langle\delta T^{i j}\right\rangle \\
& \left\langle T^{t i}\right\rangle=\left\langle\delta T^{t i}\right\rangle
\end{aligned}
$$

with $\left\langle S T^{t t}\right\rangle,\left\langle\delta T^{i j}\right\rangle,\left\langle\delta T^{t i}\right\rangle \ll \varepsilon, p$

The fluctuations depend on time and space Fourier transform

$$
\begin{aligned}
\left\langle\delta T^{\mu v}\right\rangle & \equiv \int \frac{d^{4} q}{(2 \pi)^{4}} e^{-i q \cdot x}\left\langle\delta \tilde{T}^{\mu v}\right\rangle \\
q \cdot x & =-\omega t+\tilde{q} \cdot \vec{x}
\end{aligned}
$$

From the conservation equation
$-i \omega\left\langle\delta \tilde{T}^{t t}\right\rangle+i q_{i}\left\langle\delta \tilde{T}^{t i}\right\rangle=0$
$-i \omega\left\langle\delta \tilde{T}^{t i}\right\rangle+i q_{j}\left\langle\delta \tilde{T}^{j i}\right\rangle=0$

We want the eigenmodes of $\left\langle\delta \tilde{T}^{\mu \nu}\right\rangle$
Among other things, these will include sound

Simplest example: ideal fluid

Landau vifshitz vol. 6 Fluid Mechanics Chapter VIII "Sound"
"
… a sound wave in an ideal fluid is, like any motion in an ideal fluid, ad iabatic. Hence the small change [...] in the pressure is related to the small change in [energy] density by"

$$
\left\langle\delta \tilde{T}^{i j}\right\rangle=\frac{\partial P}{\partial \varepsilon}\left\langle\delta \tilde{T}^{t t}\right\rangle \delta^{i j}
$$

Plugging inito the conservation equations
$-i \omega\left\langle\delta \tilde{T}^{t t}\right\rangle+i q_{i}\left\langle\delta \tilde{T}^{t i}\right\rangle=0$
$-i \omega\left\langle\delta \tilde{T}^{t i}\right\rangle+i q_{j} \delta^{i j} \frac{\partial P}{\partial \varepsilon}\left\langle\delta \tilde{T}^{t t}\right\rangle=0$
Solving the second equation fa $\left\langle\delta \tilde{T}^{2 i}\right\rangle$ and plugging the result into the first equation

$$
\left(\omega^{2}-\frac{\partial p}{\partial \varepsilon} \stackrel{q}{q}^{2}\right)\left\langle\delta \tilde{T}^{t t}\right\rangle=0
$$

$\Rightarrow$ eigenmodes with $\quad \omega= \pm \sqrt{\frac{\partial P}{\partial \varepsilon}}|\dot{q}|$

These are fluctuations of the enusyy density that propagate with speed $U_{s}$ given by

$$
V_{s}^{2}=\frac{\partial P}{\partial \varepsilon}
$$

These are the sound waves
(the only non-trivial excitation of an ideal fluid)

Vs determined entively by equilibrium thermodynamics!
i.e. the equation of state $P(\varepsilon)$

For a non-ideal fluid in a
hydrodynamic regime
to leading order in spatial gradients

$$
\begin{aligned}
\left\langle\delta T^{i j}\right\rangle=-\frac{1}{\varepsilon+p} & {\left[\xi \left(\partial_{i}\left\langle\delta T^{(i)}\right)+\partial_{j}\left\langle\delta T^{t i}\right\rangle-\frac{2}{3} \delta^{i j} \partial_{k}\left\langle\delta T^{(k)}\right)\right.\right.} \\
& \left.+S \delta^{i j} \partial_{k}\left\langle\delta T^{+k}\right\rangle\right]
\end{aligned}
$$

$$
\begin{aligned}
& z \equiv \text { shear viscosity } \\
& S \equiv \text { bulk viscosity }
\end{aligned}
$$

the term $\alpha z$ is traceless
the term $\alpha 5$ has trace 55

Solving for the eigenmodes again:
(1) Transverse fluctuations of $\left\langle\delta T^{t i}\right\rangle$ shear mode

$$
w=-i \frac{\eta}{\varepsilon+p}|\vec{q}|^{2}+\ldots
$$

Purely imaginary $\Rightarrow$ non-propagatitig dissipative
(2) Sound Modes

$$
w= \pm v_{s}|\vec{q}|-\frac{i}{2} \frac{1}{\varepsilon+p}\left(S+\frac{u}{3} z\right)|\vec{q}|^{2}+\ldots
$$

Dissipation $\Rightarrow$ non-zero disperscim
i.e. the sound wave now decays

Other ways to write $V_{s}{ }^{2}=\frac{\partial P}{\partial \varepsilon}$
just using thermodynamic identities

WHEN ALL CHEMICAL POTENTIALS VAMSH

$$
\begin{aligned}
& \mu=0 \\
& F=-P=\text { free energy density } \\
& S \equiv-\frac{\partial F}{\partial T}=\frac{\partial P}{\partial T}=\text { entropy density } \\
& C_{v} \equiv \frac{\partial \varepsilon}{\partial T} \quad \text { heat capacity density } \\
& V_{S}^{2}=\frac{\partial P}{\partial \varepsilon}=\frac{\partial P / \partial T}{\partial \varepsilon(\partial T}=\frac{S}{C_{V}}=\frac{S}{T}\left(\frac{\partial S}{\partial T}\right)^{-1}=\frac{\partial \ln T}{\partial \ln S} \\
& \omega \equiv \varepsilon+p \quad \text { enthalpy } \\
& \left\langle T_{\mu}^{\mu}\right\rangle=\theta=\varepsilon-3 p \\
& \varepsilon=(3 w+\theta) / 4 \quad P=(w-\theta) / 4 \\
& V s^{2}=\frac{1-d \theta(d w}{3+d \theta 1 d w}
\end{aligned}
$$

Special values of $v_{s}^{2}=\frac{\partial p}{\partial \varepsilon}$
(1) $v_{s}^{2} \geq 0$ because if $v_{s}^{2}<0$ then $v s$ must be complex-ralued, and hence for the sound mode Imw $\approx$ Row $\Rightarrow$ No longer a well-defined quasi-particle Also, when $\mu=0$ thermodynamic stability $\Rightarrow v_{s}{ }^{2}=\frac{s}{c_{v}} \geq 0$
(2) Causality requires $v_{s}^{2} \leq 1$
(3) For a theory with conformal invariance

$$
T_{\mu}^{M}=0 \quad \text { as an operator }
$$

true in all states
thermal equilibrium $\left\langle T_{V}^{M}\right\rangle=\binom{\varepsilon_{p_{p}}}{p_{p}}$

$$
\begin{array}{r}
\left\langle T_{\mu}^{\mu}\right\rangle=0 \quad \Rightarrow \quad-\varepsilon+3 P=0 \quad \Rightarrow \quad \varepsilon=3 P \\
\Rightarrow \quad v_{s}^{2}=\frac{1}{3} \quad\left(14 \quad \frac{d-d i m}{} \quad v_{s}^{2}=\frac{1}{d-1}\right)
\end{array}
$$

First - oder hydrodynamics $\left\langle T_{\mu}^{M}\right\rangle=0 \Rightarrow S=0$ Both vs and $S$ measure deviation from informal Divariance
f uv= nou-dynamical bacharonnd metric
$Z[$ gur....] $]=$ querating functaial of convected correlation functions
in Enclidecn signature

$$
T_{\mu v}=-\frac{2}{\sqrt{g}} \frac{\delta}{\delta g^{\mu v}} \ln Z\left[q_{\mu v}, \ldots\right]
$$

conformal truusfarmation

$$
x_{\mu} \rightarrow x_{\mu}^{\prime}\left(x_{\nu}\right)
$$

such that $g_{m v} \rightarrow e^{2 \Omega(x)} g_{\mu v}$

$$
\Rightarrow \quad T_{\mu}^{\mu}=\frac{1}{\sqrt{g}} \frac{\delta}{\delta \Omega} \ln z
$$

conformal invariance $\Rightarrow \quad \frac{\delta}{\delta \Omega} \ln Z=0$

$$
\Rightarrow \quad T_{\mu}^{\mu}=0
$$

II. A Bound on the Speed of Sound
from Holography?
0905.0900 Holler + Stephanov
0905.0903 Cherman, cohen, Nellore

Consider classical Einstein gravity on asymptotically $A d S_{5}$ manifold $M$ minimally coupled to scalar $\phi$ with any potential $V(\phi)$ almost
$g_{\mu v} \longleftrightarrow T_{\mu v}$
d $\longleftrightarrow \theta$
$\theta=$ relevant scalar operator responsible for breaking confamality (ire. introduce dimensionful source $\operatorname{for} \theta$ )
Thearn:
For such systems,
as $T \rightarrow \infty, V_{s}^{2} \rightarrow \frac{1}{3}$ from below

In other wards, if we start at $T=\infty$ and then reduce $T$,
the correction to $v s^{2}=\frac{1}{3}$ is
ALWAYS NEGATIVE

PROOF OF THE THEOREM

$$
S_{\text {grav }}=\frac{1}{2 x^{2}} \int_{M} d^{5} x \sqrt{-g}\left[R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right]+S_{\partial M}
$$

$K^{2}=$ gravitational constant $\alpha / / N_{c}^{2}$ typically
$g=$ determinant of guv
$R=$ Ricci scalar
$S_{\partial M}=$ boundan terms
(Gibbons - Hawking + counterterms)

Want solutrais describing non-zero T
Phase structure depends on $V(\phi)$
for sufficisitly high $T$, we expect a black bran solution

The most general metric that is static, isotropic and homogeneous in field theory directions, asymptotically approaches $\mathrm{Ad}_{5}$ and has a regular, non-extremal horizon takes the form

$$
\begin{aligned}
d s^{2}= & A(z)^{2} e^{2 B(z)} \frac{d z^{2}}{f(z)}+A(z)^{2}\left(-f(z) d t^{2}+d^{2} z\right) \\
& \text { with } z \in\left(0, z_{H}\right)
\end{aligned}
$$

Boundary condition: asymptotically Ads

$$
\lim _{z \rightarrow 0} f(z)=1 \quad \lim _{z \rightarrow 0} e^{2 B(z)}=1
$$

as $\quad z \rightarrow 0 \quad A(z) \rightarrow \frac{L}{z}$

$$
\lim _{z \rightarrow 0} \phi(z)=0 \quad \text { (normalizable) }
$$

Boundary condition: non-extremal horizon

$$
f\left(z_{n}\right)=0 \quad \text { (simple zero) }
$$

Demand that are regular at $z_{H}$ (except $g_{z z}$ )

Bawling Temperature

$$
T=\frac{\left|A\left(z_{n}\right)^{2} f^{\prime}\left(z_{H}\right) e^{-B\left(z_{H}\right)}\right|}{4 \pi}
$$

Bekenstein - Hawking entropy

$$
S=\frac{2 \pi}{k^{2}}\left|A\left(z_{H}\right)\right|^{3}
$$

where $\quad S \propto \frac{1}{k^{2}} \propto N_{c}{ }^{2}$
suggests a deconfined phase
The scalar $\phi$ depends only on $z$ and vanishes as $z \rightarrow 0$

Assumption: $\quad \lim _{z \rightarrow 0} V(\phi)=-\frac{12}{L^{2}}+\frac{1}{2} m^{2} \phi^{2}+\theta\left(\phi^{4}\right)$ with $m^{2}=\Delta(\Delta-4) / l^{2}$

$$
\Rightarrow \quad \Delta_{ \pm}=2 \pm \sqrt{4+m^{2} l^{2}}
$$

$\Delta_{+}$is the dimension of the dual $\theta$

Breitenlohner - Freedman stability bound

$$
m^{2} l^{2} \geq-4
$$

Stay above that: $\quad m^{2} l^{2}>-4$
which $\quad \Rightarrow \quad \Delta+\geqslant 2$

Restrict to relevant operators
which $\Rightarrow \quad \Delta+<4$

Asymptotically: $\quad \phi(z)=c_{-} z^{\Delta_{-}}+c_{+} z^{\Delta_{+}}+\ldots$
$C_{\text {. }}=$ source for drat $\theta$
$C_{+}=V E V$ for dual $\theta$
with choice $2<\Delta+<4$
these are both dimension full

$$
\begin{gathered}
{\left[c_{-}\right]=\Delta_{-} \quad\left[c_{t}\right]=\Delta_{+}} \\
\langle\theta\rangle=-\left.\frac{\delta \delta_{\text {grave }}}{\delta c_{-}}\right|_{\text {an-sheee }}=-\left(\Delta_{+}-\Delta_{-}\right) c_{+}
\end{gathered}
$$

Here I will Sollow 0905.0900 Kohle ustephana (14)
Strategy: compute $\left\langle T^{t t}\right\rangle$ and $\left\langle T^{x x}\right\rangle$ compute $\frac{\partial P}{\partial \varepsilon}$

Asymptotically $\quad g_{\mu \nu}(z)=\frac{c^{2}}{z^{2}} g_{\mu \nu}^{0}+\ldots$

$$
\left\langle T^{\mu \nu}\right\rangle=\left.2 \frac{\delta S_{g_{m v}}}{\delta g_{\mu v}^{j}}\right|_{\text {cn-sheele }}
$$

"Bave" correlatar diverges conld "Renarmatize" usinig countertoms in $S_{\partial \mu}$

Nohler + Stephanov instend renormalize by subtracting $T=0$ values

$$
\begin{aligned}
\mathcal{E} & \equiv\left\langle T^{t t}\right\rangle_{T\rangle 0}\left\langle T^{t t}\right\rangle_{T=0} \\
P & \equiv\left\langle T^{x x}\right\rangle_{T>0}-\left\langle T^{x x}\right\rangle_{T=0} \\
W & \equiv \varepsilon+P \quad \text { en thalpy }
\end{aligned}
$$

A straightforward calculation gives

$$
\begin{aligned}
& \varepsilon=\left(3 w-c_{-} c_{+} \Delta_{-}\left(\Delta_{+}-\Delta_{-}\right)\right) / 4 \\
& p=\left(w+c-c_{+} \Delta_{-}\left(\Delta_{+}-\Delta_{-}\right)\right) / 4
\end{aligned}
$$

which also immediately gives

$$
\left\langle T_{\mu}^{\mu}\right\rangle=-\varepsilon+3 p=c_{-} \Delta_{-}\langle\theta\rangle
$$

as required by a ward identity, and

$$
v_{s}^{2}=\frac{\partial p}{\partial \varepsilon}=\frac{1+c_{-} \Delta_{-}\left(\Delta_{+}-\Delta_{-}\right) \frac{\partial c_{+}}{\partial w}}{3-c_{-} \Delta_{-}\left(\Delta_{+}-\Delta_{-}\right) \frac{\partial c_{+}}{\partial w}}
$$

So far we haven't really used the high-T limit

Do so now, in the form

$$
c_{-} / T^{\Delta_{-}} \ll 1
$$

since $C_{\text {_ }}$ is the only diviensioiful scale besides $T$
in the limit $\quad c_{-} / T^{\Delta} \ll 1$

$$
v_{s}^{2}=\frac{1}{3}+\frac{4}{9} c_{-} \Delta_{-}\left(\Delta_{+}-\Delta_{-}\right) \frac{\partial c_{+}}{\partial w}+\ldots
$$

We can linearize in $\phi$

The metric is then approximately $A d S_{s}$-Schwarachid

$$
\begin{array}{ll}
B=0 & \forall z \\
f(z)=1-\frac{w}{4} z^{4} \quad A(z)=\frac{L}{z} \\
\text { most } & \Rightarrow v_{s}{ }^{2}=\frac{1}{3}
\end{array}
$$

The most general solution to d's linearized equation is then

$$
\begin{aligned}
d(z)= & c_{-} z^{\Delta_{-}}{ }_{2} F_{1}\left(\Delta_{-} / 4, \Delta_{-} / 4, \Delta_{-} / 2, w z^{4} / 4\right) \\
& +C+z^{\Delta_{+}}{ }_{2} F_{1}\left(\Delta_{+} / 4, \Delta_{+} / 4, \Delta_{+} / 2, w z^{4} / 4\right)
\end{aligned}
$$

BOTH terms diverge logarithmically at $z=7 x$ regularity of $\phi\left(z_{k}\right)$ fixes $c_{t}$ in tams of $c_{-}$

$$
\begin{aligned}
& C_{+}=-C_{-} \omega^{\left(\Delta_{+}-\Delta_{-}\right) / 4} D\left(\Delta_{-}\right) \\
& D\left(\Delta_{-}\right) \equiv \frac{\pi 2^{\Delta_{-}}}{2-\Delta_{-}} \cot \left(\frac{\pi \Delta_{-}}{4}\right) \frac{\Gamma\left(\Delta_{-} / 2\right)^{2}}{\Gamma\left(\Delta_{-} / 4\right)^{4}} \\
& \phi\left(z_{H}\right)=C_{-} \omega^{\Delta_{+} / 4-1} 2^{-\Delta_{+} / 2}\left(2 \Delta_{+}-4\right) \frac{\Gamma\left(\Delta_{+} / 4\right)^{2}}{\Gamma\left(\Delta_{+} / 2\right)}
\end{aligned}
$$

with these results, we find

$$
\begin{gathered}
V_{s}^{2}=\frac{1}{3}-\frac{1}{9} C_{-}^{2} \Delta_{-}\left(\Delta_{+}-\Delta_{-}\right)^{2} W^{-\Delta_{-} 12} D\left(\Delta_{-}\right)+\ldots \\
\text { NEGATIVE FOR ANY V(\$)}
\end{gathered}
$$

In terms of $\phi\left(z_{N}\right)$

$$
V_{s}^{2}=\frac{1}{3}-\frac{1}{18 \pi}\left(4-\Delta_{+}\right)\left(4-2 \Delta_{+}\right) \tan \left(\frac{\pi \Delta_{+}}{4}\right) \phi\left(z_{H}\right)^{2}+\ldots
$$

0905,0903 Sherman, Cohen, vellore
compute $\phi$ (zl's leading order back-reaction (keeping fixed $C_{-} L$ and $z_{H}$ ) and compute $V_{S}{ }^{2}=\frac{\partial \ln T}{\partial \ln S}$ OBTAIN THE SAME RENT

GENERALIZATIONS
0912.2100 Yarom
generalize $A d S_{s}$ to $A d S_{d+1}$

$$
\begin{aligned}
& V_{s}^{2}=\frac{1}{d-1}-\left(d-2 \Delta_{t}\right) \tan \left(\frac{\pi \Delta_{t}}{d}\right) \frac{C_{-}^{2}}{T^{(d+\Delta)}} D\left(d, \Delta_{+}\right) \\
& D\left(d, \Delta_{t}\right) \equiv \frac{16^{1-\Delta_{+} / d}\left(d-\Delta_{+}\right) d^{2\left(d-\Delta_{t}-1\right)}}{2(4 \pi)^{2\left(\left(t-\Delta_{+}\right)\right.}(d-1)^{2}}\left[\frac{\Gamma\left(\frac{\Delta_{t}}{d}\right)}{\left.\rho_{\left(\frac{\Delta}{d}+\frac{1}{2}\right)}^{2}\right)}\right]^{2}
\end{aligned}
$$

0905.2969 Sherman + Nellore
generalize from one to multiple scalars

Find the "least relevant" $\theta$
Plug into the above
that $\theta^{\prime} s \Delta_{+}$
(always assuming $\theta$ is relevant)

That was an explicit calculation,
but Cherman, Cohen, and Nellove (0905,0903) go farther, and ashe

Is $v_{s}{ }^{2}=\frac{1}{d-1}$ an upper bound on the speed of sound?

For all fluids?
or just same subset?
relativistic fluids? interacting of (strongly) relativistic fluids? interacting particles? gouge theories? superfluids?

Difficult to survey ALL KNOWN FCuros!
Restrict to cases similar to their holographic systems

- relativistic
- uncharged (chemical potatial $\mu=0$ )
- translationally invariant (in holography: black brake)
- no symmetry breaking (not superfluid)
- approaches a CFT in the UV
(in holography: asymptotically AdS)

Bedague + Stecrier 1408.5116

- Nem-relativistic systems have $v_{s}{ }^{2} \ll 1$
- Relativistic free massless particles have $v_{s}{ }^{2}=\frac{1}{3}$
- Relativistic free massive particles have $v_{s}{ }^{2}<\frac{1}{3}$
- Weak coupling among the particles $\Rightarrow v_{s}^{2}<\frac{1}{3}$

Ext $\lambda \phi^{4}$ with $\lambda \ll 1$ and mass $m$ when $T \geq m / \sqrt{\lambda}$
hep-ph/9409250 Jean, hep-ph/9512263 Jean + Yaffe

$$
v_{5}^{2}=\frac{1}{3}-\frac{5}{12 \pi^{2}} \frac{m^{2}}{T^{2}}+O\left(\lambda^{3 / 2}\right)
$$

- Quantum Chranodrnamics has $v_{s}{ }^{2}<\frac{1}{3}$

Lattice $Q C D$ results for $v^{2}$ (with $\mu=0$ ) hep-lat/0601013 Karsch, 1007.2580 Borsányi et al.


Upper Bound an Neutron Star Masses
Rhoades Auffini PRL 32324 (1974)

Assume $P$ and $P$ are bounded

$$
\begin{gathered}
\text { (non-zero but } c \infty) \\
V s^{2}=\frac{\partial p}{\partial p} \geq 0 \text { and } \leq 1 \\
M=\int_{0}^{R} d r 4 \pi r^{2} \rho^{(r)} \\
E X T R E M I Z E ~ M
\end{gathered}
$$

"... the maximum mass is obtained for that equation of state which maximizes at each density the velocity of sound..." $P<4.6 \cdot 10^{14} \frac{\mathrm{~g}^{3}}{\mathrm{~cm}^{3}}$ free degenerate neutron EOS maximizes us ${ }^{2}$ $P>4.6 \cdot 10^{14} \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \quad$ they assume $\operatorname{EOS}$ min $v^{2}=1$

$$
\Rightarrow M \leq 3.2 M_{0}
$$

Bedaque and Steiner PRL 114031103 (2015)

$$
1408.5116
$$

$$
\begin{aligned}
& n=\text { nucleon dusity } \\
& n_{0}=\text { nuelear situration densid } \\
& n_{p}=\text { proton dusity } \\
& X=\frac{n_{p}}{n}=\text { proton fraction } \\
& T_{0}=\left(\frac{3 \pi^{2} n_{0}}{2}\right)^{2 / 3} \frac{1}{2 M_{N}} \\
& M_{N}=\text { nentron mass } \\
& M_{p}=\text { proton mass }
\end{aligned}
$$

$$
n_{0}=\text { nuelear suturation density } \approx 0.16 / \mathrm{fm}^{3}
$$

"Shurme-like parametrization" of EOS:

$$
\begin{aligned}
\varepsilon(n, x) & =(1-x) M_{N}+x M_{P} \\
& +\frac{3}{5}\left[x^{5 / 3}+(1-x)^{5 / 3}\right]\left(\frac{2 n}{n_{0}}\right)^{2 / 3} \\
& -\left[\left(2 x-\alpha_{L}\right) \times(1-x)+x_{L}\right] \frac{n}{n_{0}} \\
& +\left[\left(2 \xi-4 \xi_{L}\right) x(1-x)+\eta_{L}\right]\left(\frac{n}{n_{0}}\right)^{r}
\end{aligned}
$$

five parameters: $x_{1} x_{L}, z_{1}, z_{L}, \gamma$

Determined by empirical lenouletge of

$$
\begin{aligned}
-B & =\varepsilon\left(n_{0}, \frac{1}{2}\right)+\frac{1}{2}\left(M_{N}, M_{p}\right) \\
p & =\left.n^{2} \frac{\partial \varepsilon / n}{\partial n}\right|_{\substack{n=n_{0} \\
x=1 / 2}}=0 \\
K & =\left.q_{n} n_{0}^{2} \frac{\partial^{2} \varepsilon}{\partial n^{2}}\right|_{\substack{n=n_{0} \\
x=1 / 2}} \quad n \\
S & =\left.\frac{n_{0}}{8} \frac{\partial^{2} \varepsilon}{\partial x^{2}}\right|_{\substack{n=n_{0} \\
x=1 / 2}} \\
L & =\left.\frac{3 n_{0}}{8} \frac{\partial^{3} \varepsilon}{\partial n \partial x^{2}}\right|_{\substack{n=n_{0} \\
x=112}}
\end{aligned}
$$

vavious experimital (observatiaial results give

$$
\begin{aligned}
& B=16 \pm 0.1 \mathrm{MeV} \\
& K=235 \pm 25 \mathrm{MeV} \\
& S=32 \pm 2 \mathrm{MeV} \\
& L=50 \pm 15 \mathrm{MeV}
\end{aligned}
$$

$$
B, n_{0}, K \Rightarrow \alpha, \eta, \gamma
$$

fivially, minimize
then $S_{1} L \Rightarrow \alpha_{L}, \gamma_{L}$ $\varepsilon(n, x)$ in $x$
follomnig Rhoades + Rnffini, unite
EOS that maximizes $v_{s}{ }^{2}$ at anch $p$ now imposing upper bound $v_{s}{ }^{2} \leq \frac{1}{3}$

$$
\varepsilon= \begin{cases}\min _{x} \varepsilon(n(p), x) & n<2 n_{0} \\ \min _{x} \varepsilon\left(2 n_{0}, x\right)+3 p & n>2 n_{0}\end{cases}
$$

unrealistic: $\varepsilon$ continimons but $v_{s}{ }^{2}$ jumps at $2 n_{0}$ only meant to bound NS masS)
select $K_{1} S, L$ from Gaussian distribution centred an observed values above standard deviation given by $\pm$ in values each EOS $\rightarrow$ TOV equations $\rightarrow$ maximum mass


Bedaque + Steiner:
"... the main point of this paper is the abmpt disappearance of viable models at masses larger than about $2 M_{0}$."
"... the $v_{s}{ }^{2}<\frac{1}{3}$ bound is in strong tension with k noun empirical facts,"

Similar analyses, with various models for the EOS $\left.\begin{array}{ll}1608.00344 & \text { Moustaleides efial } \\ 1709.07889 & \text { Aling, Silva, Bert } \\ 1801.01923 & \text { Tens, Carlson, Gandalfi, Redly } \\ 1811.07071 & \text { Ma + Rho }\end{array}\right\} \begin{aligned} & v_{s}^{2} e \frac{1}{3} \\ & \begin{array}{l}\text { favor fave } \\ v s^{2}<\frac{1}{3}\end{array}\end{aligned}$

CAN WE PROVE $v_{s}{ }^{2} \leq \frac{1}{3}$
FOR AMY CLASS OF NOW-TRMAL, INTERACTING

Can we prove $\operatorname{Cs}^{2} \leq \frac{1}{d-1}$
for flnids with holographic duals?

I cheched $\geq 200$ papers
HOLOGRAPMLC COUNTER - EXAMPLES:
(1) Probe brane zero sonnd (mann papers)
(2) $1007.3431 \quad$ Albrecht + Erlich

Hard-wall AdSlGCD with isospin $\mu_{I} \neq 0$
$\Rightarrow$ pion condusate

$$
v_{s}^{2}=\frac{\mu_{I}^{4}-m_{\pi}^{4}}{\mu_{I}^{4}+3 m_{\pi}^{4}}
$$

compare to hep-ph 10011365 San d Stephanov chival perturbation theary at $T=0$

$$
m_{\pi} \approx 140 m_{e V} \text { ec MI }<C m_{p} \approx 775 M e V \approx 5.66 m_{m}
$$

$\Rightarrow$ pion undusate

$$
v s^{2}=\frac{\mu_{I}^{2}-m_{\pi}^{2}}{\mu_{I}^{2}+3 m_{\pi}^{2}}
$$

COUNTER-EXAMPLE
hep-ph 10011365 Son 1 Stephanov
QCD with $T=0$ and non-zer isospin chemical potential $\mu_{I}$
in regime $m_{\pi} \approx 140 \mu_{e} \mathrm{~V}<\mu_{I} \ll m_{\rho} \approx 775 \mu_{e} \mathrm{~V}$ $\approx 5.66 \mathrm{~m} \pi$
Chiral Perturbation Theory reveals the ground state is a Bose-Eristain Condasate of Pions

$$
V_{s}^{2}=\frac{\mu_{I}^{2}-m_{\pi}^{2}}{\mu I I_{2}^{2}+3 m_{\pi}^{2}}
$$


where $\mu_{I}=m_{\rho}$
(3) 1611.05808 Faedo, Mateos, Pantelidon, Tarrio (27)

D3-Brames + smeared D7-branes
NOT asymptotically $A d S_{5}$
Landan pole in the UV
rather, hupersaling vidating figed point wth $z=1 \quad \theta=7 / 2$


(4) 1609.03480 Koyos, Jokela, Fernandez, Whorinen holographic model of NS EOS

$$
\mu \neq 0
$$

then find solutions with $v_{s}{ }^{2}>\frac{1}{3}$
.... that appear to have an unstable \& NM
(5) hep - th 10508220 Triess, Gubser, Mitra

$$
\left.\begin{array}{l}
0904.1716 \\
1010.5748
\end{array}\right\} \quad \text { Buchel + Paquntti }
$$

1603.07724 Gürsoy, Jansen, vander Schee
1603. 05950 Janik, Jankowshi. Soltanpanahi

Einstun- Nilket + Neqatim cosmological cmstant

+ 1 ar 2 senlars + potutial
(no gange field $\Rightarrow \mu=0$ )
Meet Nohlert Stephanow's assumptions
with same exceptionis
Ex Some cases have irrelevant salar: $\Delta$ 'd

Each case has complicated phase structure: many branches of blacli brame solutiois

All have one branch with $v_{s}{ }^{2}>\frac{1}{d-1}$

What do those solutions have in common?
$=$ in CFT a source is nom-zero: $C_{-} \neq 0$ to break conformal symmetry

- Locally thermodynamically stable

$$
c_{V} \geq 0
$$

(obvious from $v_{s}{ }^{2}=\frac{s}{c_{v}}>\frac{1}{d-1}>0$ )

- NOT globally thermodynamically stable another branch solutions always exists with lower free energy (higher entropy

Die. these are "small black holes (branes)"

- our main result (so far)

ALL have un unstable quasi-normal model (GNY) Consider linearized fluctuations of the metric and scalar (s)

$$
C R \cup C I A L L Y
$$

momentum $\quad \vec{q}=0$
$\Rightarrow$ scalar functuation de couples fran, all others

Ex 1503.05950 Janice Jankowshi, Soltanapanahi one scalar $\phi$ in $A d S_{5}$ "Improved Holographic $Q C D$ " potential

$$
\begin{gathered}
V(\phi)=-12\left(1+\phi^{2}\right)^{1 / 4} \cosh (\gamma \phi)+\frac{25}{4} \phi^{2} \\
\gamma=\sqrt{2 / 3}
\end{gathered}
$$

field $\phi \quad \longleftrightarrow$ operate $\theta$ with $\Delta=3.58$
blacle brave solutions only exist for $T \geq$ minimum temperature $T_{m}$


The last point to discuss is the spectrum of modes for temperatures, $T_{1}<T<T_{2}$, in the small black hole branch, which shows anomalously large speed of sound. In fact, $c_{s}^{2}>1 / 3$, and for some temperatures it is even superluminal, leading to causality violation. In this range of temperatures the system does not exhibit any instability in thermodynamic quantities. However, there appears to be a novel dynamical instability, signaled by the positive imaginary part of the first non-hydrodynamical mode ${ }^{4}$. The difference with respect to the usual spinoidal region is that for $k=0$ the mode stays positive on the imaginary axis.

[^0]Ex 1603.07724 Gürsoy, Jansen, van de scree one Scalar $\phi$ in $A d S_{5}$
potential from Gubser thellore 0804.0434

$$
\begin{gathered}
V(\phi)=-12 \cosh (\gamma \phi)+\frac{19}{9} \phi^{2} \\
\gamma=\frac{4}{3} \sqrt{2}
\end{gathered}
$$

Field $\& \quad \leftrightarrow$ opurita $\theta$ with $\Delta=3$
black bane solutions only exist for

T 2 minimum temperature $T_{m}$




compare to other lenoun instabilities 33
Gregan-Laflamme hep-th19301052

$$
\text { has } \quad \vec{q} \neq 0
$$

Gubse - Mitra "correlated Stability Conjecture"
hep-th/0009126,0011127
"Far a blacle brane solution to he free of dynamical instabilities, it is necessary and sufficueit for it to be locally thermodynamically stable"
(not just asymptotically Ads dui)

All of the above
are connte-ekamples
of Gobse-Mitra conjecture
(Q) For asymptotically AdSdsl uncharged black brane solutions
can we prove in full generality
that if $v_{s}{ }^{2}>\frac{1}{d-i}$ then $\forall$ an unstable $\begin{gathered}\text { co NM }\end{gathered}$ at $\vec{k}=0$

Note: converse is not always true
unstable Q NM
with $t_{e}=0$

$$
\nRightarrow \quad v_{s}^{2}>\frac{1}{d-1}
$$

as known in many examples


[^0]:    ${ }^{4}$ The nomenclature is chosen because at high temperatures this modes continuously transforms into first nonhydrodynamic mode.

