Ad S Black Branes : A Sound Bound? 1

work in progress with Aron Jansen (Barcelong)	, Umnt Gürsoy, Romie Rodges (Utrecht) (southamptm)
0905, 0900 Nobler + Stephanov	
0905, 6903 Cherman, Cohen, Nellove	The proposal
0905. 2269 Cherman + Nellore	
hep-th/0508220 Friess, Gubser, Mitra	
1010. 5748 (Buchel + Pagnutti	Holegraphic
1603.07724 Gürsoy et al.	connter- examples
1603.05950 Janik etal.	,
1609.03480 Nojos, Vuorinen etal.	chemical potential 1170
1611.05808 Mateos et al.	07 branes/Landon pole
Rhoades + Ruffini PRL 32 324 (1974)	Neutra el
Bedaque & Steiner PRL 114 031103 (2015) 1408.	Slig
I. Ferien: Sound Modes	n Fluids
IF. A Bound on the Speed of So	mud from Kolography?
III. Connterexamples from No	lography?
I. Review : Sound Modes	in Fluids
Consider (3+1)-dimensional M	inteonstai space
Calthough nothing that Sollars is	unique to (3+() dim.)
metric $\begin{bmatrix} 2 \\ \mu v \end{bmatrix} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$	(t,xi) i=1,2,3

Consider a relativistic fluid (2)
with consumed stress - many tensor

$$\partial_{M} (T^{MV}) = 0$$
 $(T^{MV}) = (T^{MV})$
in other an isotropic, homogeneous
thermal equilibrium state
 $(T^{tt}) \equiv \varepsilon$ energy density
 $(T^{ts}) \equiv PS^{ij}$ pressure
and equation of state $\varepsilon(P)$ or $P(\varepsilon)$
Consider a small fluctuation of stress-many
 $(T^{tt}) = \varepsilon + (ST^{tt})$
 $(T^{ij}) = PS^{ij} + (ST^{ij})$
 $ZT^{ti} > = (ST^{ti})$
with $(ST^{tt}), (ST^{ij}), (ST^{ti}) < \varepsilon \varepsilon, P$

The fluctuations depend an time and space
Fourier transform

$$(ST^{MV}) = \int \frac{J''g}{(2\pi)'} e^{-ig\cdot x} (ST^{MV})$$

 $g \cdot x = -\omega t + \overline{g} \cdot \overline{x}$
From the conservation equation
 $-i\omega \langle ST^{tt} \rangle + igi \langle ST^{tt} \rangle = 0$
 $-i\omega \langle ST^{tt} \rangle + igi \langle ST^{i} \rangle = 0$
We want the eigenmodes of (ST^{mV})
Among other things, these will include sound
Simplest example: ideal fluid
Landan + Lifshitz vol. 6 Fluid Mechanics
Chapter VIII "Sound"

.....

"... a sound write in an ideal fluid is;
like any motion in an ideal fluid is;
adiabatic. Hence the small change (...] in
the pressure is related to the small change
in Cenerry] density by "

$$\langle S \tilde{T}^{ij} \rangle = \frac{2P}{2\epsilon} \langle S \tilde{T}^{tt} \rangle S^{ij}$$

Plugging with the conservation equations
 $-i \omega \langle S \tilde{T}^{tt} \rangle + i q_i \langle S \tilde{T}^{ti} \rangle = 0$
 $-i \omega \langle S \tilde{T}^{ti} \rangle + i q_j S^{ij} \frac{2P}{2\epsilon} \langle S \tilde{T}^{tt} \rangle = 0$
Solving the second equation for $\langle S \tilde{T}^{ti} \rangle$
and plugging the result with the first quark
 $(\omega^2 - \frac{2P}{3\epsilon} \bar{g}^2) \langle S \tilde{T}^{tt} \rangle = 0$
 \Rightarrow eigenmodes with $\omega = \pm \int \bar{g} [1\bar{g}] [1]$

.

Other ways to write
$$V_{S}^{2} = \frac{2P}{2\epsilon}$$

just using thermodynamic identities
WHEN ALL CHEMICAL POTENTIALS VAMSH
 $M=0$
 $P = -P = free energy density
 $S = -\frac{2F}{2T} = \frac{2P}{2T} = entropy density
 $C_{V} = \frac{2E}{2T}$ heat capacity density
 $V_{S}^{2} = \frac{2P}{2\epsilon} = \frac{2P/2T}{2\epsilon/2T} = \frac{S}{C_{V}} = \frac{S}{T} (\frac{2S}{2T})^{2} = \frac{2\ln T}{2\ln S}$
 $W \equiv \epsilon + P$ enthalpy
 $C_{T}^{m} = 0 = \epsilon - 3P$
 $\epsilon = (3w+0)/4$ $P = (w-0)/4$
 $V_{S}^{2} = \frac{1-2012m}{3+4010m}$$$

Special values of
$$v_s^2 = \frac{2P}{2\epsilon}$$
 (3)
(1) $V_s^2 \ge 0$ because if $v_s^2 < 0$
then V_s must be complex-valued, and
hence for the sound mode $Imw \approx Rew$
 \Rightarrow No longer a well-defined grassi-particle
Also, when $\mu \ge 0$ thermodynamic staticity $av_s^2 = \frac{5}{6} \ge 0$
(2) Causality requires $V_s^2 \le 1$
(3) For a theory with conformal invariance
 $T_{\mu}^{M} \ge 0$ as an operator
true in all states
thermal equilibrium $(T_{\mu}^{M}) \ge (e^{p}r_{\mu})$
 $(T_{\mu}^{M}) \ge 0 \Rightarrow -\epsilon d \exists P \ge 0 \Rightarrow \epsilon = \exists P$
 $\Rightarrow V_s^2 = \frac{1}{3}$ (in (EFF) $v_s^2 = \frac{1}{3}$)
First - actually requires $(T_{\mu}^{M}) \ge 0 \Rightarrow 5 = 0$
Both v_s^2 and \exists measure deviator from
 $ranformal invariance$

Juv = non-dynamical background metric 2 [gnr,...] = querating functional of connected correlation functions in Enclidean signature $T_{\mu\nu} = -\frac{1}{\sqrt{g}} \frac{\partial}{\delta g^{\mu\nu}} \left[n 2 \left[g_{\mu\nu}, \dots \right] \right]$ conformal transformation $X_{M} \rightarrow X_{m}'(X_{\nu})$ such that que > e 252(x) $\Rightarrow T^{M}_{M} = \frac{1}{5g} \frac{s}{5r} \ln 2$ conformal invariance => Sr ly Z = 0 $=) T^{\mu}_{\mu} = 0$

II. A Bound on the Speed of Sound from Kolography? 0905. 0900 Kohler + Stephanov 0905. 0903 Cherman, Cohen, Nellore Consider classical Einstein gravidy on asymptotically AdSs manifold M minimally coupled to scalar of with any potential V(4) (almost) guv () Tur ¢ <> 0 O = relevant scalar operator responsible for breaking confermality (in introduce dimension ful source for 0) (Theorem:) For such systems, as T > 00, vs > 3 from below

In other works, if we should at
$$T=\infty$$

and then reduce T ,
the a convection to $vs^2 = \frac{1}{3}$ is
ALWAYS NEGATIVE
$$\frac{PROOF OF THE THEOREM}{Sgrav} = \frac{1}{2\pi^2} \int_{M} \frac{1}{5} x \int_{T} \frac{1}{9} \left[R - \frac{1}{2} (3\phi)^2 - V(\phi) \right] + \frac{1}{500}$$

 $\Re^2 = gravitational constant a $\frac{1}{10} Vc^2$ typically
 $g = determinant d gav$
 $R = Ricci scalar$
 $S_{2M} = boundary terms$
(Gibbons - Hauloig + countertains)
Want solutions describing united T
Phase structure depends an $V(\phi)$
for sufficiently high T , we
expect a black brane solution$

The most general metric that is
static, isotropic and homogeneous in
Frield theory directions,
asymptotically approaches AdSs
and has a regular incon-extreme horem
takes the form

$$ds^2 = A(2)^2 e^{2B(2)} \frac{d2^2}{f(2)} + A(2)^2 (-f(2)) \frac{dt^2+32}{f(2)}$$

with $2 \in (0, 24)$
Boundary conditions: asymptotically AdSs
lim $f(2) = 1$
 $lim e^{2B(2)} = 1$
 $lim f(2) = 1$
 $lim f(2) = 1$
 $lim f(2) = 0$ (normalizable)
Boundary conditions: non-extremel horem
 $f(2H) = 0$ (simple 200)
Demand that attended at $2H$ (except g_{22})

Mawleining Temperature

$$T = \frac{1 + (2\pi)^2 + (2\pi) e^{-B(2\pi)}}{4\pi}$$
Betrenstein - Mawleining entropy

$$S = \frac{2\pi}{2^2} + |A(2\pi)|^3$$
Where $S \propto \frac{1}{2^2} \propto N_c^2$
suggesds a deconfinied phase
The scalar ϕ beyonds andy an z
and vanishes as $z \rightarrow 0$
Assumption: $\lim_{z \rightarrow 0} V(\phi) = -\frac{12}{L^2} + \frac{1}{2}m^2\phi^2 + O(e^{\phi})$
with $m^2 = \Delta(\Delta - 4)/L^2$
 $\Rightarrow \Delta_{\pm} = 2 \pm \sqrt{4 + m^2L^2}$

.

Breitenlohner - Freedman stability bound

$$m^{2}l^{2} \ge -4$$

Stay above that: $m^{2}l^{2} \ge -4$
which $\Rightarrow \Delta_{+} \ge 2$
Restrict to relevant operators
which $\Rightarrow \Delta_{+} < 4$
Asymptotically: $\phi(z) = c_{-2}\Delta_{-} + c_{+} \ge \Delta_{+} + ...$
 $c_{-} = source$ for dual O
 $c_{+} = vEV$ for dual O
with choice $2 < \Delta_{+} < 4$
these are both dimension ful
 $[c_{-}] = \Delta_{-}$ $[c_{+}] = \Delta_{+}$
 $(O) = -\frac{\delta S_{nv}}{\delta c_{-}}|_{a_{-}sheee} = -(\Delta_{+} - \Delta_{-})c_{+}$

Here I will follow 0905.0900 Kohle interpresent
Strategy: Compute (Ttt) and (TXX)
compute
$$\frac{3P}{3E}$$

A symptotically $g_{nv}(z) = \frac{L^2}{2^2} g_{nv}^{o} + \dots$
 $\langle T^{MV} \rangle = 2 \frac{s}{s} \frac{s_{gnv}}{g_{nv}} \Big|_{a-sheel}$
The Barr " correlate diverges
could "Penamatize" using counderbrass in Som
Mohler + Stephanov instead
renormalize by subtracting $T=0$ values
 $E \equiv \langle T^{HV} \rangle_{T=0} \langle T^{HV} \rangle_{T=0}$
 $P \equiv \langle T^{XX} \rangle_{T=0} - (T^{XX} \rangle_{T=0}$
 $W \equiv E + P$ enthalpy

straightforward calculation gives A $\varepsilon = (3w - c_{-}c_{+} \Delta_{-}(\Delta_{+} - \Delta_{-}))/4$ = $(w + c_{-}c_{+}\Delta_{-}(\Delta_{+}-\Delta_{-}))/4$ P which also immediately gives $\langle T^{M}_{M} \rangle = -E + 3P = C - A - \langle 0 \rangle$ as required by a Ward identity, and $V_{S}^{2} = \frac{\partial P}{\partial e} = \frac{1 + c_{-}\Delta_{-} (\Delta_{+} - \Delta_{-}) \frac{\partial c_{+}}{\partial w}}{3 - c_{-}\Delta_{-} (\Delta_{+} - \Delta_{-}) \frac{\partial c_{+}}{\partial w}}$ far we haven't really used So the high-T limit Do so now, in the form C- (TA- cc) since C_ is the only dimensioniful

scale besides T

In the limit
$$c-1T^{\Delta} \ll 1$$

 $V_{s}^{2} = \frac{1}{3} + \frac{4}{9} C_{-} \Delta_{-} (\Delta_{+} - \Delta_{-}) \frac{2c_{+}}{2w} + \dots$
We can linearize in $\frac{4}{9}$
The metric is then approximately Adss-Schwoodd
 $B = 0 \quad \forall 2$
 $F(2) = (-\frac{w}{4} 2^{4}) \qquad \Rightarrow V_{s}^{2} = \frac{1}{3}$
The most general solution to
 $d's$ linearized equation is then
 $d(2) = c_{-} 2^{\Delta_{-}} \sum_{r} (\Delta_{-}/4, \Delta_{-}/2, w2^{4}/4)$
 $+ C + 2^{\Delta_{-}} \sum_{r} (\Delta_{+}/4, \Delta_{-}/4, \Delta_{+}/2, w2^{4}/4)$
BOTH terms divege logarithmically at $z=2\mu$
 $v \leq qularity$ of $d(2\mu)$ fixes c_{1} in terms dc_{-}

 $C_{+} = -C_{-} W^{(\Delta_{+} - \Delta_{-})/4} D(\Delta_{-})$

$$D(\Delta_{-}) = \frac{\pi 2^{\Delta_{-}}}{2 - \Delta_{-}} \operatorname{cot}\left(\frac{\pi \Delta_{-}}{4}\right) \frac{\Gamma(\Delta_{-}/2)^{2}}{\Gamma(\Delta_{-}/4)^{4}}$$

$$\phi(z_{H}) = c_{-} w^{\Delta_{+}/4 - (2 - \Delta_{+}/2)} (2\Delta_{+} - 4) \frac{\Gamma(\Delta_{+}/4)^{2}}{\Gamma(\Delta_{+}/2)}$$

with these results, we find

$$V_{s}^{2} = \frac{1}{3} - \frac{1}{9}C_{-}^{2}\Delta_{-}(\Delta_{+}-\Delta_{-})^{2}\omega^{-\Delta_{-}/2}D(A_{-})+...$$

$$\uparrow$$

$$NEGATIVE FOR ANY V(4)$$

In tems of \$(74)

 $V_{S}^{2} = \frac{1}{3} - \frac{1}{18\pi} (4 - \Delta_{+})(4 - 2\Delta_{+}) \tan(\frac{\pi \Delta_{+}}{4}) \phi(z_{H})^{2} + \dots$

0905,0903 Cherman, Cohen, Nellore

compute
$$d(z)$$
's leading order back-reaction
(keeping fixed C-L and ZH)
and compute $V_s^2 = \frac{2\ln T}{2\ln s} \xrightarrow{OBTAIN THE SAME REDUCT}$

That was an explicit calculation, (9)
but Cherman, Cohen, and Nellare (0905,0903)
go farther, and ask
Is vs = 1 an upper bound
on the speed of sound?
For all fluids?
or just some subset?
relativistic Fluids? interacting particles? gange theories? Superfluids?
Difficult to survey ALL KNOWN FLUIDS!
Restrict to cases similar to their
holographic systems
- relativistic
- uncharged (chemical potential M=0)
- translationally invariant (in holography: black brane)
- no symmetry breaking (not superfluid)
- approaches a CFT in the UV
(in holography: asymptotically Ads)

Be dagne + Steinier 1408.5116
- Non-relativistic systems have
$$V_{s}^{2} < c|$$

- Relativistic free massive particles have $V_{s}^{2} < \frac{1}{3}$
- Pelativistic free massive particles have $V_{s}^{2} < \frac{1}{3}$
- Weak compling among the particles $\Rightarrow V_{s}^{2} < \frac{1}{3}$
- Weak compling among the particles $\Rightarrow V_{s}^{2} < \frac{1}{3}$
EX $\lambda \phi^{4}$ with $\lambda <<|$ and mass m
when $T \ge m/J\lambda$
hep-ph/9409250 Jean, hep-ph/9512203 Jean + Yabbe
 $V_{s}^{2} = \frac{1}{3} - \frac{5}{12\pi^{2}} \frac{m^{2}}{T^{2}} + O(\lambda^{3/2})$
- Quantum Chremodynamics has $V_{s}^{2} < \frac{1}{3}$
Lattice QCD results for V_{s}^{2} (with $\mu = 0$)
hep-lat/0601013 Karsch, 1007.2580 Borsányi et al.
 V_{s}^{3}
 $\frac{1}{3} \int \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt$

150 170

1

200

--->TIMeV

Upper Bound an Nentran Star Masses (2)
Rhoades + Rusfini PRL 32 324 (1974)
Assume P and P are bounded
(non-two but c or)

$$vs^2 = \frac{2f}{\partial p} = 20$$
 and ≤ 1
 $M = \int_0^K dr 4\pi r^2 P(r)$
EXTREMIZE M
"... the maximum mass is obtained for that
equation of state which maximizes at each
density the velocity of sound ... "
 $P \leq 4.6 \cdot 10^{14} \frac{2}{cm^3}$ force degenerate neutran
EOS maximizes vs^2
 $P > 4.6 \cdot 10^{14} \frac{2}{cm^3}$ they assume EOS with $vs^2 = 1$
 $\Rightarrow M \leq 3.2 M_0$

Be bagne and Steiner PRL 114 03/163 (2015) (2)
H408.5116

$$n = nuclean density$$

 $n_0 = nuclean saturation density $\gtrsim 0.16/f_{m}^{3}$
 $n_p = proton density$
 $X = \frac{n_p}{n} = proton fraction$
 $T_0 = \left(\frac{3\pi^2 n_0}{2}\right)^{2/3} \frac{1}{2M_N}$
 $M_N = neutran mass$
 $M_P = proton mass$
* Strume-like parametrization " of EOS:
 $E(n_1 x) = (1-x)M_N + xM_p$
 $+ \frac{3}{5} [x^{5/3} + (1-x)^{5/3}] (\frac{2n}{n_0})^{2/3}$
 $- [(2x - \alpha_L)x(1-x) + \alpha_L] \frac{n}{n_0}$
 $+ [(122 - 4Z_L)x(1-x) + Z_L](\frac{n}{n_0})^*$
five parameters: $\alpha_1 \alpha_L, Z, Z_L, Y$$

)

Determined by empirical lenanded of (2)

$$-B = \mathcal{E}(n_0, \frac{1}{2}) + \frac{1}{2} (M_{v}, M_{p})$$

$$P = n^{2} \frac{3\mathcal{E}}{2n} \Big|_{n=n_0} = 0$$

$$x = \frac{1}{2} \frac{3^{2}\mathcal{E}}{2n^{2}} \Big|_{n=n_0} \quad \text{nuclear in compressibility}$$

$$S = \frac{n_0}{8} \frac{3^{2}\mathcal{E}}{3\chi^{2}} \Big|_{n=n_0} \quad \text{symmetry energy}$$

$$L = \frac{3n_0}{8} \frac{3^{2}\mathcal{E}}{3n^{2}\chi^{2}} \Big|_{n=n_0} \quad x = \frac{1}{2}$$
Various experimented (observationed results give

$$B = 16 \pm 6.1 \quad \text{MeV}$$

$$K = 235 \pm 25 \quad \text{MeV}$$

$$L = 50 \pm 15 \quad \text{MeV}$$

$$B_{n=n_0} K \Rightarrow \alpha_{1}2_{1}3 \quad \text{frindly, muchanize}$$
then $S_{1}L \Rightarrow \alpha_{1}, \gamma_{1}$

following Rhoades + Ruffini, write (2)
EOS that maximizes Vs² at each p
now imposing apper bound Vs² =
$$\frac{1}{3}$$

$$\mathcal{E} = \begin{cases} \min_{\mathbf{x}} \mathcal{E}(n(p), \mathbf{x}) & n < 2n_0 \\ \min_{\mathbf{x}} \mathcal{E}(2n_0, \mathbf{x}) d3p & n > 2n_0 \end{cases}$$

Be deque + Steiner:
"... the main point of this paper is
the aboupt disappearance of viable models
at masses larger than about 2Mo."
"... the
$$v_s^2 < \frac{1}{3}$$
 bound is in strong
tension with known empirical facts."
Similar analyses, with varians
models for the EOS
1608.00344 Monstaleides et. al
1709.07889 Aling, Silva, Berti
1801.01923 Tews, Carlson, Gandelfi, Redly
1811.07071 Ma + Rho
3 favor
vs²e¹/₃

CAN WE <u>PROVE</u> $V_s^2 \leq \frac{1}{3}$ FOR ANY CLASS OF SYSTEMS? NOW-TRIMAL, INTERACTING

Can we prove
$$US^{2} \leq \frac{1}{d+1}$$
 (26)
for fluids with holographic duals?
I checked 2 200 papers
NOLOGRAPHIC COUNTER-EXAMPLES;
Not so so so and (many papers)
(2) 1007.3431 Alburcht + Exlich
Hard-wall Adslocd with isospin $M_{2} \neq 0$
 \Rightarrow pian condusate
 $VS^{2} = \frac{M_{2}^{2} - m_{1}^{2}}{M_{2}^{2} + 3m_{1}^{2}}$
Compare to hep-ph/0011365 Sanishephanov
chiral perturbation theory at $T=0$
 $m_{1} \approx 140$ MeV ec $M_{2} < c m_{1} \approx 275$ MeV $\approx 5.66 m_{1}$
 \Rightarrow pian condusate
 $VS^{2} = \frac{M_{2}^{2} - m_{1}^{2}}{M_{1}^{2} + 3m_{1}^{2}}$

$$\frac{COUNTER - EXAMPLE}{Mep-ph | 00 || 365} \quad Son + Stephanov$$

$$QCD \quad with T=0 \quad and \quad non-2eo \quad isospinchemical potential MIin regime
$$M_{\Pi} \approx 140 \text{ MeV} \ll M_{I} \ll m_{P} \approx 775 \text{ MeV} \\ \approx 5.66 \text{ m}_{\Pi}$$
Chiral Perturbation Theory reveals the
ground state is a Bose-Emistein Condusate of Pians
$$V_{S}^{2} = \frac{M_{I}^{2} - m_{\Pi}^{2}}{M_{I}^{2} + 3m_{\Pi}^{2}}$$$$

What do those solutions have in common?

EX 1503.05950 Janile Jankanski, Soltanapanaki
one scalar
$$\phi$$
 in ALS₅
"Improved Holographic QCD" potential
 $V(\phi) = -12(1+\phi^2)^{1/4} \cosh(7\phi) + \frac{25}{4}\phi^2$
 $\gamma = \int^{2/3}$
field $\phi \iff operata \ O mile \ D = 3.58$
black brane solutions only exist for
 $T \ge T$ minimum temperature Ten

The last point to discuss is the spectrum of modes for temperatures, $T_1 < T < T_2$, in the small black hole branch, which shows anomalously large speed of sound. In fact, $c_s^2 > 1/3$, and for some temperatures it is even superluminal, leading to causality violation. In this range of temperatures the system does not exhibit any instability in thermodynamic quantities. However, there appears to be a novel *dynamical* instability, signaled by the positive imaginary part of the first non-hydrodynamical mode ⁴. The difference with respect to the usual spinoidal region is that for k = 0 the mode stays positive on the imaginary axis.

⁴The nomenclature is chosen because at high temperatures this modes continuously transforms into first nonhydrodynamic mode.

EX 1663.07724 Gürson, Janson, vom de Schee
$$(3)$$

one scalar & in AdSs
potential from Gubser + Nellare 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.0434
 0804.1950
 $V(4) = -12 \cos h (8 \phi) + \frac{19}{9} \phi^2$
 $freld d \Leftrightarrow opwatar O with $\Delta = 3$
black brane solutions and exist for
 T 2 minimum tupicature $T_{m}$$

. .

Compare to other known instabilities (3)
Gregon-LaSlamme hep-th/9301052
has
$$\vec{g} \neq 0$$

Gubse-Mitra "coverlated Stability Cajecture"
hep-th/0009126, 0011127
"Far a black brane solution to be free of
dynamical instabilities, it is
necessary and sufficient
for it to be locally themodynamically
stable"
(not just asymptotically hissis)
Mar All of the alcove
are counte-examples
of Gubser-Mitra conjecture

& Note: converse is not always true

as known in many examples