
Regime Specific Predictability in Predictive Regressions∗
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Abstract

Predictive regressions are linear specifications linking a noisy variable such as stock returns to past

values of a more persistent regressor such as valuation ratios, interest rates etc with the aim of assessing

the presence or absence of predictability. Key complications that arise when conducting such infer-

ences are the potential presence of endogeneity, the poor adequacy of the asymptotic approximations

amongst numerous others. In this paper we develop an inference theory for uncovering the presence of

predictability in such models when the strength or direction of predictability, if present, may alternate

across different economically meaningful episodes. This allows us to uncover economically interesting

scenarios whereby the predictive power of some variable may kick in solely during particular regimes or

alternate in strength and direction (e.g. recessions versus expansions, periods of high versus low stock

market valuation, periods of high versus low term spreads etc). The limiting distributions of our test

statistics are free of nuisance parameters and some are readily tabulated in the literature. Finally our

empirical application reconsiders the literature on Dividend Yield based stock return predictability and

contrary to the existing literature documents a strong presence of predictability that is countercyclical,

occurring solely during bad economic times.
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1 Introduction

Predictive regressions with a persistent regressor (e.g. dividend yields, interest rates, realised volatility)

aim to uncover the ability of a slowly moving variable to predict future values of another typically noisier

variable (e.g. stock returns, GDP growth) within a bivariate regression framework. Their pervasive

nature in many areas of Economics and Finance and their importance in the empirical assessment of

theoretical predictions of economic models made this particular modelling environment an important and

active area of theoretical and applied research (see for instance Jansson and Moreira (2006) and references

therein).

A common assumption underlying old and new developments in this area involves working within a

model in which the persistent regressor enters the predictive regression linearly, thus not allowing for

the possibility that the strength and direction of predictability may themselves be a function of some

economic factor or time itself. Given this restriction, existing work has focused on improving the quality

of estimators and inferences in this environment characterised by persistence and endogeneity amongst

other econometric complications. These complications manifest themselves in the form of nonstandard

asymptotics, distributions that are not free of nuisance parameters, poor finite sample approximations

etc. Important recent methodological breakthroughs have been obtained in Jansson and Moreira (2006),

Campbell and Yogo (2006), Valkanov (2003), Lewellen (2004) while recent applications in the area of

financial economics and asset pricing can be found in Cochrane (2008), Lettau and Nieuwerburgh (2008),

Bandi and Perron (2008) amongst others.

The purpose of this paper is to instead develop an econometric toolkit for uncovering the presence of

predictability within regression models with highly persistent regressors when the strength or direction

of predictability, if present, may alternate across different economically meaningful episodes (e.g. periods

of rapid versus slow growth, period of high versus low stock market valuation, periods of high versus

low consumer confidence etc). For this purpose, we propose to expand the traditional linear predictive

regression framework to a more general environment which allows for the possibility that the strength of

predictability may itself be affected by observable economic factors. We have in mind scenarios whereby

the predictability induced by some economic variable kicks in under particular instances such as when

the magnitude of the variable in question (or some other variable) crosses a threshold but is useless in

terms of predictive power otherwise. Alternatively, the predictive impact of a variable may alternate in

sign/strength across different regimes. Ignoring such phenomena by proceeding within a linear framework

as it has been done in the literature may mask the forecasting ability of a particular variable and more

generally mask the presence of interesting and economically meaningful dynamics. We subsequently apply

our methodology to the prediction of stock returns with Dividend Yields. Contrary to what has been doc-

umented in the linear predictability literature our findings strongly point towards the presence of regimes

in which Dividend Yield (DY) based predictability kicks in solely during bad economic times. More
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importantly, our analysis also illustrates the fact that the presence of regimes may make predictability

appear as nonexistent when assessed within a linear model.

The plan of the paper is as follows. Section 2 introduces our model and hypotheses of interest.

Section 3 develops the limiting distribution theory of our test statistics. Section 4 explores the finite

sample properties of the inferences developed in Section 3, Section 5 proposes an application and Section

6 concludes. All proofs are relegated to the appendix. Due to space considerations additional Monte-Carlo

simulations and further details on some of the proofs are provided as a supplementary appendix.

2 The Model and Hypotheses

We will initially be interested in developing the limiting distribution theory for a Wald type test statistic

designed to test the null hypothesis of a linear relationship between yt+1 and xt against the following

threshold alternative

yt+1 =

{
α1 + β1xt + ut+1 qt ≤ γ
α2 + β2xt + ut+1 qt > γ

(1)

where xt is parameterized as the nearly nonstationary process

xt = ρTxt−1 + vt, ρT = 1− c

T
(2)

with c > 0, qt = µq + uqt and ut, uqt and vt are stationary random disturbances. The above parameter-

isation allows xt to display local to unit root behaviour and has become the norm for modelling highly

persistent series for which a pure unit root assumption may not always be sensible. The threshold variable

qt is taken to be a stationary process and γ refers to the unknown threshold parameter. Under α1 = α2

and β1 = β2 our model in (1)-(2) coincides with that in Jansson and Moreira (2006) or Campbell and Yogo

(2006) and is commonly referred to as a predictive regression model while under α1 = α2, β1 = β2 = 0

we have a constant mean specification.

The motivation underlying our specification in (1)-(2) is its ability to capture phenomena such as

regime specific predictability within a simple and intuitive framework. We have in mind scenarios whereby

the slope corresponding to the predictor variable becomes significant solely in one regime. Alternatively,

the strength of predictability may differ depending on the regime determined by the magnitude of qt. The

predictive instability in stock returns that has been extensively documented in the recent literature and

the vanishing impact of dividend yields from the 90s onwards in particular (see Ang and Bekaert (2007)

and also Table 9 below) may well be the consequence of the presence of regimes for instance. Among

the important advantages of a threshold based parameterisation are the rich set of dynamics it allows

to capture despite its mathematical simplicity, its estimability via a simple least squares based approach

and the observability of the variable triggering regime switches which may help attach a “cause” to the

underlying predictability. Following Petruccelli (1992) it is also useful to recall that the piecewise linear
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structure can be viewed as an approximation to a much wider family of nonlinear functional forms. In

this sense, although we do not argue that our chosen threshold specification mimics reality we believe

it offers a realistic approximation to a wide range of more complicated functional forms and regime

specific behaviour in particular. It is also interesting to highlight the consequences that a behaviour such

as (1)-(2) may have if ignored and predictability is assessed within a linear specifications instead, say

yt = βxt−1 + ut. Imposing zero intercepts for simplicity and assuming (1)-(2) holds with some γ0 it is

easy to establish that β̂
p→ β1 + (β2− β1)P (qt > γ0). This raises the possibility that β̂ may converge to a

quantity that is very close to zero (e.g. when P (qt > γ0) ≈ β1/(β1 − β2)) so that tests conducted within

a linear specification may frequently and wrongly suggest absence of any predictability.

Our choice of modelling xt as a nearly integrated process follows the same motivation as in the lin-

ear predictive regression literature where such a choice for xt has been advocated as an alternative to

proceeding with conventional Gaussian critical values which typically provide poor finite sample approx-

imations to the distribution of t statistics. In the context of a stationary AR(1) for instance, Chan

(1988) demonstrates that for values of T (1−ρ) ≥ 50 the normal distribution offers a good approximation

while for T (1− ρ) ≤ 50 the limit obtained assuming near integratedness works better when the objective

involves conducting inferences about the slope parameter of the AR(1) (see also Cavanagh, Elliott and

Stock (1995) for similar points in the context of a predictive regression model). Models that combine per-

sistent variables with nonlinear dynamics as (1)-(2) offer an interesting framework for capturing stylised

facts observed in economic data. Within a univariate setting (e.g. threshold unit root models) recent

contributions towards their theoretical properties have been obtained in Caner and Hansen (2001) and

Pitarakis (2008).

In what follows the threshold parameter γ is assumed unknown with γ ∈ Γ = [γ1, γ2] and γ1 and γ2

are selected such that P (qt ≤ γ1) = π1 > 0 and P (qt ≤ γ2) = π2 < 1 as in Caner and Hansen (2001).

We also define I1t ≡ I(qt ≤ γ) and I2t ≡ I(qt > γ) but replace the threshold variable with a uniformly

distributed random variable making use of the equality I(qt ≤ γ) = I(F (qt) ≤ F (γ)) ≡ I(Ut ≤ λ). Here

F (.) is the marginal distribution of qt and Ut denotes a uniformly distributed random variable on [0, 1].

Before proceeding further it is also useful to reformulate (1) in matrix format. Letting y denote the vector

stacking yt+1 and Xi the matrix stacking (Iit xtIit) for i = 1, 2 we can write (1) as y = X1θ1 +X2θ2 + u

or y = Zθ + u with Z = (X1 X2), θ = (θ1, θ2) and θi = (αi, βi)′ i = 1, 2. For later use we also define

X = X1 + X2 as the regressor matrix which stacks the constant and xt. It is now easy to see that for

given γ or λ the homoskedastic Wald statistic for testing a general restriction on θ, say Rθ = 0 is given by

WT (λ) = θ̂′R′(R(Z ′Z)−1R′)−1Rθ̂/σ̂2
u with θ̂ = (Z ′Z)−1Z ′y and σ̂2

u = (y′y−
∑2

i=1 y
′Xi(X ′iXi)−1X ′iy)/T is

the residual variance obtained from (1). In practice since the threshold parameter is unidentified under the

null hypothesis inferences are conducted using the SupWald formulation expressed as supλ∈[π1,π2]WT (λ)

with π1 = F (γ1) and π2 = F (γ2).

In the context of our specification in (1)-(2) we will initially be interested in the null hypothesis of
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linearity given by HA
0 : α1 = α2, β1 = β2. We write the corresponding restriction matrix as RA = [I − I]

with I denoting a 2×2 identity matrix and the SupWald statistic supλWA
T (λ). At this stage it is important

to note that the null hypothesis given by HA
0 corresponds to the linear specification yt+1 = α+βxt+ut+1

and thus does not test predictability per se since xt may appear as a predictor under both the null and

the alternative hypotheses. Thus we also consider the null given by HB
0 : α1 = α2, β1 = β2 = 0 with the

corresponding SupWald statistic written as supλWB
T (λ) where now RB = [1 0 −1 0, 0 1 0 0, 0 0 0 1].

Under this null hypothesis the model is given by yt+1 = α+ ut+1 and the test is expected to have power

against departures from both linearity and predictability. Finally, our framework will also cover the case

whereby one wishes to test the hypothesis HC
0 : β1 = β2 = 0 without restricting the intercept parameters

so that the null is compatible with both α1 = α2 and α1 6= α2. We will refer to the corresponding Wald

statistic as WC
T (λ) with the restriction matrix given by RC = [0 1 0 0, 0 0 0 1].

3 Large Sample Inference

Our objective here is to investigate the asymptotic properties of Wald type tests for detecting the presence

of threshold effects in our predictive regression setup. We initially obtain the limiting distribution of

WA
T (λ) under the null hypothesis HA

0 : α1 = α2, β1 = β2. We subsequently turn to the joint null

hypothesis of linearity and no predictability given by HB
0 : α1 = α2, β1 = β2 = 0 and explore the limiting

behaviour of WB
T (λ). This is then followed by the treatment of the null given by HC

0 : β1 = β2 = 0 via

WC
T (λ) and designed to explore potential predictability induced by x regardless of any restrictions on the

intercepts.

Our operating assumptions about the core probabilistic structure of (1)-(2) will closely mimic the

assumptions imposed in the linear predictive regression literature but will occasionally also allow for a

greater degree of generality (e.g. Campbell and Yogo (2006), Jansson and Moreira (2006), Cavanagh,

Elliott and Stock (1995) amongst others). Specifically, the innovations vt will be assumed to follow a

general linear process we write as vt = Ψ(L)et where Ψ(L) =
∑∞

j=0 ψjL
j ,
∑∞

j=0 j|ψj | <∞ and Ψ(1) 6= 0

while the shocks to yt, denoted ut, will take the form of a martingale difference sequence with respect to

an appropriately defined information set. More formally, letting w̃t = (ut, et)′ and F w̃qt = {w̃s, uqs|s ≤ t}
the filtration generated by (w̃t, uqt) we will operate under the following assumptions

Assumptions. A1: E[w̃t|F w̃qt−1] = 0, E[w̃tw̃′t|F
w̃q
t−1] = Σ̃ > 0, suptEw̃4

it <∞; A2: the threshold variable

qt = µq + uqt has a continuous and strictly increasing distribution F (.) and is such that uqt is a strictly

stationary, ergodic and strong mixing sequence with mixing numbers αm satisfying
∑∞

m=1 α
1
m
− 1

r <∞ for

some r > 2.

One implication of assumption A1 and the properties of Ψ(L) is that a functional central limit theorem

holds for the joint process wt = (ut, vt)′ (see Phillips (1987)). More formally
∑[Tr]

t=1 wt/
√
T ⇒ B(r) =
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(Bu(r), Bv(r))′ with the long run variance of the bivariate Brownian Motion B(r) being given by Ω =∑∞
k=−∞E[w0w

′
k] = [(ω2

u, ωuv), (ωvu, ω
2
v)] = Σ+Λ+Λ′. Our notation is such that Σ̃ = [(σ2

u, σue), (σue, σ
2
e)]

and Σ = [(σ2
u, σuv), (σuv, σ

2
v)] with σ2

v = σ2
e

∑∞
j=0 ψ

2
j and σuv = σue since E[utet−j ] = 0 ∀j ≥ 1 by

assumption. Given our parameterisation of vt and the m.d.s assumption for ut we have ωuv = σueΨ(1)

and ω2
v = σ2

eΨ(1)2. For later use we also let λvv =
∑∞

k=1E[vtvt−k] denote the one sided autocovariance

so that ω2
v = σ2

v + 2λvv ≡ σ2
e

∑∞
j=0 ψ

2
j + 2λvv. At this stage it is useful to note that the martingale

difference assumption in A1 imposes a particular structure on Ω. For instance since serial correlation in

ut is ruled out we have ω2
u = σ2

u. It is worth emphasising however that while ruling out serial correlation

in ut our assumptions allow for a sufficiently general covariance structure linking (1)-(2) and a general

dependence structure for the disturbance terms driving xt and qt. The martingale difference assumption

on ut is a standard assumption that has been made throughout all recent research on predictive regression

models (see for instance Jansson and Moreira (2006), Campbell and Yogo (2005) and references therein)

and appears to be an intuitive operating framework given that many applications take yt+1 to be stock

returns. Writing Λ =
∑∞

k=1E[wtw′t−k] = [(λuu, λuv), (λvu, λvv)] it is also useful to explicitly highlight the

fact that within our probabilitic environment λuu = 0 and λuv = 0 due to the m.d.s property of the u′ts

while λvv and λvu may be nonzero.

Regarding the dynamics of the threshold variable qt and how it interacts with the remaining variables

driving the system, assumption A1 requires qt−j ’s to be orthogonal to ut for j ≥ 1. Since qt is stationary

this is in a way a standard regression model assumption and is crucial for the development of our

asymptotic theory. We note however that our assumptions allow for a broad level of dependence between

the threshold variable qt and the other variables included in the model (e.g. qt may be contemporaneously

correlated with both ut and vt). At this stage it is perhaps also useful to reiterate the fact that our

assumption about the correlation of qt with the remaining components of the system are less restrictive

than what is typically found in the literature on marked empirical processes or functional coefficient

models such as yt+1 = f(qt)xt + ut+1 which commonly take qt to be independent of ut and xt.

Since our assumptions also satisfy Caner and Hansen’s (2001) framework, from their Theorem 1 we

can write
∑[Tr]

t=1 utI1t−1/
√
T ⇒ Bu(r, λ) as T → ∞ with Bu(r, λ) denoting a two parameter Brownian

Motion with covariance σ2
u(r1 ∧ r2)(λ1 ∧ λ2) for (r1, r2), (λ1, λ2) ∈ [0, 1]2 and where a ∧ b ≡ min{a, b}.

Noting that Bu(r, 1) ≡ Bu(r) we will also make use of a particular process known as a Kiefer process

and defined as Gu(r, λ) = Bu(r, λ) − λBu(r, 1). A Kiefer process on [0, 1]2 is Gaussian with zero mean

and covariance function σ2
u(r1 ∧ r2)(λ1 ∧ λ2 − λ1λ2). Finally, we introduce the diffusion process Kc(r) =∫ r

0 e
(r−s)cdBv(s) with Kc(r) such that dKc(r) = cKc(r) + dBv(r) and Kc(0) = 0. Note that we can also

write Kc(r) = Bv(r) + c
∫ r
0 e

(r−s)cBv(s)ds. Under our assumptions it follows directly from Lemma 3.1 in

Phillips (1988) that x[Tr]/
√
T ⇒ Kc(r).
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3.1 Testing HA
0 : α1 = α2, β1 = β2

Having outlined our key operating assumptions we now turn to the limiting behaviour of our test statistics.

We will initially concentrate on the null hypothesis given by HA
0 : α1 = α2, β1 = β2 and the behaviour of

supλWA
T (λ) which is summarised in the following Proposition.

Proposition 1: Under the null hypothesis HA
0 : α1 = α2, β1 = β2, assumptions A1-A2 and as T → ∞

the limiting distribution of the SupWald statistic is given by

sup
λ
WA
T (λ) ⇒ sup

λ

1
λ(1− λ)σ2

u

[∫ 1

0
Kc(r)dGu(r, λ)

]′ [∫ 1

0
Kc(r)Kc(r)′

]−1

×
[∫ 1

0
Kc(r)dGu(r, λ)

]
(3)

where Kc(r) = (1,Kc(r))′, Gu(r, λ) is a a Kiefer process and Kc(r) an Ornstein-Uhlenbeck process.

Although the limiting random variable in (3) appears to depend on unknown parameters such as the

correlation between Bu and Bv, σ2
u and the near integration parameter c a closer analysis of the expression

suggests instead that it is equivalent to a random variable given by a quadratic form in normalised

Brownian Bridges, identical to the one that occurs when testing for structural breaks in a purely stationary

framework. We can write it as

sup
λ

BB(λ)′BB(λ)
λ(1− λ)

(4)

with BB(λ) denoting a standard bivariate Brownian Bridge (recall that a Brownian Bridge is a zero mean

Gaussian process with covariance λ1 ∧ λ2 − λ1λ2). This result follows from the fact that the processes

Kc(r) and Gu(r, λ) appearing in the stochastic integrals in (3) are uncorrelated and thus independent

since Gaussian. Indeed

E[Gu(r1, λ1)Kc(r2)] = E[(Bu(r1, λ1)− λ1Bu(r1, 1))(Bv(r2) +

c

∫ r2

0
e(r2−s)cBv(s)ds)]

= E[Bu(r1, λ1)Bv(r2)]− λ1E[Bu(r1, 1)Bv(r2)] +

c

∫ r2

0
e(r2−s)cE[Bu(r1, λ1)Bv(s)]ds−

λ1c

∫ r2

0
e(r2−s)cE[Bu(r1, 1)Bv(s)]ds

= ωuv(r1 ∧ r2)λ1 − λ1ωuv(r1 ∧ r2)

+ cλ1

∫ r2

0
e(r2−s)c(r1 ∧ s)ds− cλ1

∫ r2

0
e(r2−s)c(r1 ∧ s)ds = 0.

Given that Kc(r) is Gaussian and independent of Gu(r, λ) and also E[Gu(r1, λ1)Gu(r2, λ2)] = σ2
u(r1 ∧

r2)((λ1 ∧ λ2)− λ1λ2 we have
∫
Kc(r)dGu(r, λ) ≡ N(0, σ2

uλ(1− λ)
∫
Kc(r)2) conditionally on a realisation

of Kc(r). Normalising by σ2
u

∫
K2
c (r) as in (3) gives the Brownian Bridge process in (4) which is also

the unconditional distribution since it is not dependent on a realisation of Kc(r) (see also Lemma 5.1
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in Park and Phillips (1988)). Obviously the discussion trivially carries through to Kc and Gu since

E[Kc(r2)Gu(r1, λ1)]′ = E[Gu(r1, λ1) Kc(r2)Gu(r1, λ1)]′ = [0 0]′.

The result in Proposition 1 is unusual and interesting for a variety of reasons. It highlights an

environment in which the null distribution of the SupWald statistic no longer depends on any nuisance

parameters as it is typically the case in a purely stationary environment and thus no bootstrapping

schemes are needed for conducting inferences. In fact, the distribution presented in Proposition 1 is

extensively tabulated in Andrews (1993) and Hansen (1997) also provides p-value approximations which

can be used for inference purposes. More recently, Estrella (2003) provides exact p-values for the same

distribution. Finally and perhaps more importantly the limiting distribution does not appear to depend

on c the near integration parameter which is another unusual specificity of our framework.

All these properties are in contrast with what has been documented in the recent literature on testing

for threshold effects in purely stationary contexts. In Hansen (1996) for instance the author investigated

the limiting behaviour of a SupLM type test statistic for detecting the presence of threshold nonlineari-

ties in purely stationary models. There it was established that the key limiting random variables depend

on numerous nuisance parameters involving unknown population moments of variables included in the

fitted model. From Theorem 1 in Hansen (1996) it is straightforward to establish for instance that under

stationarity the limiting distribution of a Wald type test statistic would be given by S∗(λ)′M∗(λ)−1S∗(λ)

with M∗(λ) = M(λ)−M(λ)M(1)−1M(λ), and S∗(λ) = S(λ)−M(λ)M(1)−1S(1). Here M(λ) = E[X ′1X1]

and S(λ) is a zero mean Gaussian process with variance M(λ). Since in this context the limiting dis-

tribution depends on the unknown model specific population moments the practical implementation of

inferences is through a bootstrap style methodology.

One interesting instance worth pointing out however is the fact that this limiting random variable

simplifies to a Brownian Bridge type of limit when the threshold variable is taken as exogenous in

the sense M(λ) = λM(1). Although the comparison with the present context is not obvious since xt
is taken as near integrated and we allow the innovations in qt to be correlated with those of xt the

force behind the analogy comes from the fact that xt and qt have variances with different orders of

magnitude. In a purely stationary setup, taking xt as stationary and the threshold variable as some

uniformly distributed random variable leads to results such as
∑
x2
t I(Ut ≤ λ)/T

p→ E[x2
t I(Ut ≤ λ)] and

if xt and Ut are independent we also have E[x2
t I(Ut ≤ λ)] = λE[x2

t ]. It is this last key simplification

which is instrumental in leading to the Brownian Bridge type of limit in Hansen’s (1996) framework. If

now xt is taken as a nearly integrated process and regardless of whether its shocks are correlated with

Ut or not we have
∑
x2
t I(Ut ≤ λ)/T 2 ⇒ λ

∫
K2
c (r) which can informally be viewed as analogous to the

previous scenario. Heuristically this result follows by establishing that asymptotically, objects interacting

xt/
√
T and (I1t − λ) such as 1

T

∑
( xt√

T
)2(I1t − λ) or 1

T

∑
( xt√

T
)(I1t − λ) converge to zero (see also Caner

and Hansen (2001, page 1585) and Pitarakis (2008)). This would be similar to arguing that xt/
√
T and

I1t are asymptotically uncorrelated in the sense that their sample covariance (normalised by T ) is zero
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in the limit.

3.2 Testing HB
0 : α1 = α2, β1 = β2 = 0

We next turn to the case where the null hypothesis of interest tests jointly the absence of linearity and

no predictive power i.e. we focus on testing HB
0 : α1 = α2, β1 = β2 = 0 using the supremum of WB

T (λ).

The following Proposition summarises its limiting behaviour.

Proposition 2: Under the null hypothesis HB
0 : α1 = α2, β1 = β2 = 0, assumptions A1-A2 and as

T →∞, the limiting distribution of the SupWald statistic is given by

sup
λ
WB
T (λ) ⇒

[∫
K∗c (r)dBu(r, 1)

]2
σ2
u

∫
K∗c (r)2

+

sup
λ

1
λ(1− λ)σ2

u

[∫
K
∗
c(r)dGu(r, λ)

]′ [∫
K
∗
cK
∗
c(r)

′
]−1 [∫

K
∗
c(r)dGu(r, λ)

]′
(5)

where K∗c(r) = (1,K∗c (r))′, K∗c (r) = Kc(r)−
∫ 1
0 Kc(r)dr and the remaining variables are as in Proposition

1.

Looking at the expression of the limiting random variable in (5) we note that it consists of two components

with the second one being equivalent to the limiting random variable we obtained under Proposition 1.

The first component in the right hand side of (5) is more problematic in the sense that it does not

simplify further due to the fact that K∗c (r) and Bu(r, 1) are correlated since ωuv may take nonzero values.

However, if we were to rule out endogeneity by setting ωuv = 0 then it is interesting to note that the

limiting distribution of the SupWald statistic in Proposition 2 takes the following simpler form

sup
λ
WB
T (λ) ⇒ W (1)2 + sup

λ

BB(λ)′BB(λ)
λ(1− λ)

(6)

where BB(λ) is a Brownian Bridge and W (1) a standard normally distributed random variable. The first

component in the right hand side of either (5) or (6) can be recognised as the χ2(1) limiting distribution

of the Wald statistic for testing H0 : β = 0 in the linear specification

yt+1 = α+ βxt + ut+1 (7)

and the presence of this first component makes the test powerful in detecting deviations from the null

(see Rossi (2005) for the illustration of a similar phenomenon in a different context).

Our next concern is to explore ways of making (5) operational since as it stands the first component

of the limiting random variable depends on model specific moments and cannot be universally tabulated.

For this purpose it is useful to notice that the problems arising from the practical implementation of (5)

are partly analogous to the difficulties documented in the single equation cointegration testing literature

where the goal was to obtain nuisance parameter free chisquare asymptotics for Wald type tests on β
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in (7) despite the presence of endogeneity (see Phillips and Hansen (1990), Saikkonen (1991, 1992)). As

shown in Elliott (1998) however inferences about β in (7) can no longer be mixed normal when xt is a

near unit root process. It is only very recently that Phillips and Magdalinos (2009) (PM09 thereafter)

reconsidered the issue and resolved the difficulties discussed in Elliott (1998) via the introduction of a

new Instrumental Variable type estimator of β in (7). Their method is referred to as IVX estimation

since the relevant IV is constructed solely via a transformation of the existing regressor xt. It is this same

method that we propose to adapt to our present context.

Before proceeding further it is useful to note that WB
T (λ) can be expressed as the sum of the following

two components

WB
T (λ) ≡

σ̂2
lin

σ̂2
u

WT (β = 0) +WA
T (λ) (8)

where WT (β = 0) is the standard Wald statistic for testing H0 : β = 0 in (7). Specifically,

WT (β = 0) =
1
σ̂2
lin

[
∑
xt−1yt − T x̄ȳ]2

[
∑
x2
t−1 − T x̄2]

(9)

with x̄ =
∑
xt−1/T and σ̂2

lin = (y′y − y′X(X ′X)−1X ′y)/T is the residual variance obtained from the

same linear specification. Although not of direct interest this reformulation of WB
T (λ) can simplify the

implementation of the IVX version of the Wald statistic since the setup is now identical to that of PM09

and involves constructing a Wald statistic for testing H0 : β = 0 in (7) i.e we replace WT (β = 0) in (8)

with its IVX based version which is shown to be asymptotically distributed as a χ2(1) random variable

and independent of the noncentrality parameter c. Note that although PM09 operated within a model

without an intercept, in a recent paper Kostakis, Magdalinos and Stamatogiannis (2010) (KMS10) have

also established the validity of the theory in models with a fitted constant term.

The IVX methodology starts by choosing an artifical slope coefficient, say

RT = 1− cz
T δ

(10)

for a given constant cz and δ < 1 and uses the latter to construct an IV generated as z̃t = RT z̃t−1 + ∆xt
or under zero initialisation z̃t =

∑t
j=1R

t−j
T ∆xj . This IV is then used to obtain an IV estimator of β

in (7) and to construct the corresponding Wald statistic for testing H0 : β = 0. Through this judicious

choice of instrument PM09 show that it is possible to clean out the effects of endogeneity even within the

near unit root case and to subsequently obtain an estimator of β which is mixed normal under a suitable

choice of δ (i.e. δ ∈ (2/3, 1)) and setting cz = 1 (see PM09, pp. 7-12).

Following PM09 and KMS10 and letting y∗t , x
∗
t and z̃∗t denote the demeaned versions of yt, xt and z̃t

we can write the IV estimator as β̃ivx =
∑
y∗t z̃
∗
t−1/

∑
x∗t−1z̃

∗
t−1. Note that contrary to PM09 and KMS10

we do not need a bias correction term in the numerator of β̃ivx since we operate under the assumption

that λuv = 0. The corresponding IVX based Wald statistic for testing H0 : β = 0 in (7) is now written as

W ivx
T (β = 0) =

(β̃ivx)2(
∑
x∗t−1z̃

∗
t−1)2

σ̃2
u

∑
(z̃∗t−1)2

(11)

9



with σ̃2
u =

∑
(y∗t − β̃IV Xx∗t−1)2/T . Note that this latter quantity is also asymptotically equivalent to σ̂2

lin

since the least squares estimator of β remains consistent. Under the null hypothesis HB
0 we also have

that these two residual variances are in turn asymptotically equal to σ̂2
u so that σ̂2

lin/σ̂
2
u ≈ 1 in (8).

We can now introduce our modified Wald statistic, say WB,ivx
T (λ) for testing HB

0 : α1 = α2, β1 =

β2 = 0 in (1) as

WB,ivx
T (λ) = W ivx

T (β = 0) +WA
T (λ). (12)

Its limiting behaviour is summarised in the following Proposition.

Proposition 3: Under the null hypothesis H(B)
0 : α1 = α2, β1 = β2 = 0, assumptions A1-A2, δ ∈ (2/3, 1)

in (10) and as T →∞, we have

sup
λ
WB,ivx
T (λ) ⇒ W (1)2 + sup

λ

BB(λ)′BB(λ)
λ(1− λ)

(13)

with BB(λ) denoting a standard Brownian Bridge.

Our result in (13) highlights the usefulness of the IVX based estimation methodology since the re-

sulting limiting distribution of the SupWald statistic is now equivalent to the one obtained under strict

exogeneity (i.e. under ωuv = 0) in (6). The practical implementation of the test is also straightforward,

requiring nothing more than the computation of an IV estimator.

3.3 Some Remarks on Testing Strategies and Further Tests

So far we have developed the distribution theory for two sets of hypotheses that we explicitly did not

attempt to view as connected since both may be of interest and considered individually depending on the

context of the research question. The implementation of hypotheses tests in a sequence is a notoriously

difficult and often controversial endeavor which we do not wish to make a core objective of this paper

especially within the nonstandard probabilistic environment we are operating under. Depending on the

application in hand each of the hypotheses we have considered is useful in its own right. If one is

interested in predictability coming from either x or q for instance then HB
0 : α1 = α2, β1 = β2 = 0

would be a natural choice. A non rejection of this null would stop the investigation and lead to the

conclusion that the data do not support the presence of any form of predictability with some confidence

level. If one is solely interested in the potential presence of regimes in a general sense then a null such as

HA
0 : α1 = α2, β1 = β2 may be the sole focus of an investigation.

Naturally, one could also be tempted to combine HB
0 and HA

0 within a sequence and upon rejection

of HB
0 and a non rejection of HA

0 argue in favour of linear predictability while a rejection of HA
0 would

support the presence of nonlinear predictability in a broad sense. In this latter case the rejection could

be compatible with a model in which only the intercepts shift and x plays no role in predicting y since a

10



specification such as yt+1 = α1I(qt ≤ γ0) +α2I(qt > γ0) + ut+1 in which predictability is solely driven by

the threshold variable qt is compatible with the rejection of both HA
0 and HB

0 . As in most sequentially

implemented tests however one should also be aware that the overall size of such an approach would be

difficult to control since the two tests will be correlated. Even under independence which would allow a

form of size control the choice of individual significance levels is not obvious and may lead to different

conclusions.

Given the scenarios dicussed above and depending on the application in hand it is now also interesting

to explore the properties of a test that focuses solely on slope parameters with its null given by HC
0 : β1 =

β2 = 0. Such a null would be relevant if one were solely interested in the linear or nonlinear predictability

induced by x or if one believed on à priori grounds that α1 6= α2. As in Caner and Hansen (2001) the

practical difficulty here lies in the fact that HC
0 is compatible with both α1 = α2 and α1 6= α2.

We let WC
T (λ) = θ̂′R′C(RC(Z ′Z)−1RC)−1RC θ̂/σ̂

2
u denote the Wald statistic for testing HC

0 within the

unrestricted specification in (1) and for some given λ ∈ (0, 1). When we wish to explicitly impose the

constancy of intercepts in the fitted model used to calculate WC
T (λ) we will refer to the same test statistic

as WC
T (λ|α1 = α2). The latter is computed from the intercept restricted model which in matrix form can

be written as y = Z̃φ + u with Z̃ = [1 x1 x2], φ = (α β1 β2)′ and where the lower-case vectors xi stack

the elements of xtIit for i = 1, 2. More specifically WC
T (λ|α1 = α2) = φ̂′R̃′(R̃(Z̃ ′Z̃)−1R̃′)−1R̃φ̂/σ̃2

u with

R̃ = [0 1 0, 0 0 1] and σ̃2
u referring to the residual variance from the same intercept restricted specification.

Unless explictly stated however WC
T (λ) will be understood to be computed within (1). When α1 6= α2

we also denote by λ̂ = F (γ̂) the least squares based estimator of the threshold parameter obtained from

the null model yt+1 = α1I1t + α2I2t + ut+1 and λ0 = F (γ0) its true counterpart. Note that since this

threshold parameter estimator is obtained within a purely stationary setting of the null model its T-

consistency follows from Gonzalo and Pitarakis (2002). The following Proposition summarises the large

sample behaviour of WC
T (λ) under alternative scenarios.

Proposition 4: (i) Under the null hypothesis HC
0 : β1 = β2 = 0, assumptions A1-A2, and if α1 = α2 in

the DGP, we have as T →∞,

WC
T (λ) ⇒

[∫
K∗c (r)dBu(r, 1)

]2
σ2
u

∫
K∗c (r)2

+ χ2(1) (14)

for any constant λ ∈ (0, 1) and similarly for WC
T (λ|α1 = α2). (ii) If α1 6= α2 the limiting result in (14)

continues to hold for WC
T (λ0) and WC

T (λ̂) but not for any other λ ∈ (0, 1). (iii) Under exogeneity the

limiting random variable in (14) is equivalent to a χ2(2).

The above results highlight a series of important facts. When α1 = α2, the Wald statistics WC
T (λ) or

WC
T (λ|α1 = α2) evaluated at any λ ∈ (0, 1) are seen to converge to a random variable that does not

depend on λ. This is obviously no longer the case when α1 6= α2 and is intuitively due to the fact that

fitting a model with the wrong choice of λ (i.e. λ 6= λ0) leads to inconsistent parameter estimates. This
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is why WC
T (λ) needs to be evaluated at λ̂ or λ0 when α1 6= α2.

One practical and well known limitation of (14) comes from its first component which depends on

the noncentrality parameter c in addition to other endogeneity induced nuisance parameters. As pointed

out in Proposition 4(iii) however imposing exogeneity leads to the interesting and unusual outcome of

a simple nuisance parameter free standard distributional result. Thus if we are willing to entertain an

exogeneity assumption our result in Proposition 4 offers a simple and trivial way of conducting inferences

on the β′s.

Naturally and analogously to the framework of Caner and Hansen (2001) our result in Proposition 4(i)

crucially depends on the knowledge that α1 = α2 while the use of WC
T (λ0) or WC

T (λ̂) presume knowledge

that α1 6= α2 so that λ0 becomes a meaningful quantity. If α1 6= α2 with the switch occurring at some

λ0, it is straightforward to show that both WC
T (λ|α1 = α2) and WC

T (λ) will be diverging to infinity with

T . In the former case this will be happening because the test is evaluated at some λ 6= λ0 in addition

to the fact that the fitted model ignores the shifting intercepts while in the case of WC
T (λ) this will be

happening solely because λ 6= λ0. Naturally, if the ad-hoc choice of λ happens to fall close to λ0 the use

of WC
T (λ) may lead to more moderate distortions when α1 6= α2 while continuing to be correct in the

event that α1 = α2. For purely practical reasons therefore it may be preferable to base inferences on

WC
T (λ) instead of WC

T (λ|α1 = α2) even if we believe α1 = α2 to be the more likely scenario.

For the purpose of making our result in Proposition 4(iii) operational even under endogeneity it is

again useful to note that WC
T (λ) ≈WT (β = 0, λ)+WT (β1 = β2, λ) with WT (β = 0, λ) denoting the Wald

statistic for testing β = 0 in yt+1 = α1I1t(λ) + α2I2t(λ) + βxt + ut+1 for a given λ ∈ (0, 1) and WT (β1 =

β2, λ) the Wald statistic for testing H0 : β1 = β2 in model (1). More formally, letting Z1 = [I1 I2 x],

ψ1 = (α1 α2 β)′ and R1 = [0 0 1] we have WT (β = 0, λ) = ψ̂′1R
′
1[R1(Z ′1Z1)−1R′1]−1R1ψ̂1/σ̂

2
1 where σ̂2

1

is the residual variance from y = Z1ψ1 + u, and using our notation surrounding (1), WT (β1 = β2, λ) =

θ̂′R′2[R2(Z ′Z)−1R′2]−1R2θ̂/σ̂
2
u for R2 = [0 1 0 − 1]. Naturally, if one wishes to maintain the assumption

that α1 = α2 we could also focus on WC
T (λ|α1 = α2) ≈ WT (β = 0|α1 = α2) + WT (β1 = β2, λ|α1 = α2)

with these two components being evaluated on models with fixed intercepts (i.e. yt+1 = α + βxt + ut+1

for WT (β = 0|α1 = α2) and yt+1 = α + β1xtI1t + β2xtI2t + ut+1 for WT (β1 = β2, λ|α1 = α2)). With

Z̃ defined as earlier, WT (β1 = β2, λ|α1 = α2) = φ̂′R′3[R3(Z̃ ′Z̃)−1R′3]−1R3φ̂/σ̃
2
u for R3 = [0 1 − 1] while

WT (β = 0|α1 = α2) is as in (9). Note that the above decompositions are valid asymptotically due to

the omission of scaling factors adjacent to WT (β = 0, λ) that converge to 1 in probability under the null

hypothesis (i.e. σ̂2
1/σ̂

2
u

p→ 1 and σ̂2
lin/σ̃

2
u

p→ 1).

Given the above decompositions it is now possible to modifyWC
T (λ) (and similarly forWC

T (λ|α1 = α2))

along exactly the same lines as our treatment of WB
T (λ) via the IVX based modification applied to
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WT (β = 0, λ) (or WT (β = 0|α1 = α2) when applicable). Specifically, we let

WC,ivx
T (λ) = W ivx

T (β = 0, λ) +WT (β1 = β2, λ)

WC,ivx
T (λ|α1 = α2) = W ivx

T (β = 0|α1 = α2) +WT (β1 = β2, λ|α1 = α2) (15)

where W ivx
T (β = 0|α1 = α2) is as in (11) while W ivx

T (β = 0, λ) is the IVX based Wald statistic for

testing H0 : β = 0 in y = Z1ψ1 + u. More specifically, letting z̃ refer to the IVX vector that stacks the

z̃′ts this latter Wald statistic is constructed instrumenting Z1 = (I1 I2 x) with Z1 = (I1 I2 z̃) so that

ψ1,ivx = (Z ′1Z1)−1Z
′
1y and WT (β = 0, λ) is then constructed in a manner identical to equation (25) in

PM09.

The purpose of this IVX based step is to ensure that the new limit corresponding to the first component

in the right hand side of (14) is χ2(1) and thus no longer depending on the noncentrality parameter c and

other endogeneity induced parameters. Due to its independence from the second χ2(1) component which

arises as the limit of WT (β1 = β2, λ) or WT (β1 = β2, λ|α1 = α2) (see the proof of Proposition 4(iii))

we also have the useful outcome that WC,ivx
T (λ) ⇒ χ2(2) for some λ ∈ (0, 1) when α1 = α2 in addition

to WC,ivx
T (λ̂) ⇒ χ2(2) and WC,ivx

T (λ0) ⇒ χ2(2) when α1 6= α2. Our simulation based results presented

below document a remarkably accurate match of the finite sample quantiles of WC,ivx
T (λ) and WC,ivx

T (λ̂)

with those of the χ2(2) (see Table 7).

Although the above might suggest a unified way of testing HC
0 : β1 = β2 = 0 regardless of whether

α1 = α2 or α1 6= α2 this is not so due to the treatment of λ in the construction of WC,ivx
T (λ). When

α1 = α2 and as in Proposition 4 above the test statistic can be evaluated at any constant λ ∈ (0, 1).

This is no longer true however if α1 6= α2 with the switch occurring at λ0. In this latter case we have

WC,ivx
T (λ̂) ⇒ χ2(2) and obviously WC,ivx

T (λ0) ⇒ χ2(2). When α1 6= α2 evaluating WC,ivx
T (.) at some

λ 6= λ0 would lead to wrong inferences and similarly when α1 = α2, evaluating the same test statistic at

λ̂ would be misleading since λ̂ is not a well defined quantity when α1 = α2. Indeed under α1 = α2, λ̂

does not converge in probability to a constant and the consequences of this on the bahaviour of the test

statistic are unclear.

4 Finite Sample Analysis

4.1 Testing HA
0 : α1 = α2, β1 = β2

Having established the limiting properties of the SupWald statistic for testing HA
0 our next goal is to

illustrate the finite sample adequacy of our asymptotic approximation and empirically illustrate our

theoretical findings. It will also be important to highlight the equivalence of the limiting results obtained

in Proposition 1 to the Brownian Bridge type of limit documented in Andrews (1993) and for which Hansen

(1997) obtained p-value approximations and Estrella (2003) exact p-values. Naturally, this allows us to
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evaluate the size properties of our tests as well.

Our data generating process (DGP) under HA
0 is given by the following set of equations

yt = α+ βxt−1 + ut

xt =
(

1− c

T

)
xt−1 + vt

vt = ρvt−1 + et, (16)

with ut and et both NID(0, 1) while the fitted model is given by (1) with qt assumed to follow the

AR(1) process qt = φqt−1 + uqt with uqt = NID(0, 1). Regarding the covariance structure of the random

disturbances, letting zt = (ut, et, uqt)′ and Σz = E[ztz′t], we use

Σz =


1 σue σuuq

σue 1 σeuq

σuuq σeuq 1


which allows for a sufficiently general covariance structure while imposing unit variances. Note also that

our chosen covariance matrix parameterisation allows the threshold variable to be contemporaneously

correlated with the shocks to yt. All our HA
0 based size experiments use N = 5000 replications and set

{α, β, ρ, φ} = {0.01, 0.10, 0.40, 0.50} throughout. Since our initial motivation is to explore the theoret-

ically documented robustness of the limiting distribution of SupWaldA to the presence or absence of

endogeneity, we consider the two scenarios given by

DGP1 : {σue, σuuq , σeuq} = {−0.5, 0.3, 0.4}

DGP2 : {σue, σuuq , σeuq} = {0.0, 0.0, 0.0}.

The implementation of all our Sup based tests assume 10% trimming at each end of the sample.

Table 1 below presents some key quantiles of the SupWaldA distribution (see Proposition 1) simulated

using moderately small sample sizes and compares them with their asymptotic counterparts. Results are

displayed solely for the DGP1 covariance structure since the corresponding figures for DGP2 were almost

identical.

Table 1: Critical Values of SupWaldA

14



DGP1, T = 200 DGP1, T = 400 ∞
c = 1 c = 5 c = 10 c = 20 c = 1 c = 5 c = 10 c = 20

2.5% 2.18 2.21 2.21 2.19 2.31 2.24 2.24 2.27 2.41

5.0% 2.53 2.52 2.57 2.50 2.65 2.63 2.62 2.63 2.75

10.0% 3.01 3.07 2.99 2.99 3.13 3.10 3.11 3.12 3.27

90.0% 10.20 10.46 10.48 10.39 10.28 10.23 10.20 10.30 10.46

95.0% 12.07 12.03 12.13 12.19 11.85 12.05 12.11 12.08 12.17

97.5% 13.82 13.76 13.85 13.84 13.74 13.57 13.91 13.64 13.71

Looking across the different values of c as well as the different quantiles we note an excellent adequacy

of the T=200 and T=400 based finite sample distributions to the asymptotic counterpart tabulated in

Andrews (1993) and Estrella (2003). This also confirms our results in Proposition 1 and provides empirical

support for the fact that inferences are robust to the magnitude of c. Note that with T=200 the values

of (1 − c/T ) corresponding to our choices of c in Table 1 are 0.995, 0.975, 0.950 and 0.800 respectively.

Thus the quantiles of the simulated distribution appear to be highly robust to a wide range of persistence

characteristics.

Naturally, the fact that our finite sample quantiles match closely their asymptotic counterparts even

under T=200 is not sufficient to claim that the test has good size properties. For this purpose we

have computed the empirical size of the SupWaldA based test making use of the pvsup routine of

Hansen (1997). The latter is designed to provide approximate p-values for test statistics whose limiting

distribution is as in (4). Results are presented in Table 2 below which concentrates solely on the DGP1

covariance structure.

Table 2: Size Properties of SupWaldA

T=200 T=400 T=200, BOOT T=400, BOOT

2.5% 5.0% 10% 2.5% 5.0% 10% 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%

c=1 2.60 4.70 8.90 2.50 4.60 9.60 3.01 6.20 11.14 3.62 5.98 11.02

c=5 2.50 4.90 9.30 2.40 4.90 9.30 2.98 6.36 11.86 3.38 6.08 11.02

c=10 2.80 4.80 9.20 2.70 5.10 9.30 3.26 6.42 12.00 3.26 5.64 10.66

c=20 2.60 4.80 9.50 2.50 5.00 9.60 3.20 6.42 11.32 3.26 6.16 11.40

From the figures presented in the two left panels of Table 2 we again note the robustness of the empirical

size estimates of SupWaldA to the magnitude of the noncentrality parameter. Overall the size estimates

match their nominal counterparts quite accurately even under a moderately small sample size. It is also

interesting to compare the asymptotic approximation in (4) with that occuring when xt is assumed to

follow an AR(1) with |ρ| < 1 rather than the local to unit root specification we have adopted in this
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paper. Naturally, under pure stationarity the results of Hansen (1996, 1999) apply and inferences can

be conducted by simulating critical values from the asymptotic distribution that is the counterpart to

(3) obtained under pure stationarity and following the approach outlined in the aforementioned papers.

This latter approach is similar to an external bootstrap but should not be confused with the idea of

obtaining critical values from a bootstrap distribution. The obvious question we are next interested

in documenting is which approximation works better when xt is a highly persistent process? For this

purpose the two right hand panels of Table 2 above also present the corresponding empirical size estimates

obtained using the asymptotic approximation and its external bootstrap style implementation developed

in Hansen (1996, 1999) and justified by the multiplier central limit theorem (see Van der Vaart and

Wellner (1996)). Although our comparison involves solely the size properties of the test and should

therefore be interpreted cautiously the above figures suggest that the nuisance parameter free Brownian

Bridge based asymptotic approximation does a good job in matching empirical with nominal sizes when ρ

is close to the unit root frontier. Proceeding using Hansen (1996)’s approach on the other hand suggests

a mild oversizeness of the procedure which does not taper off as T is allowed to increase.

Before proceeding further, it is also important to document SupWaldA’s ability to correctly detect

the presence of threshold effects via a finite sample power analysis. Our goal here is not to develop a full

theoretical and empirical power analysis of our test statistics which would bring us well beyond our scope

but to instead give a snapshot of the ability of our test statistics to lead to a correct decision under a

series of fixed departures from the null. All our power based DGPs use the same covariance structure as

our size experiments and are based on the following configurations for {α1, α2, β1, β2, γ} in (1): DGPA1
{−0.03,−0.03, 1.26, 1.20, 0}, DGPA2 {−0.03, 0.15, 1.26, 1.20, 0} andDGPA3 {−0.03, 0.25, 1.26, 1.26, 0} thus

covering both intercept only, slope only and joint intercept and slope shifts. In Table 3 below the figures

represent correct decision frequencies evaluated as the number of times the pvalue of the test statistic

leads to a rejection of the null using a 2.5% nominal level.

Table 3: Power Properties of SupWaldA

DGPA1 DGPA2 DGPA3 DGPA1 DGPA2 DGPA3 DGPA1 DGPA2 DGPA3

c = 1 c = 5 c = 10

T = 200 0.73 0.73 0.15 0.39 0.44 0.14 0.20 0.26 0.14

T = 400 0.98 0.98 0.37 0.92 0.93 0.37 0.78 0.82 0.37

T = 1000 1.00 1.00 0.88 1.00 1.00 0.89 1.00 1.00 0.86

We note from Table 3 that power converges towards one under all three parameter configurations

albeit quite slowly when only intercepts are characterised by threshold effects. The test displays good

finite sample power even under T = 200 when the slopes are allowed to shift as in DGPA1 and DGPA2 .

It is also interesting to note the negative influence of an increasing c on finite sample power under the
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DGPs with shifting slopes. As expected this effect vanishes asymptotically since even for T ≥ 400 the

frequencies across the different magnitudes of c become very similar.

4.2 Testing HB
0 : α1 = α2, β1 = β2 = 0

We next turn to the null hypothesis given by HB
0 : α1 = α2, β1 = β2 = 0. As documented in Proposition 2

we recall that the limiting distribution of the SupWaldB statistic is no longer free of nuisance parameters

and does not take a familiar form when we operate under the set of assumptions characterising Proposition

1. However, one instance under which the limiting distribution of the SupWaldB statistic takes a simple

form is when we impose the exogeneity assumption as when considering the covariance structure referred

to as DGP2 above. Under this scenario the relevant limiting distribution is given by (6) and can be easily

tabulated through standard simulation based methods.

For this purpose, Table 4 below presents some empirical quantiles obtained using T = 200, T = 400

and T = 800 from the null DGP yt = 0.01 + ut. As can be inferred from (6) we note that the quantiles

are unaffected by the chosen magnitude of c and appear sufficiently stable across the different sample

sizes considered. Viewing the T = 800 based results as approximating the asymptotic distribution for

instance the quantiles obtained under T = 200 and T = 400 match closely their asymptotic counterparts.

Table 4. Critical Values of SupWaldB under Exogeneity

2.5% 5% 10% 90% 95% 97.5%

c=1

T = 200 2.59 3.03 3.58 11.73 13.63 15.36

T = 400 2.67 3.06 3.67 11.80 13.69 15.41

T = 800 2.67 3.15 3.78 11.71 13.42 15.35

c=5

T = 200 2.56 3.02 3.64 11.63 13.69 15.46

T = 400 2.65 3.06 3.69 11.97 13.79 15.85

T = 800 2.71 3.15 3.73 11.55 13.42 15.14

We next turn to the more general scenario in which one wishes to test HB
0 within a specification that

allows for endogeneity. Taking our null DGP as yt = 0.01 + ut and the covariance structure referred to

as DGP1 it is clear from Proposition 2 that using the critical values from Table 4 will lead to misleading

results. This is indeed confirmed empirically with size estimates for SupWaldB lying about two percentage

points above their nominal counterparts (see Table 5 below). Using our IVX based test statistic in (11)-

(12) however ensures that the above critical values remain valid even under the presence of endogeneity.

Results for this experiment are also presented in Table 5 below. Table 5 also aims to highlight the
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influence of the choice of the δ parameter in the construction of the IVX variable (see (10)) on the size

properties of the test.

Table 5: Size Properties of SupWaldB,ivx and SupWaldB under Endogeneity

2.5% 5.0% 10.0% 2.5% 5.0% 10.0% 2.5% 5% 10%

T = 200 c = 1 c = 5 c = 10

δ = 0.70 2.80 5.12 10.26 2.48 5.02 10.40 2.62 5.00 10.34

δ = 0.80 2.84 5.60 10.38 2.52 5.08 10.78 2.70 5.10 10.40

δ = 0.90 3.04 5.48 10.68 2.70 5.20 10.86 2.76 5.32 10.56

SupWaldB 3.54 6.36 12.28 3.06 5.94 11.52 2.98 5.72 11.14

T = 400 c = 1 c = 5 c = 10

δ = 0.70 3.02 5.66 11.06 3.00 5.36 10.60 2.74 5.32 10.14

δ = 0.80 3.14 5.92 11.46 3.14 5.36 10.94 2.82 5.44 10.32

δ = 0.90 3.42 6.28 12.08 3.24 5.52 11.04 2.82 5.48 10.52

SupWaldB 4.28 7.30 13.20 3.46 6.22 11.46 3.08 5.66 11.08

T = 1000 c = 1 c = 5 c = 10

δ = 0.70 2.74 5.14 10.24 2.62 4.96 10.22 2.50 4.72 10.18

δ = 0.80 2.96 5.68 10.74 2.64 5.40 10.12 2.66 4.74 10.62

δ = 0.90 3.30 5.90 11.50 2.92 5.42 10.06 2.64 4.96 10.44

SupWaldB 4.00 6.52 13.18 3.22 5.72 10.74 2.74 5.16 10.74

Overall, we note an excellent match of the empirical sizes with their nominal counterparts. As δ increases

towards one, it is possible to note a very slight deterioration in the size properties of SupWaldB,ivx with

empirical sizes mildly exceeding their nominal counterparts. Looking also at the power figures presented

in Table 6 below it is clear that as δ → 1 there is a very mild size power tradeoff that kicks in. This is

perhaps not surprising since as δ → 1 the instrumental variable starts behaving like the original nearly

integrated regressor. Overall, choices of δ in the 0.7-0.8 region appear to lead to very sensible results

within our chosen simulations with almost unnoticeable variations in the corresponding size estimates.

Even under δ = 0.9 and looking across all configurations we can reasonably argue that the resulting size

properties are good to excellent. Finally, the rows labelled SupWaldB clearly highlight the unsuitability

of this uncorrected test statistic whose limiting distribution is as in (5).

Next, we also considered the finite sample power properties of our SupWaldB,ivx statistic through a

series of fixed departures from the null based on the following configurations for {α1, α2, β1, β2, γ}: DGPB1
{0.01, 0.01, 0.05, 0.05, 0}, DGPB2 {−0.03, 0.25, 0.05, 0.05, 0} and DGPB3 {0.01, 0.25, 0, 0, 0}. Results for

this set of experiments are presented in Table 6 below.

Table 6: Power Properties of SupWaldBivx
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DGPB1 DGPB2 DGPB3

c = 1, T 200 400 1000 200 400 1000 200 400 1000

δ = 0.70 0.81 0.97 1.00 0.89 0.99 1.00 0.17 0.37 0.87

δ = 0.80 0.89 0.99 1.00 0.94 1.00 1.00 0.17 0.37 0.87

c = 5, T 200 400 1000 200 400 1000 200 400 1000

δ = 0.70 0.71 1.00 1.00 0.85 1.00 1.00 0.16 0.36 0.87

δ = 0.80 0.79 1.00 1.00 0.89 1.00 1.00 0.16 0.36 0.87

c = 10, T 200 400 1000 200 400 1000 200 400 1000

δ = 0.70 0.51 1.00 1.00 0.74 1.00 1.00 0.16 0.36 0.87

δ = 0.80 0.58 1.00 1.00 0.78 1.00 1.00 0.16 0.36 0.86

The above figures suggest that our modified SupWaldB,ivx statistic has good power properties under

moderately large sample sizes. We again note that violating the null restriction that affects the slopes

leads to substantially better power properties than scenarios where solely the intercepts violate the

equality constraint.

4.3 Testing HC
0 : β1 = β2 = 0

Our initial objective here is to document the accuracy of the χ2(2) approximation for our main IVX

based test statistic WC,ivx
T (λ) defined in (15) and designed to make our inferences robust to endogeneity

and to the magnitude of c. When referring to the arguments of our Wald statistics in what follows we

will make use of γ and λ = F (γ) interchangeably. We consider two DGPs having α1 = α2 and α1 6= α2

respectively. In the first case WC,ivx
T (γ) is evaluated at an ad-hoc choice of γ while in the second case

we consider WC,ivx
T (γ̂). For our α1 = α2 based experiments we also present the corresponding results for

WC,ivx
T (γ|α1 = α2). All our experiments below use δ = 0.7 in the construction of the IVX variable and

set cz = 1 in (10).

Table 7: Quantiles of WC,ivx
T (γ) and WC,ivx

T (γ̂) under Endogeneity (T=400)
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2.5% 5.0% 10.0% 90.0% 95.0% 97.5%

α1 = α2 DGP : yt+1 = 0.01 + ut+1

WC,ivx
T (γ = 0|α1 = α2) 0.048 0.100 0.210 4.657 6.052 7.308 c = 1

WC,ivx
T (γ = 0|α1 = α2) 0.049 0.100 0.213 4.616 6.018 7.471 c = 5

WC,ivx
T (γ = 0|α1 = α2) 0.050 0.109 0.211 4.650 6.034 7.359 c = 10

WC,ivx
T (γ = 0) 0.056 0.112 0.223 4.768 6.181 7.433 c = 1

WC,ivx
T (γ = 0) 0.047 0.091 0.200 4.680 5.992 7.291 c = 5

WC,ivx
T (γ = 0) 0.050 0.103 0.209 4.599 6.066 7.369 c = 10

α1 6= α2 DGP : yt+1 = −0.03I1t(0) + 0.25I2t(0) + ut+1

WC,ivx
T (γ̂) 0.055 0.113 0.203 4.783 6.172 7.460 c = 1

WC,ivx
T (γ̂) 0.055 0.106 0.217 4.706 6.132 7.619 c = 5

WC,ivx
T (γ̂) 0.056 0.111 0.212 4.639 6.222 7.618 c = 10

χ2(2) 0.051 0.103 0.211 4.605 5.991 7.378

Table 7 above highlights how good a job the IVX based transformation of our original Wald statistic

is doing in matching the theoretical quantiles of the χ2(2) distribution even under a moderately large

sample size such as T = 400. Under the constant intercepts scenario we also note that WC,ivx
T (γ|α1 = α2)

leads to quantiles marginally closer to those of the χ2(2) when compared with WC,ivx
T (γ). This makes

intuitive sense since when α1 = α2, WC,ivx
T (γ) implements the test within an unnecessarily overfitted

model.

We next assess the finite sample properties of WC,ivx
T (γ) through a series of size based experiments

that distinguish across the two scenarios of interest on the intercepts using the same two DGPs as in

Table 7. Results are presented in Table 8 below. Note that as in Table 7 above all our experiments make

use of a DGP with endogeneity. We make use of WC,ivx
T (γ) with an ad-hoc choice of γ for the DGP with

α1 = α2 while we use WC,ivx
T (γ̂) for the DGP with α1 6= α2.

Table 8: Size Properties of WC,ivx
T (γ) and WC,ivx

T (γ̂) under Endogeneity

α1 = α2 α1 6= α2

WC,ivx
T (γ = 1) 2.5% 5.0% 10.0% WC,ivx

T (γ̂) 2.5% 5.0% 10.0%

T = 200 3.10 6.20 10.90 T = 200 2.60 5.10 10.50

T = 400 2.80 5.80 11.00 T = 400 2.90 5.10 10.20

T = 1000 2.50 5.10 10.40 T = 1000 2.80 5.30 10.60

Under α1 = α2 our test statistic is evaluated at the ad-hoc choice of γ = 1 and despite a mild

oversizeness under T=200 we note a good overall match of empirical and nominal sizes. Note that

WC,ivx
T (γ = 1) is evaluated on the fully unrestricted model (1) despite our knowledge of the DGP having
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α1 = α2 (see our discussion following Proposition 4). Results across alternative magnitudes of γ were

very similar and therefore omitted. Similar properties are also observed when α1 6= α2 with the test

statistic evaluated at γ̂.

5 Regime Specific Predictability of Returns with Valuation Ratios

One of the most frequently explored specification in the financial economics literature has aimed to uncover

the predictive power of valuation ratios such as Dividend Yields for future stock returns via significance

tests implemented on simple linear regressions linking rt+1 to DYt. The econometric complications that

arise due to the presence of a persistent regressor together with endogeneity issues have generated a vast

methodological literature aiming to improve inferences in such models commonly referred to as predictive

regressions (e.g. Valkanov (2003), Lewellen (2004), Campbell and Yogo (2006), Jansson and Moreira

(2006), Ang and Bekaert (2007) among numerous others).

Given the multitude of studies conducted over a variety of sample periods, methodologies, data

definitions and frequencies it is difficult to extract a clear consensus on predictability. From the recent

analysis of Campbell and Yogo (2006) there appears to be statistical support for some very mild DY based

predictability with the latter having substantially declined in strength post 1995 (see also Lettau and

Van Nieuwerburgh (2008)). Using monthly data over the 1946-2000 period Lewellen (2004) documented

a rather stronger DY based predictability using a different methodology that was mainly concerned with

small sample bias correction. See also Cochrane (2008) for a more general overview of this literature.

Our goal here is to reconsider this potential presence of predictability through our regime based

methodology focusing on the DY predictor. More specifically, using growth in Industrial Production

(IP) as our threshold variable proxying for aggregate macro conditions our aim is to assess whether

the data support the presence of regime dependent predictability induced by good versus bad economic

times. Theoretical arguments justifying the possible existence of episodic instability in predictability

have been alluded to in the theoretical setting of Menzly, Santos and Veronesi (2004) and more recently

Henkel, Martin and Nardari (2009) explored the issue empirically using Bayesian methods within a

Markov-Switching setup. We will show that our approach leads to a novel view and interpretation of the

predictability phenomenon and that its conclusions are robust across alternative sample periods. Moreover

our findings may provide an explanation for the lack of robustness to the sample period documented in

existing linearity based work. An alternative strand of the recent predictive regression literature or

more generally the forecasting literature has also explored the issue of predictive instability through the

allowance of time variation via structural breaks and the use of recursive estimation techniques. A general

message that has come out from this research is the omnipresence of model instability and the important

influence of time variation on forecasts (see Rapach and Wohar (2006), Rossi (2005, 2006), Timmermann

(2008) amongst others). Our own research is also motivated by similar concerns but focuses on explicitly
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identifying predictability episodes induced by a particular variable such as a business cycle proxy.

Our analysis will be based on the same CRSP data set as the one considered in the vast majority

of predictability studies (value weighted returns for NYSE, AMEX and NASDAQ). Throughout all our

specifications the dividend yield is defined as the aggregate dividends paid over the last 12 months divided

by the market capitalisation and is logged throughout (LDY therefater). For robustness considerations

we will distinguish between returns that include dividends and returns that exclude dividends. Finally,

using the 90-day T-Bills all our inferences will also distinguish between raw returns and their excess

counterparts. Following Lewellen (2004) we will restrict our sample to the post-war period. We will

concentrate solely on monthly data since the regime specific nature of our models would make yearly or

even quarterly data based inferences less reliable due to the potentially very small size of the sample. We

will subsequently explore the robustness of our results to alternative sample periods.

Looking first at the stochastic properties of the dividend yield predictor over the 1950M1-2007M12

period it is clear that the series is highly persistent as judged by a first order sample autocorrelation

coefficient of 0.991. A unit root test implemented on the same series unequivocally fails to reject the

unit root null. The IP growth series is stationary as expected displaying some very mild first order

serial correlation and clearly conforming to our assumptions about qt in (1)-(2). Before proceeding with

the detection of regime specific predictability we start by assessing return predictability within a linear

specification as it has been done in the existing literature. Results across both raw and excess returns are

presented in Table 9 below with VWRETD denoting the returns inclusive of dividends and VWRETX

denoting the returns ex-dividends. The columns named as p and pHAC refer to the standard and HAC

based pvalues.

Table 9. Linear Predictability rt+1 = αDY + βDY LDYt + ut+1

VWRETD β̂DY pHAC p R2 VWRETX β̂DY pHAC p R2

1950− 2007 0.010 0.011 0.008 0.9% 1950− 2007 0.008 0.054 0.046 0.4%

1960− 2007 0.010 0.056 0.037 0.6% 1960− 2007 0.008 0.142 0.110 0.3%

1970− 2007 0.009 0.069 0.056 0.6% 1970− 2007 0.007 0.170 0.148 0.2%

1980− 2007 0.011 0.059 0.042 0.9% 1980− 2007 0.009 0.131 0.103 0.5%

1990− 2007 0.014 0.153 0.105 0.8% 1990− 2007 0.001 0.207 0.152 0.5%

Excess Excess

1950− 2007 0.009 0.025 0.019 0.7% 1950− 2007 0.007 0.102 0.087 0.3%

1960− 2007 0.007 0.210 0.169 0.2% 1960− 2007 0.004 0.417 0.372 0.0%

1970− 2007 0.006 0.269 0.240 0.1% 1970− 2007 0.004 0.665 0.479 0.0%

1980− 2007 0.007 0.253 0.208 0.2% 1980− 2007 0.005 0.439 0.392 0.0%

1990− 2007 0.013 0.198 0.138 0.6% 1990− 2007 0.011 0.263 0.196 0.0%
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The coefficient estimates of Table 9 refer to the OLS estimates of βDY in the regression rt+1 = α +

βDY LDYt + ut+1. Focusing first on the VWRETD series our results conform with the consensus that

predictability has been vanishing from the late 80s onwards (see for instance Campbell and Yogo (2006)).

The remaining pvalues suggest some mild predictability especially when considering the entire 1950-2007

sample range. Interestingly as we switch from raw to excess returns the picture changes considerably

with most pvalues strongly pointing towards the absence of any predictability. Given these pvalue magni-

tudes it is difficult to conceive that any methodological improvements may reverse the big picture. Also

worth pointing out is the fact that a conventional test for heteroskedasticity implemented on the above

specifications failed to reject the null of no heteroskedasticity. This is particularly reassuring since one

of our assumptions leading to our theoretical results in Propositions 1 and 2 ruled out the presence of

heteroskedasticity.

Next, focusing on the returns that exclude dividend payments it is again the case that with pvalues

as high as 0.665 the null of no predictability cannot be rejected. Results appear to also be robust across

different starting periods except perhaps under the full 1950-2007 range under which we note a mild

rejection of the null. It is also important to note that all results were robust across HAC versus non-HAC

standard errors. This latter point is particularly important since our assumptions surrounding (1)-(2)

rule out serial correlation and heteroskedasticity in ut.

Overall the above linearity based results corroborate the view that predictability is at best mildly

present and its strength appears to have declined. Perphaps more importantly Table 9 also suggests

that one should be particularly cautious and worry about robustness considerations when assessing DY

induced predictability of returns since findings may be extremely sensitive to data definitions, frequency

and chosen sample period. At this stage it is also important to reiterate that our analysis in Table 9

is mainly meant to provide a comparison benchmark for our subsequent regime based inferences rather

than reverse findings from the existing literature. This is also the reason why we do not explore outcomes

based on alternative methodologies as developed in the recent econometric literature.

The fact that numerous studies documented a decline in predictability characterising the 90s could

also be due to the fact that predictability kicks in during particular economic episodes. Table 10 below

presents the results of our tests of the hypotheses HB
0 : α1 = α2, β1 = β2 = 0, HA

0 : α1 = α2, β1 = β2 and

HC
0 : β1 = β2 = 0 as applied to the VWRETD series (∗ indicates rejection at 2.5%). Since results for

the return series that exclude dividends as well as their excess counterparts were both qualitatively and

quantitatively similar in what follows we concentrate solely on the VWRETD series.

Table 10. Regime Specific Predictability
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SupWaldA SupWaldB,ivx WC,ivx
T (γ = 0) WC,ivx

T (γ̂)

δ = 0.7 δ = 0.8 δ = 0.9 δ = 0.7 δ = 0.7

1950− 2007 20.75 (0.001) 26.75∗ 28.87∗ 30.21∗ 10.57 (0.005) 6.77 (0.034)

1960− 2007 18.98 (0.002) 23.24∗ 23.40∗ 23.46∗ 8.16 (0.017) 4.09 (0.129)

1970− 2007 17.73 (0.004) 21.64∗ 21.82∗ 21.77∗ 7.62 (0.022) 6.17 (0.046)

1980− 2007 24.52 (0.000) 27.73∗ 28.60∗ 28.96∗ 10.84 (0.004) 8.00 (0.018)

1990− 2007 28.87 (0.000) 29.52∗ 30.18∗ 31.10∗ 7.89 (0.019) 20.05 (0.000)

The evidence presented in Table 10 comfortably points towards the presence of regime specific predictabil-

ity since both HA
0 and HB

0 are strongly rejected. We also note that inferences based on SupWaldB,ivx

appear robust to alternative choices of δ in the construction of the IVX variable. Regarding the null

given by HC
0 : β1 = β2 = 0 it is again strongly rejected under the assumption of equality of the intercepts

with WC
T (γ) evaluated at the ad-hoc choice of γ = 0. If we operate under α1 6= α2, results appear to be

slightly less clearcut albeit mostly pointing towards rejection of the null (e.g. pvalue of 0.034). It is also

interesting to note that unlike the linear case inferences appear to be robust to the starting period. One

should be cautious however when interpreting inferences such as the ones based on the 1990-2007 period

due to sample size limitations which are further exacerbated when fitting a threshold specification.

Recalling that the R2’s characterising the various linear specifications were clustered around values

close to zero (see Table 9) it is also useful to highlight the remarkable jump in goodness of fit in our

proposed threshold model presented in (17) below. Our results strongly point towards the presence of

very strong predictability during bad times when the growth in IP (variable ∆LIPt) is negative while

no or very weak predictability during expansionary periods or normal times. More specifically, over the

1950-2007 period we have

r̂t+1 =

{
0.1606(0.0357) + 0.0441(0.0107)LDYt ∆LIPt ≤ −0.0036, R2

1 = 17.47%, N1 = 131

0.0135(0.0161) + 0.0010(0.0045)LDYt ∆LIPt > −0.0036, R2
2 = 0.00%, N2 = 564

(17)

with a joint R2 of 3.88%. Estimated standard erros are in parentheses. Besides being interesting in

its own right this result may also help explain the conflicting results obtained in the recent literature

where the samples considered included or excluded data on the late 90s and 00s, a period with few

recessions. Even with the reduction in the sample size it is quite remarkable that the goodness of fit

can jump from a magnitude close to zero to about 17% in one subset. Overall our results strongly

support DY based predictability in US returns but occurring solely during bad times. Note for instance

that more than half of the periods during which ∆LIPt ≤ −0.0036 coincide with the NBER recessions.

The strength of this predictability is very strong and unlikely to be sensitive to the methodology or

our assumptions. Interestingly and through a different methodology, our findings about the presence

of strong return predictability during bad times also corroborate the findings in Henkel, Martin and

Nardari (2009). Using Bayesian inference techniques on a Markov Switching VAR setup in which they
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consider multiple predictors in addition to the Dividend Yield the authors document a substantial jump

in predictive strength of variables such as DY, short term rates, term structure etc during recessions.

6 Conclusions

The goal of this paper was to develop inference methods useful for detecting the presence of regime

specific predictability in predictive regressions. We obtained the limiting distributions of a series of Wald

statistics designed to test the null of linearity versus threshold type nonlinearity, the joint null of linearity

and no predictability and the null of no predictability induced by x. One important feature of the limiting

distribution that arises in the first case is the fact that it does not depend on any unknown nuisance

parameters thus making it straightforward to use. This is an unusual occurence in this literature where

under a purely stationary framework (as opposed to a nearly integrated one) it is well known that limiting

distributions typically depend on unknown population moments of the underlying models.

Our empirical application also leads to the interesting result that US return series are clearly pre-

dictable using valuation ratios such as DY but this predictability kicks in solely during bad times and

would therefore be masked in studies that operate within linear specifications.

Finally, it is worth mentioning some important extensions to the present work. A useful extension

we are currently considering involves introducing long horizon variables into (1)-(2). This would offer an

interesting parallel to the linear predictive regression literature which has often distinguished long versus

short horizon predictability. Other important extensions include extending (1)-(2) to allow for more than

two regimes following some of the methods developed in Gonzalo and Pitarakis (2002) while further

statistical properties (e.g. confidence intervals) of objects such as the estimated threshold parameter may

be explored using the subsampling methodology of Gonzalo and Wolf (2005).

A key assumption under which we have operated ruled out heteroskedasticity and serial correlation in

ut. As our empirical application has documented however our results can continue to be extremely useful

despite this limitation. This restriction is in fact the norm rather than the exception in any work that

introduced nonlinearities parametrically or nonparametrically in models that contain persistent variables.

Albeit challenging, we expect future work to also be directed towards tackling these issues.
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APPENDIX

LEMMA 1: Under assumptions A1-A2 and as T →∞ we have (a)
∑
I1t
T

p→ λ, (b)
∑
xt

T
3
2

⇒
∫ 1

0
Kc(r)dr,

(c)
∑
x2
t

T 2
⇒
∫ 1

0
K2
c (r)dr, (d)

∑
xt−1vt
T

⇒
∫ 1

0
Kc(r)dBv(r)+λvv. (e)

∑
xt−1ut
T

⇒
∫ 1

0
Kc(r)dBu(r, 1), (f)∑

x2
t I1t

T 2
⇒ λ

∫ 1

0
K2
c (r)dr, (g)

∑
xtI1t

T
3
2

⇒ λ

∫ 1

0
Kc(r)dr, (h)

∑[Tr]
t=1 utI1t−1√

T
⇒ Bu(r, λ), (i)

∑
xt−1utI1t−1

T
⇒∫ 1

0
Kc(r)dBu(r, λ)

PROOF OF LEMMA 1: (a) By assumptions A1-A2, I1t is strong mixing with the same mixing numbers

as qt. The result then follows from a suitable law of large numbers (see White (2001, Sections 3.3-3.4)).

(b)-(e) Under our assumptions A1-A2, the results follow directly from Lemma 3.1 in Phillips (1988). (f)

Letting XT,t = xt/
√
T and XT (r) = x[Tr]/

√
T we can rewrite (f) as

1
T

∑
X2
T,tI1t = λ

1
T

∑
X2
T,t +

1
T

∑
X2
T,t(I1t − λ). (18)

Under A1-A2 and requiring E|et|p < ∞ for some p ≥ 4 we can make use of the strong approximation

result supr∈[0,1] |XT (r) −Kc(r)| = op(T−a) with a = (p − 2)/2p (see Lemma A.3 in Phillips (1998) and

Phillips and Magdalinos (2007)) to obtain

1
T

∑
X2
T,t =

∫ 1

0
K2
c (r)dr + op(T−a). (19)

Indeed, ∣∣∣∣∫ 1

0
XT (r)2dr −

∫ 1

0
Kc(r)2dr

∣∣∣∣ ≤ ∫ 1

0

∣∣XT (r)2 −Kc(r)2
∣∣ dr

=
∫ 1

0
|XT (r)−Kc(r)| |XT (r) +Kc(r)| dr

≤ sup
r
|XT (r)−Kc(r)|

(
sup
r
|XT (r)|+ sup

r
|Kc(r)|

)
= op(T−a). (20)

The above then leads to

1
T

∑
X2
T,tI1t − λ

∫ 1

0
Kc(r)2dr =

1
T

∑
X2
T,t(I1t − λ) + op(T−a) (21)

holding uniformly ∀λ ∈ Λ. Finally, given that supr∈[0,1] |XT (r)| = Op(1) together with the fact that the

result in (a) also holds uniformly over λ (see Lemma 1 in Hansen (1996)) we have supλ | 1T
∑
X2
T,tI1t −

λ
∫ 1
0 Kc(r)2dr| = op(1) implying the required result. (g) Follows identical lines to the proof of (f). (h)-(i)

Since our assumptions satify their Assumption 2 the result in (h) is Theorem 1 of Caner and Hansen

(2001) while our result in (i) follows along the same lines as Theorem 2 of Caner and Hansen (2001).

PROOF OF PROPOSITION 1: It is initially convenient to reformulate WA
T (λ) under HA

0 as

WA
T (λ) = [u′X1 − u′X(X ′X)−1X ′1X1][X ′1X1 −X ′1X1(X ′X)−1X ′1X1]−1

[X ′1u− (X ′1X1)(X ′X)−1X ′u]/σ̂2
u. (22)
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With DT = diag(
√
T , T ) we can write

D−1
T X1

′X1D
−1
T =

 ∑
I1t

T

∑
xtI1t

T
3
2∑

xtI1t

T
3
2

∑
x2

t I1t

T 2

 (23)

and using Lemma 1 we have the following weak convergence results

D−1
T X1

′X1D
−1
T ⇒

(
λ λ

∫ 1
0 Kc(r)dr

λ
∫ 1
0 Kc(r)dr λ

∫ 1
0 K

2
c (r)dr

)
≡ λ

∫ 1

0
Kc(r)Kc(r)′ (24)

and

D−1
T X ′XD−1

T ⇒
∫ 1

0
Kc(r)Kc(r)′ (25)

where Kc(r) = (1,Kc(r)). It now follows from the continuous mapping theorem that

[D−1
T X1

′X1D
−1
T −D

−1
T X1

′X1(X ′X)−1X1
′X1D

−1
T ]−1 ⇒ 1

λ(1− λ)

(∫ 1

0
Kc(r)Kc(r)′

)−1

. (26)

We next focus on the limiting behaviour of D−1
T X ′u and D−1

T X ′1u. Looking at each component separately,

setting σ2
u = 1 for simplicity and no loss of generality and using Lemma 1, we have

D−1
T X1

′u =

 ∑
I1tut+1√
T∑

xtI1tut

T

⇒ (
Bu(r, λ)∫ 1

0 Kc(r)dBu(r, λ)

)
(27)

and

D−1
T X ′u =

 ∑
ut+1√
T∑
xtut

T

⇒ (
Bu(r, 1)∫ 1

0 Kc(r)dBu(r, 1)

)
. (28)

The above now allows us to formulate the limiting behaviour of D−1
T X1

′u− λD−1
T X ′u as

D−1
T X1

′u− λD−1
T X ′u ⇒

∫ 1

0
Kc(r)dGu(r, λ) (29)

where Gu(r, λ) = Bu(r, λ)− λBu(r, 1). The result in (3) follows straightforwardly through the use of the

continuous mapping theorem and standard algebra.

PROOF OF PROPOSITION 2: We rewrite our most general unrestricted specification in (1) as y =

α1I1 + β1x1 + α2I2 + β2x2 + u. Within this notation lower case x′is stack xtIit while the I ′is stack

Iit for i = 1, 2. We also recall that Xi = (Ii xi) for i = 1, 2. It is now convenient to reformulate

(1) as y = α + βx + X2η + u where α = α1, β = β1 and η = (γ, δ)′ with γ = α2 − α1 and δ =

β2 − β1 so that within this alternative parameterization HA
0 : η = 0 and HB

0 : η = 0, β = 0. Next,

consider a most general (MG) model containing (1 x X2) = (X X2), a partially restricted (PR)

version containing X = (1 x) and a fully restricted (FR) version containing just the vector of ones
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1. From standard projection algebra the sum of squared errors corresponding to each specification

are SSEMG = y′MX,X2y, SSEPR = y′MXy and SSEFR = y′M1y where MX = I − X(X ′X)−1X ′

and MX,X2 = MX −MXX2(X ′2MXX2)−1X ′2MX . It now trivially follows that we can write the Wald

statistics corresponding to each hypothesis as WA
T (λ) = [y′MXy − y′MX,X2y]/σ̂2

u (PR against MG),

WB
T (λ) = [y′M1y − y′MX,X2y]/σ̂2

u (FR against MG) and WT (β = 0) = [y′M1y − y′MXy]/σ̂2
lin (FR

against PR). It can now immediately be observed that WB
T (λ) = WA

T (λ) + (σ̂2
lin/σ̂

2
u)WT (β = 0). Under

the null hypothesis (σ̂2
lin/σ̂

2
u)

p→ 1 and therefore in large samples WB
T (λ) ≈ WT (β = 0) + WA

T (λ) and

supλWB
T (λ) ≈ WT (β = 0) + supλWA

T (λ) as required. To obtain the limiting distribution in (5) it now

suffices to use the results presented in Lemma 1 together with the CMT along lines identical to those in

the proof of Proposition 1.

PROOF OF PROPOSITION 3: Follows directly from (11)-(12), Theorem 3.8 in Phillips and Magdalinos

(2009), Lemma 1 and the use of the Continuous Mapping Theorem. Note that Theorem 3.8 in Phillips

and Magdalinos (2009) has been obtained within a model with no fitted intercept however Kostakis,

Magdalinos and Stamatogiannis (2010) and Magdalinos (2010) also established its validity in the more

general setting that includes a constant term.

PROOF OF PROPOSITION 4: (i)-(ii) Letting W stack the elements of [I1t I2t] and MW = I −
W (W ′W )−1W ′ we can write (1) as y∗ = β1x

∗
1 + β2x

∗
2 + u∗ with x∗i = MWxi and where xi stacks

xtIit. We also let σ̂2
∗ denote the corresponding residual variance from this canonical form. Under

HC
0 : β1 = β2 = 0 it now immediately follows that WC

T (λ) =
∑2

i=1 u
′MWxi(x′iMWxi)−1x′iMWu/σ̂

2
∗. Fo-

cusing on u′MWxi we have u′MWxi/T = (
∑
utxtIit/T )− (

∑
utI1t/

√
T
∑
xtIit/T

3/2)/(
∑
Iit/T ) so that

using the CMT and our intermediate results in Proposition 1 we have u′MWx1/T ⇒
∫
K∗c (r)dBu(r, λ) and

u′MWx2/T ⇒
∫
K∗c (r)(dBu(r, 1)− dBu(r, λ)). Similarly x′1MWx1/T

2 ⇒ λ
∫
K∗c (r)2 and x′2MWx2/T

2 ⇒
(1− λ)

∫
K∗c (r)2. Combining and rearranging with the use of the CMT leads to

WC
T (λ) ⇒

[
∫
K∗c (r)dBu(r, 1)]2

σ2
u

∫
K∗c (r)2

+
[
∫
K∗c (r)dGu(r, λ)]2

σ2
uλ(1− λ)

∫
K∗c (r)2

≡ J1 + J2(λ). (30)

Operating under the assumption that λ is a known constant, the second component in the rhs of (30) is

a χ2(1) random variable due to the independence of K∗c (r) and Gu(r, λ). The result in (30) holds for any

λ ∈ (0, 1) when α1 = α2 and for either λ0 or λ̂ when α1 6= α2. Note that the T-consistency of λ̂ estimated

from the null model follows directly from Hansen (2000) or Gonzalo and Pitarakis (2002). (iii) The

χ2(2) outcome follows from three not necessarily related properties: (a) J2(λ) is χ2(1) (see our discussion

around (4)), (b) the well known fact that J1 is χ2(1) under exogeneity and (c) the independence of J1

and J2(λ) which is discussed in our supplementary appendix.
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