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Abstract

This paper studies the use of the overlapping blocking scheme in unit root autoregression.
When the underlying process is that of a random walk, the blocks’ initial conditions are not
fixed, but are equal to the sum of all the previous observations’ error terms. When non-
overlapping subsamples are used, as first shown by Chambers and Kyriacou (2010), these
initial conditions do not disappear asymptotically. In this paper we show that a simple way
of overcoming this issue is to use overlapping blocks. By doing so, the effect of these initial
conditions vanishes asymptotically. An application of these findings to jackknife estimators
indicates that an estimator based on moving-blocks is able to provide obvious reductions to
the mean square error.
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1 Introduction

It is well known that the original jackknife and bootstrap methods, proposed by Que-

nouille (1949) and Efron (1978) respectively, are not applicable to non-iid situations. The

main approach for making such methods operational within dependent data is to block ar-

guments and then resample from these blocks, instead from individual data. These blocks

can be formed either as consecutive blocks of non-overlapping observations, as first proposed

by Carlstein (1986), or as overlapping observations (moving blocks) as first used by Kuensch

(1989) for stationary time series. While the primary focus of the aforementioned papers has

been variance estimation, these blocking techniques can be also employed to maintain the

dependence structure when the main issue is parameter estimation.

In many econometric situations of interest, non-overlapping blocks were recently found

to work well in dynamic settings in which the primary objective is bias reduction. Phillips

and Yu (2005) show that a jackknife estimator based on non-overlapping blocks is capable

of effectively reducing the bias in a stationary bond option price application. Meanwhile,

Chambers (2010) shows that in stationary autoregression, the same estimator is able to

provide important reductions to the bias of the estimator of the autoregressive parameter.

Much of the appeal of the non-overlapping scheme stems from the fact that in most cases it

minimises the bias by using only two non-overlapping blocks. Under this sub-sampling scheme

however, bias reduction can come at a cost. At the bias–minimizing number of subgroups,

the estimator’s variance, and evidently the mean square error, may increase. On the other

hand, using overlapping blocks has the advantage that, subject to the appropriate choice of

the number of blocks, it is able to balance the trade-off between bias reduction and increase
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in variance.

In the presence of a unit root, the use of non-overlapping blocks is not as straightforward

as in the stationary case. As Chambers and Kyriacou (2010) first illustrate, (CK hereafter),

each block of length `, has an initial value which is explosive Op(`
1/2), the effect of which

does not vanish asymptotically. As a result, in this case a jackknife estimator based on

non-overlapping blocks will not work as intended.

In this paper we tackle this issue simply by constructing subgroups as overlapping blocks

of observations. The contribution of the paper is twofold. First, we show that if the block’s

length grows at the same rate as the sample size, the effect of initial conditions vanishes

asymptotically. This implies that for every block of observations, the same expansion can be

used to describe the bias of the associated least squares estimator of the correlation coefficient.

Second, these results motivate the use of the blocking technique for constructing jackknife

estimators in unit root settings. This jackknife estimator can be, in fact, constructed in the

exact same manner as in the stationary case. The moving-blocks jackknife estimator is able

to provide obvious reductions to the mean square error. The results presented in the paper

are based on a first order unit root autoregression but these can also apply to higher order

non-stationary autoregression.

The remainder of the paper is structured as follows. Section 2 introduces the main

framework and the moving blocks scheme, while Section 3 addresses the issue of the blocks’

initial conditions. Section 4 summarises the asymptotic results of the moving blocks’ subgroup

estimators and Section 5 presents an application of these findings to jackknife estimators.

Finally, Section 6 concludes. Proofs and Figures are left in the Appendix.
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Throughout the paper, the symbol ≡ denotes equivalence in distribution, →d denotes

convergence in distribution, →p denotes convergence in probability, ⇒ denotes weak conver-

gence of the relevant probability measures and W(r) denotes a Wiener process on C[0, 1],

the space of continuous real-valued functions on the unit interval and � denotes the end of

a proof.

2 Subsampling schemes and initial conditions

Consider that the data {y1, . . . , yn} are generated by the random walk process described in

(1) below.

yt = βyt−1 + εt; β = 1, εt ∼ iid (0, σ2), t = 1, . . . , n (1)

where y0 can be any (observed) Op(1) random variable.

The behaviour of the Ordinary Least Squares (OLS) estimator of the autoregressive param-

eter, denoted by β̂, has been extensively studied in the literature, with Hurwitz (1950) being

the first to investigate its small sample properties. As shown in the simulation results of

Evans and Savin (1981), the bias of the estimated least squares coefficient of β is evidently

large for small samples. In fact, the bias is proportional to the true value of β: it vanishes as

β tends towards zero and increases as the parameter reaches unity (in absolute terms). In the

presence of a unit root, the bias is especially severe. As shown from the entries in Table III

of Evans and Savin (1981); not only in small samples but also persists within larger samples.

As first shown by White (1958) and later extended by Phillips (1987), the limiting distribution
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of β̂, shown in (2), is non-standard, skewed to left and in finite sample situations, the estimator

appears to be negatively biased.

n(β̂ − 1)⇒
1
2 [W (1)2 − 1]∫ 1
0 W (r)2dr

(2)

In this setting, Phillips (2012) also provides the leading term of an expansion to describe the

behaviour of β, under Gaussian innovations:

n(β̂ − 1) ≡
1
2(W (1)2 − 1)− 1√

2n
ξ∫ 1

0 W (r)2dr
+Op(n

−1) (3)

where ξ ∼ N(0, 1) and is independent of W (r). If one takes expectations from each side of

(3), an appropriate expansion for the bias of β̂ is obtained, shown in (4) below.

E(β̂ − 1) =
µ

n
+O(n−2) (4)

where µ = E

(
1
2
(W (1)2−1)∫ 1
0 W (r)2dr

)
≈ −1.781

When dealing with dynamic settings such as in (1), sub-samples used from these realisa-

tions need to be constructed in a way so that they maintain the dependence structure of the

original process. The main approach of doing so is to group observations into either consec-

utive non-overlapping blocks or as adjacent blocks of overlapping observations. The former

method employs consecutive subgroups of non-overlapping observations while the latter uses

subgroups of overlapping observations (moving blocks). Carlstein (1986) first explores the

idea of employing adjacent non-overlapping sub-series to be used within resampling methods

like the jackknife and the bootstrap. Under this scheme, the original sample of size n, is
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grouped into a fixed number of blocks, m, each of the same length ` so that n = m × `.

By doing so, each observation is only used once, since each subgroup i contains observations

from (i − 1)` + 1 until i × `. The use of non-overlapping blocks has recently proved to be

particularly useful for constructing jackknife estimators used for bias reduction purposes.

Specifically, Phillips and Yu (2005), Chambers (2010), Chambers and Kyriacou (2010) and

Chen and Yu (2011) show that the bias of the OLS or ML estimators in various situations

of interest can be effectively reduced when only two non-overlapping groups are employed to

construct the corresponding jackknife estimators.

The moving-blocks jackknife and moving-blocks bootstrap were introduced by Kuensch (1989)

for variance estimation in stationary time-series. The moving blocks technique is obtained

by moving the length of observations, `, across a time series by one observation each time

until the last observation is reached. At block length `, where ` = n
m , M overlapping blocks

are used so that n = M + ` − 1. In contrast to the non-overlapping case, the moving-block

technique uses almost all observations more than once. The advantage of doing so, as we shall

explore more later on, is that it manages to reduce the variance of the jackknife estimators

something which its non-overlapping counterpart does not achieve.

Finally, to illustrate the two sub-sampling schemes described in this section, let τi and κi

denote the set of integers incorporated in each non-overlapping and overlapping block respec-

tively:

τi = {(i− 1)`+ 1, . . . , i`} i = 1, . . . , m

κi = {i, . . . , i+ `− 1} i = 1, . . . ,M
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2.1 Subgroup least squares estimation

To fix ideas, let β̃i and β̂i denote the least squares estimators of β which emerges from (1)

using the non-overlapping and overlapping schemes respectively for a given subgroup length

`, with ` = n
m :

`(β̃i − 1) =

∑i`
t=(i−1)`+1 yt−1εt∑i`
t=(i−1)`+1 y

2
t−1

i = 1, . . . ,m (5)

where m = n
`

`(β̂i − 1) =

∑i+`−1
t=i yt−1εt∑i+`−1
t=i y2t−1

i = 1, . . . ,M (6)

where M = n− `+ 1

As illustrated in Chambers and Kyriacou (2010), if the number of subgroups, m is kept fixed,

then if ` → ∞ as n → ∞ the limiting distribution of the non-overlapping subgroup least

squares estimator β̃i, is shown to be:

`(β̃i − 1)⇒ 1

m

1
2

{
W ( i

m)2 −W ( i−1m )2 − 1
m

}
∫ i

m
i−1
m

W 2
(7)

From (7) it becomes obvious that the limiting distribution of every subgroup i depends on

both the subgroup indicator i and the number of subgroups m. Clearly, each subgroup

estimator β̃i does not inherit the same asymptotic properties as the full-sample estimator.

Of course, this only holds for the second subgroup onwards, as one can easily see that when

6



i = 1 the limiting distribution of β̃1 coincides with that of the full sample estimator, shown in

(2). In fact, as it will be discussed in more detail in the next section, the driving force of this

issue is the sub-sample initial condition y(i−1)`. For each subgroup i ≥ 2, the initial condition

is Op(`
1/2) and its effect does not vanish asymptotically. Evidently, the initial condition for

the fist subgroup and full sample is assumed to be Op(1).

This result also follows when deriving an asymptotic expansion for `(β̃i−1), which is required

to verify the applicability of the jackknife in this setting. Indeed jackknife estimators are built

on the requirement that the same expansions can be used to describe the bias of both the

full sample estimator and each subgroup estimator. Clearly, in the case of a unit root, this

is not the case as it becomes obvious from (8) below.

`(β̃i − 1) ≡

∫ i
m
i−1
m

WdW

m
∫ i

m
i−1
m

W 2
− ηi

m3
√

2`
∫ i

m
i−1
m

W 2
+Op(`

−1) i = 1, . . . ,m (8)

where ηi ∼ iidN(0, 1) and independent of W (r)

By taking expectations from each side of (8), the 1/
√
` term disappears due to the presence

of the standard normal term ηi. Thus, an appropriate expression for the bias of β̃i under a

unit root is found by then multiplying each side of (8) with 1/` .

An expansion of the bias for each non-overlapping sub-group i is given in (9) below.

E(β̃i − 1) =
µi
`

+O(`−2) (9)
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i µi
1 -1.781430
2 -1.138209
3 -0.931929
4 -0.814330
5 -0.734818
6 -0.676084
7 -0.630246
8 -0.593099
9 -0.562154
10 -0.535827
11 -0.513053
12 -0.493085

Table 1: Expectations for each non-overlapping subgroup i (Entries taken from Table 1 in
Chambers and Kyriacou (2010))

where µi = E

∫ i
m
i−1
m

WdW

m
∫ i

m
i−1
m

W 2


The expression in (9) verifies that the leading term for the bias expansion varies for each β̃i.

Table 1 shows the values for the µi for each subgroup i = 1, . . . ,m. The entries in Table

1 confirm that these values vary substantially within different subgroups, while subgroup 1

shares the same leading term with the full sample estimator, that is µ = µ1. These results

indicate that the weights used to derive jackknife estimators using non-overlapping sub-groups

in stationary autoregressive situations cannot be applied in the unit root case. Evidently,

because of this issue, a jackknife estimator which utilises such subgroups will not eliminate

the leading term of the original estimator’s expansion as it intends to. In this paper we show

that when moving blocks are used, the initial conditions issue vanishes asymptotically and

the associated subgroup estimators in (6).
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3 Block initial conditions

The sub-samples initial (or pre-sample) value are equal to the accumulated sum of all previous

innovations and, as shown by CK, is not eliminated in the asymptotics in the non-overlapping

case.

It is convenient to re-write the data generation process in (1) in terms of the initial value y0

and the sum of innovations
∑n

j=1 εj :

yt = y0 +
n∑

j=1

εj

The associated data generation processes for each non-overlapping and moving block i are

given by (10) and (11) respectively:

yt = y(i−1)` +
t∑

j=(i−1)`+1

εj ∀ t {(i− 1)`+ 1, . . . , i`} (10)

yt = yi−1 +
t∑

j=i

εj ∀ t {i, . . . , i+ `− 1} (11)

For each block i, the initial (or pre-sample) values are found at t = (i− 1)` and t = i− 1 for

the non-overlapping and overlapping scheme respectively:

y(i−1)` = y0 +

(i−1)`∑
j=1

εj (12)

yi−1 = y0 +
i−1∑
j=1

εj (13)

As indicated by both (12) and (13), the blocks’ initial values, with the mere exception of
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the first subgroup, are not fixed but are of the same order as the partial sum of all previous

blocks’ innovation terms, which, in turn are Op(`
−1/2).

4 Moving Blocks subgroup estimators: Asymptotic results

This section collectively presents the results for the asymptotic behaviour of the subgroup

estimators based on the moving blocks scheme. Indeed, we show that the issue of initial

conditions outlined in the previous section vanishes asymptotically as the subgroup length

` grows at the same rate with the sample size n. This assumption is not restrictive as this

is generally used within this subsampling technique, see for example Politis, Romano and

Wolf (1997). In fact, in dynamic models such as the one examined here, the blocks’ length

needs to be large enough to capture the dependence of the original process. The issue of the

optimal block length is explored in more detail in the next section within an application of

moving blocks in a jackknife estimator.

Lemma 1 and Theorem 1 show that the moving blocks estimators inherit the same distribution

as their full sample counterpart, something that does not occur in the non-overlapping case.

LEMMA 1. Let y1, . . . , yn be generated by the random walk in (1), with y0 being any Op(1)

random variable. If M is kept fixed, then if `→∞ as n→∞, :

(a) `−3/2
i+`−1∑
t=i

yt−1 ⇒ σ

∫ 1

0
W (r)dr (14)

(b) `−2
i+`−1∑
t=i

y2t−1 ⇒ σ2
∫ 1

0
W (r)2dr (15)

10



(c) `−1
i+`−1∑
t=i

yt−1 ⇒
σ2

2
[W (1)2 − 1] (16)

THEOREM 1: Let y1, . . . , yn be generated by the random walk process in (1) and y0 being any

Op(1) random variable. If M is kept fixed and `→∞ as n→∞, then for every j = 1, . . . ,M

it follows that:

`(β̂j − 1)⇒
1
2 [W (1)2 − 1]∫ 1
0 W (r)2dr

(17)

THEOREM 2: Let y1, . . . , yn be generated by the random walk process in (1) and that the

initial condition is set at zero, y0 = 0 and, in addition, that the error term εt is iid N(0, σ2).

Then, if M is kept fixed, while `→∞ as n→∞:

`(β̂i − 1) ≡
1
2(W (1)2 − 1)− 1√

2l
ξi∫ 1

0 W (r)2dr
+Op(`

−1)

where W (r) is a standard Wiener process and for every sub-sample i, ξi ∼ N(0, 1) and it is

independent of W (r).

The expression derived in Theorem 2 is identical to the associated expansion for the full

sample estimator, shown in (3). The expression derived in Theorem 2 provides the leading

term of the asymptotic expansion of the distribution of `(β̂i − 1). In the same line as in

the full-sample case, if one takes expectations from both sides from the expression shown
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from Theorem 2 , the same expression can be used to describe each moving-block subgroup

estimator’s bias:

E(β̂i − 1) =
µ

`
+O(`−2) i = 1, . . . ,M (18)

This result is, in fact, of substantial importance when trying to derive a jackknife estimator

in the unit root case. Equation (18) indicates that since the same expansion can be used to

describe both the full sample and the sub-sample estimators. Hence, the jackknife estimator

derived in Chambers (2010) for stationary autoregressive models can be employed in unit

root situations. In fact, as we shall see in the next section, this moving blocks jackknife

estimators not only can be invariant to initial conditions asymptotically, but can outperform

the non-overlapping one and reduce the mean square error.

5 An application to jackknife estimators

An appropriate jackknife estimator is defined as a weighted, linear combination between the

full sample estimator and a number of subgroup estimators. In the case of the first order

autoregression studied here, this is defined as in (19) below.

β̂J = γβ̂ + δ
1

M

m,M∑
i=1

β̂i (19)

Where γ and δ correspond to the weights which depend on the sub-sampling scheme used to

describe the subgroup estimators. As explained in detail in Chambers (2010), these weights

are found to be γ = m
m−1 and δ = − 1

m−1 for the non-overlapping scheme, and as γ = n
M−1
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and δ = `
M−1 for the moving blocks one.

These weights are based upon the requirement that the expressions used to describe the

full sample and sub-sample estimators’ bias are the same. Clearly, as (9) suggests, this

requirement is not met in the case when non-overlapping subgroups in the unit root case.

This, in turn, implies that the usual weights will not manage to fully eliminate the leading

term of the bias in the unit root case.

One way of overcoming this issue is to simply employ moving blocks when deriving the

jackknife estimator. As suggested by Theorem 1, each moving block subgroup estimator

inherits the same asymptotic distribution as its full sample counterpart. In addition, Theorem

2 proves the validity of an asymptotic expansion for each moving blocks estimator. This

expansion is shown to be identical with the one derived by Phillips (1987) for the full–sample

estimator β̂. These findings motivate the use of the jackknife estimator in the presence of a

unit root. The jackknife estimator under (1) can employ the same weights the ones in the

stationary case and can effectively eliminate the leading term of the bias expansion. This

estimator, β̂J,MB is defined in (20) below.

β̂J,MB =
n

M − 1
β̂ − `

M − 1

1

M

M∑
i=1

β̂i (20)

where M denotes the number of moving blocks, and β̂i is defined in (6).

THEOREM 3. Let β̂ and β̂i denote the full-sample and moving blocks sub-sample estima-

13



tors of β which emerges from (1). Then, the moving-blocks jackknife estimator β̂J,MB de-

fined in (20) is biased to the to the second order O(T−2), where M is an integer satisfying

2 ≤M ≤ n− 1.

Table 2 summarises the bias and mean square error (MSE) of the non-overlapping and mov-

ing blocks jackknife estimators which emerge from (1). These simulations reveal that both

estimators roughly have the same performance in terms of bias reduction. Most importantly,

the entries in Table 2 indicate that the moving blocks jackknife provides clear reductions to

the MSE of the original estimator at each sample size examined. On the other hand, for each

case the non-overlapping jackknife’s bias reduction comes at a massive increase to the MSE.

In addition, the entries of Table 2 were set at fixed sub-group lengths for the two estimators.

This may have worked at the benefit of the non-overlapping case as this utilised smaller

subgroup lengths than the optimal ones for the moving blocks one. The optimal block size

therefore requires further investigation. The figures in the appendix graph the moving block

jackknife’s bias for all possible choices of M , at a given sample size n. Two features become

obvious from these graphs: (1) The bias minimising M is found to be relatively small and

(2) the optimal M depends on the sample size.
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n m M ` bJ
bOLS

bJ,MB

bOLS

MSEJ
MSEOLS

MSEJ,MB

MSEOLS

24 2 13 12 0.58 0.60 2.09 1.16
3 17 8 0.60 0.65 1.43 0.94
4 19 6 0.70 0.71 1.24 0.90
8 22 3 0.84 0.84 1.44 0.92

50 2 26 25 0.35 0.50 1.96 1.11
5 41 10 0.64 0.65 1.11 0.83
10 46 5 0.76 0.77 1.13 0.85

100 2 51 50 0.48 0.50 2.00 1.08
4 76 25 0.55 0.57 1.23 0.85
5 81 20 0.59 0.60 1.08 0.77
10 91 10 0.70 0.70 0.92 0.85

200 2 101 100 0.40 0.49 2.33 1.33
4 151 50 0.53 0.55 2.33 1.00
5 161 40 0.55 0.58 1.33 1.00
10 181 20 0.64 0.66 1.00 1.00

400 2 201 200 0.46 0.48 2.35 1.07
4 301 100 0.53 0.55 1.18 0.79
5 321 80 0.56 0.57 1.08 0.78
10 361 40 0.63 0.65 0.85 0.78

Table 2: Bias and Mean square error results of the non-overlapping and moving-blocks jack-
knife at fixed subgroup length ` (104 repl.)
Note: The subscripts OLS, J and J,MB denote the full-sample, non-overlapping jackknife
and moving blocks jackknife estimators respectively.

6 Concluding Remarks

In this paper, we show that in the presence of a unit root, subgroup estimators of the

autoregressive parameter based on the moving blocks scheme, inherit the same asymptotic

distribution as their full-sample counterparts. When subgroups which emerge from a process

as in (1) are formed either as non-overlapping or moving blocks of observations, their initial

conditions are Op(`
−1/2). Unlike the non-overlapping case, in the moving blocks case studied

here, the effect of these initial conditions vanishes asymptotically. This result motivates
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the use of moving blocks in deriving a jackknife estimator in the presence of a unit root.

This estimator uses the same weights as in the one derived for stationary autoregression

in Chambers (2010). Simulation findings summarised in Table 2 suggest that the proposed

moving blocks jackknife estimator is able to provide obvious reductions to the MSE, unlike its

non-overlapping counterpart. The performance of the estimator is dependent upon the choice

of subgroup length, something that is currently under investigation by the author. Finally,

these results easily apply to higher order autoregressions and continuous time models.
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8 Appendix

Proof of LEMMA 1. Define the partial sum S[nr] =
∑[nr]

j=1 εj . From the FCLT it follows that

as n→∞:

n−1/2S[nr] ⇒ σW (r)
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The random walk process shown in (1) can be rewritten as:

yt = y0 + St

St−1 = St−1

∫ t/n

(t−1)/n
dr = n

∫ t/n

(t−1)/n
S[nr]dr (21)

(a) From (21), it follows that for the moving blocks case we have that:

i+`−1∑
t=i

St−1 = n
i+`−1∑
t=i

∫ t/n

(t−1)/n
S[nr]dr = n

∫ i+`−1
n

i−1
n

S[nr]dr

In view of the fact that the block’s length ` and the sample size n grow at the same rate as

n→∞, it holds that in the limits of the integral:

lim
n→∞

i− 1

n
= 0 and lim

n→∞

i+ `− 1

n
= 1

so that

i+`−1∑
t=i

St−1 = n

∫ 1

0
S[nr]dr

which, in turn, verifies that:

i+`−1∑
t=i

St−1 ⇒ σ

∫ 1

0
W (r)dr (22)
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In the same lines, it follows that:

i+`−1∑
t=i

S2
t−1 = n

∫ 1

0
S2
[nr]dr (23)

Finally, from (22) It follows that:

`−3/2
i+`−1∑
t=i

yt−1 = `−1/2y0 + `−3/2
i+`−1∑
t=i

St−1 ⇒ σ

∫ 1

0
W (r)dr

(b) Since n
` → 1 as n→∞ and by taking into account (23) we have that:

`−2
i+`−1∑
t=1

S2
t−1 =

n

`

∫ 1

0

(
n−1/2S[nr]

)2
⇒ σ2

∫ 1

0
W (r)2dr

Since y2t−1 = y20 + 2y0St−1 + S2
t−1 it follows that for the denominator of (6) we have that:

l−2
i+`−1∑
t=i

y2t−1 = `−2y20 + 2`−1/2y0`
−3/2

i+`−1∑
t=i

St−1 + `−2
i+`−1∑
t=i

S−2t−1 ⇒ σ2
∫ 1

0
W (r)2dr

(c) The numerator of (6) can be expressed in the following way:

i+`−1∑
t=1

yt−1εt =
1

2

(
y2i+`−1 − y2i−1 −

i+`−1∑
t=1

ε2t

)
(24)

From the LLN we have that 1
`

∑i+`−1
t=i ε2t →p σ

2

yi+`−1 = y0 + Si+`−1 = op(1) + S[n i+`−1
n

]
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yi−1 = y0 + Si−1 = op(1) + S[n i−1
n

]

`−1/2yi−1 =d op(1) + S[n i−1
n

] ⇒ σW (0)

`−1/2yi+`−1 =d op(1) + S[n i+`−1
n

] ⇒ σW (1)

The above imply that the first two terms of (24) have the following behaviour asymptotically:

`−1yi−1 ⇒ σ2W (0)2 (25)

`−1yi+`−1 ⇒ σ2W (1)2 (26)

Thus, the numerator of (6) becomes:

`−1
i+`−1∑
t=i

yt−1εt ⇒
σ2

2

[
W (1)2 − 1

]

�

Proof of THEOREM 1. This result follows directly from parts (b) and (c) of Lemma 1, as

these correspond to the numerator and denominator of the subgroup normalised bias measure,

for every i = 1, . . . ,M :

l(β̂i − 1) =
`−1

∑i+`−1
t=i yt−1εt

`2
∑i+`−1

t=i y2t−1

�
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Proof of THEOREM 2: The proof for this theorem follows from section 7.1 in Phillips (1987),

by using the following representation:

Xn(r) ≡W (r)

{
1− 1

2

nr − [nr]

nr

}
+Op(n

−2)

We need to derive an asymptotic expansion for l(β̂i − 1):

l(β̂i − 1) =

∑i+`−1
t=i yt−1εt∑i+`−1
t=i y2t−1

(27)

For the numerator of (27) can be re-written as:

1

`

i+`−1∑
t=i

yt−εt =
1

2

{
1

`
y2i+`−1 −

1

`
y2i−1 −

1

`

i+`−1∑
t=i

(ε2t − σ2)− σ2
}

It is straightforward that l−1/2yi+`−1 = Xn(1) and `−1/2yi−1 = Xn(0) from which it follows

that:

1

`
y2i+`−1 = Xn(1)2 ≡ σ2W (1)2 +Op(`

−1)

1

`
y2i−1 = Xn(0)2 ≡ σ2W (0)2 +Op(`

−1)

In addition, we know that n−1/2(
∑n

t=1 (ε2t − σ2)→d

√
2σ2ξ, where ξ ∼ N(0, 1). Since in the

current framework the block’s length ` grows at the same rate with n, as n →∞, it follows

that:

`−1/2
i+`−1∑
t=i

(ε2t − σ2)→d

√
2σ2ξi

21



This implies that:

1

2`

i+`−1∑
t=i

(ε2t − σ2)→d
1√
2`
σ2ξi

Therefore, for the numerator of (27) it follows that:

1

`

i+`−1∑
t=i

yt−1εt ≡
σ2

2

{
Xn(1)2 − 1

}
− 1√

2l
σ2ξi +Op(`

−1) (28)

1

`

i+`−1∑
t=i

yt−1εt ≡
σ2

2

{
W (1)2 − 1

}
− 1√

2`
σ2ξi +Op(`

−1) (29)

For the denominator of (27) we have that:

1

`2

i+`−1∑
t=i

y2t−1 =
1

`2

i+`−1∑
t=i

S2
t−1

1

`2

i+`−1∑
t=i

y2t−1 ≡ σ2
∫ 1

0
W (r)2dr +Op(`

−1)

�

Proof of THEOREM 3. By taking expectations from each side of (20), we get that:

E(β̂J,MB) =
n

M − 1
E(β̂)− `

M − 1
E(β̂i) (30)

By substituting (4) and (18) into the expression above, we get:

E(β̂J,MB) =
n

M − 1
(β +

µ

n
+O(n−2))− `

M − 1
(β +

µ

`
+O(`−2))
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⇒ E(β̂J,MB) = β +O(n−2)

�

8.1 Figures
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 Moving Blocks Jackknife Bias and Subgroups (M) (T=24) 

Figure 1: Moving-Blocks Jackknife bias and number of subgroups (M) at n = 24. The
horizontal line denotes the corresponding full-sample least squares bias. (104 replications
used)
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 Moving Blocks Jackknife Bias and Subgroups (M) (T=50) 

Figure 2: Moving-Blocks Jackknife bias and number of subgroups (M) at n = 50. The
horizontal line denotes the corresponding full-sample least squares bias. (104 replications)
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 Moving Blocks Jackknife Bias and Subgroups (M) (T=100) 

Figure 3: Moving-Blocks Jackknife bias and number of subgroups (M) at n = 100. The
horizontal line denotes the corresponding full-sample least squares bias. (104 replications)
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 Moving Blocks Jackknife Bias and Subgroups (M) (T=200) 

Figure 4: Moving-Blocks Jackknife bias and number of subgroups (M) at n = 200. The
horizontal line denotes the corresponding full-sample least squares bias (104 replications)
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Figure 5: Moving-Blocks Jackknife bias and number of subgroups (M) at n = 400. The
horizontal line denotes the corresponding full-sample least squares bias. (104 replications)
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