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Motivation

Detection of gravitational waves from BH (or NS) mergers is an
opportunity to perform precision tests of GR in the strong field
regime.

To do this we need theoretical predictions for how a deviation from
GR would affect the gravitational waves emitted in a merger. Focus
on BH/BH mergers so looking for deviations from GR in vacuum.

Two problems:

1. Could try to predict using a theory of modified gravity but
which theory should we use?

2. To make predictions we need to perform numerical
simulations. This requires that the theory admits a well-posed
initial value problem, i.e., given suitable initial data there
should exist a unique (up to diffeos) solution of the equations
of motion that depends continuously on the initial data.



Effective field theory

Provides a way of studying (small) deviations from GR that is
agnostic about whatever “UV physics” causes this deviation.

Starting from Einstein-Hilbert action, add all possible higher
derivative terms consistent with diffeomorphism invariance

S =

∫
ddx
√−g

(
−2Λ + R + αR2 + βRabR

ab + γLGB + . . .
)

where α, β, γ ∝ L2 for some length scale L and
LGB ∝ RabcdR

abcd − 4RabR
ab + R2

Expansion in increasing numbers of derivatives: makes sense
provided deviation from GR is small.

To be observable, need L ∼ km. Seems very unlikely from
perspective of fundamental theory! Instead view this just as a
framework for parameterising strong field tests of GR, analogous to
the PPN formalism.



Field redefinitions

In EFT one can perform field redefinitions

gab → gab + aRab + bRgab + . . .

These can be used to eliminate higher derivative terms in the
action that vanish when the equations of motion are satisfied.

This gives

S =

∫
ddx
√−g (−2Λ + R + γLGB + . . .)

d = 4: LGB topological so need to go to next order in derivatives.

d > 4: LGB gives leading EFT corrections to GR and has second
order eqs of motion - it is a Lovelock theory. Well-posed?



6 derivatives

Including 6 derivative terms, after field redefinitions one obtains
(schematic) Endlich et al 2017

S =

∫
d4x
√−g

(
−2Λ + R + αR3 + . . .

)
New problem: (truncated) equations of motion are higher order in
derivatives. Very unlikely to admit a well-posed initial value
problem so can’t study BH mergers numerically...

(Can study equations perturbatively in α but this can suffer from
problems with secular effects gradually accumulating, leading to
breakdown of perturbation theory when EFT should remain valid.)



Scalar-tensor theory

The situation improves if we add a scalar field. After field
redefinitions, assuming a parity symmetry, action can be written

S =

∫
d4x
√−g

16πG

(
−V (φ) + R + X + α(φ)X 2 + β(φ)LGB + . . .

)
where X = −(1/2)gµν∂µφ∂νφ.

Attractive features of this theory:

I Leading EFT corrections now start at 4 derivatives.

I LGB can source scalar field: guaranteed deviation from GR for
vacuum BHs

I If we neglect terms with more than 4 derivatives then
equations of motion are second order - can hope for well
posedness!

This theory belongs to Horndeski family of theories (scalar-tensor
theories with second order eqs of motion)



Weak coupling

S =

∫
d4x
√−g

16πG

(
−V (φ) + R + X + α(φ)X 2 + β(φ)LGB + . . .

)
where X = −(1/2)gµν∂µφ∂νφ.

Expect α, β ∼ L2 for some length L (km scale if observable).

Neglect of terms with 6 or more derivatives is justified only if
curvature and scalar field derivatives small in units of L−1. This
implies 4-derivative terms are small compared to 2-derivative
terms. We call this the weakly coupled regime. Compatible with
strong-field BH dynamics provided BH large compared to L.

Only expect well-posedness at weak coupling e.g. in cosmological
solutions, equations for tensor modes can change character from
hyperbolic to elliptic at strong coupling. Papallo & HSR 2017 Similarly in
spherical collapse solutions. Ripley & Pretorius 2019



Well-posedness

The usual Einstein equation does not admit a well-posed initial
value problem because of gauge freedom.

Establishing well-posedness requires finding a “good gauge” and a
good way of performing gauge-fixing. (Essential for numerics!)

Simplest choice for vacuum GR is harmonic gauge but this does
not work for our theory, even at weak coupling Papallo & HSR 2017, Papallo 2017

Our main result:
By introducing a new family of “modified harmonic” gauges for
GR, and a new way of gauge-fixing, we obtain a new formulation
of the equations of motion of these theories (and general
Horndeski or Lovelock theories) that admits a well-posed initial
value problem at weak coupling. Kovacs & HSR 2020

This formulation has been used successfully in numerical
simulations of BH mergers East & Ripley 2020



Strong hyperbolicity

A sufficient condition for a well-posed initial value problem is that
the eq is strongly hyperbolic.

1st order linear constant coefficients system ∂tu = M i∂iu + Nu

u(t, x) ∝
∫

dξe iξjx
j
e(iM

iξi+N)t ũ(0, ξ)

For convergence of integral demand ||e iM iξi t || ≤ f (t) as ξ →∞.
This implies that M iξi must be diagonalizable with real
eigenvalues (which fix phase velocities of modes). This is the
definition of strong hyperbolicity (even when coefficients are not
constant). (Weakly hyperbolic: real evals but not diagonalisable.)

Second order systems: reduce to first order and apply this
definition. Nonlinear eqs: apply definition to linearisation around
general background (weakly coupled in our case).



Harmonic gauge in GR

The Einstein equation is not hyperbolic because of the
diffeomorphism gauge symmetry. To make it hyperbolic we must
fix the gauge.

Define
Hµ = gνρ∇ν∇ρx

µ = gνρΓµ
νρ

The equation Hµ = 0 defines harmonic gauge. This gauge
condition can always be imposed. Now define

Eµν ≡ Rµν − ∂(µHν) = −1

2
gρσ∂ρ∂σgµν + . . .

where ellipsis depends on g and ∂g but not ∂2g . The harmonic
gauge Einstein equation is Eµν = 0. This is strongly hyperbolic.



Harmonic gauge for scalar-tensor theory

In scalar tensor theory we can consider a generalised harmonic
gauge

0 = Hµ ≡ gνρ∇ν∇ρx
µ − Jµ(g , φ, ∂φ)

For our scalar-tensor EFT (or a generic Horndeski theory) there is
no choice for Jµ for which the gauge-fixed equations of motion are
strongly hyperbolic in a generic weakly coupled background Papallo &

HSR 2017, Papallo 2017

The problem can be seen at the linearised level and arises from the
existence of unphysical solutions of the gauge-fixed equation.
There are two types of unphysical mode:

I Pure gauge modes hµν ∝ ∇(µξν) where �ξµ = 0

I Gauge condition violating modes: solutions with Hµ 6= 0



A conventional (2-derivative) Einstein-scalar theory is strongly
harmonic in harmonic gauge, so M iξi is diagonalizable with real
evals. Evals are degenerate (phase velocities of all modes are 1).

When we include the 4-derivative terms, at weak coupling we can
treat these as a small deformation of M iξi . But a generic
deformation of a matrix with degenerate evals is not diagonalizable!

The deformation causes non-trivial Jordan blocks to form. These
are associated with subspaces spanned by the eigenvectors
associated with pure-gauge and gauge-condition violating modes of
the 2-derivative theory. Papallo & HSR 2017, Papallo 2017

The new idea: deform the gauge-fixing procedure to separates the
speeds of the pure gauge and gauge condition violating modes in
the 2-derivative theory. When we deform to a weakly coupled
4-derivative theory, M iξi should remain diagonalisable.



GR in modified harmonic gauge

Introduce two auxiliary (inverse) metrics g̃µν , ĝµν .
Modified gauge condition:

0 = Hµ ≡ g̃νρ∇ν∇ρx
µ = g̃νρΓµ

νρ

Modified gauge-fixed equation:

0 = Gµν + P̂α
βµν∂βH

α P̂α
βµν ≡ δ(µα ĝν)β − 1

2
δβαĝ

µν

Implies �̂Hµ + . . . = 0

In linearised theory, pure gauge solutions propagate along null cone
of g̃µν and gauge-condition violating solutions propagate along null
cone of ĝµν . Physical solutions propagate along null cone of gµν .



The three metrics

We choose the unphysical metrics so that their null cones do not
intersect each other or the null cone of the physical metric.

where
P̂↵

�µ⌫ = �(µ↵ ĝ⌫)� � 1

2
��↵ĝµ⌫ (10)

Our modified harmonic gauge equation of motion is

Eµ⌫
mhg = 0 (11)

We have three inverse metrics gµ⌫ , g̃µ⌫ and ĝµ⌫ . The inverse of gµ⌫ is denoted, as usual, by gµ⌫ and
index raising and lowering is always performed with g. When we need to refer to the inverse of ĝµ⌫

(say) we will write (ĝ�1)µ⌫ . The usual harmonic gauge formulation of GR is obtained by choosing
ĝµ⌫ = g̃µ⌫ = gµ⌫ .

We will assume that ĝµ⌫ is chosen so that the causal cone of gµ⌫ (in the cotangent space) lies
strictly inside the causal cone of ĝµ⌫ , so that any covector that is causal w.r.t. gµ⌫ is timelike w.r.t.
ĝµ⌫ . See Fig. 1a. This implies that the causal cone of (ĝ�1)µ⌫ (in the tangent space) lies strictly
inside the causal cone of gµ⌫ (Fig. 1b) so any smooth curve that is causal w.r.t. (ĝ�1)µ⌫ is timelike
w.r.t. gµ⌫ . This implies that any point in the domain of dependence D(⌃) of a partial Cauchy
surface ⌃ w.r.t. gµ⌫ is also in the domain of dependence D̂(⌃) of ⌃ w.r.t. (ĝ�1)µ⌫ . In other words,
D(⌃) ⇢ D̂(⌃).

We will also assume that g̃µ⌫ is chosen so that the causal cones of the three inverse metrics form
a nested set as in Fig. 1a, with the null cones of ĝµ⌫ and g̃µ⌫ lying outside the null cone of gµ⌫ .
This implies that a surface ⌃ that is spacelike w.r.t. gµ⌫ is also spacelike w.r.t. ĝµ⌫ and g̃µ⌫ .

In Fig 1 we have drawn the null cone of g̃µ⌫ inside that of ĝµ⌫ but we could also choose it to lie
outside. What is important is that these null cones do not intersect and that they both lie outside
that of gµ⌫ .4

gµ⌫ g̃µ⌫ ĝµ⌫

(a)

gµ⌫(g̃�1)µ⌫(ĝ�1)µ⌫

(b)

Figure 1: (a) Cotangent space at a point, showing the null cones of gµ⌫ , g̃µ⌫ and ĝµ⌫ . (b) Tangent
space at a point, showing the null cones of gµ⌫ , (g̃�1)µ⌫ and (ĝ�1)µ⌫ .

4 In section 5 we will comment on how the latter assumption might be relaxed in numerical relativity applications.
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With this choice, can prove that GR is strongly hyperbolic in our
modified harmonic gauge formulation.

Straightforward to include a minimally coupled (2-derivative) scalar
field.



Well-posedness of scalar-tensor EFT

In the 2-derivative theory, M iξi is diagonalisable with real evals.

The evals associated with pure gauge and gauge-condition
violating modes are distinct from each other and from the evals
associated with physical modes.

Using this, can show that M iξi remains diagonalisable with real
evals when we deform the theory to include 4-derivative terms,
assuming weak coupling (i.e. a small deformation).

Hence, at weak coupling, our formulation gives strongly hyperbolic
equations so the initial value problem is well posed.



Choosing the auxiliary metrics

where
P̂↵

�µ⌫ = �(µ↵ ĝ⌫)� � 1
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One possibility:

g̃µν = gµν − anµnν ĝµν = gµν − bnµnν

where nµ is unit normal to constant time slices and 0 < a < b.



Numerics

The first numerical simulations using our formulation have been
performed East & Ripley 2020:

I Shift-symmetric theory Einstein-scalar-GB

S =

∫
d4x
√−g

16πG

(
R − 1

2
(∂φ)2 + λφLGB

)
I Dynamical scalarisation of rotating BHs

I Head-on collisions of BHs

I Inspiral and merger of BHs

I Typical values λM−2 ∼ 0.01 to 0.2



Generalisations

Our modified harmonic gauge formulation gives well-posed
equations of motion for any weakly coupled Horndeski theory.
Possible cosmological applications?

It also works for weakly coupled Lovelock theories such as
Einstein-Gauss-Bonnet:

S =

∫
ddx
√−g (R + αLGB)

Opens possibility of studying effect of higher curvature corrections
on dynamical processes in d > 4 gravity e.g. black string
instability?



Causality in gravitational theories (HSR 2021)

For the modified harmonic gauge Einstein (-scalar field) equation,
the physical characteristics ξµ satisfy gµνξµξν = 0. In a weakly
coupled Lovelock/Horndeski theory, these characteristics lie on a
cone that is close to the null cone of gµν . Can we understand the
properties of this characteristic cone in an arbitrary background?

Can discuss physical characteristics using an approach independent
of any gauge-fixing procedure. (Christodoulou 2008).

Consider a general theory of gravity coupled to matter fields φI ,
with second order equations of motion, arising from a
diffeomorphism invariant action

S =
1

16πG

∫
ddx
√−gL(g , φI )



Fix some (weakly coupled) background solution and consider
equations linearised around it:

Pµνρσαβ
gg ∂α∂βδgρσ + PµνIαβ

gm ∂α∂βδφI + . . . = 0

P Iµναβ
mg ∂α∂βδgµν + P IJαβ

mm ∂α∂βδφJ + . . . = 0

Tensors Pgg etc depend on background fields and their first and
second derivatives. The principal symbol is

P(ξ) =

(
Pµνρσαβ
gg ξαξβ PµνIαβ

gm ξαξβ
P Iµναβ
mg ξαξβ P IJαβ

mm ξαξβ

)

This acts on “polarisation vectors” of form (tµν , tI ). But
diffeomorphism symmetry implies that it can be regarded as acting
on vectors T ≡ ([tµν ], tI ) where [tµν ] denotes an equivalence class
w.r.t. tµν ∼ tµν + ξ(µXν). Such T corresponds to a “physical
polarisation”. Say that ξµ is a physical characteristic iff there exists
T 6= 0 s.t. P(ξ)T = 0.



Action principle and diffeomorphism invariance impose symmetries
on principal symbol.

For d = 4 these imply that Pµνρσαβ
gg can be written in terms of an

“effective metric” Cµν . For a weakly coupled theory this is close to
gµν .

Also PµνIαβ
gm = P Iµναβ

mg and these can be written in terms of an
object C Iµνρσ with Riemann symmetries.

Can apply this formalism to Horndeski e.g. scalar-tensor EFT:

L = −V (φ) + R + X + α(φ)X 2 + β(φ)LGB

Cµν = gµν − β′(φ)∇µ∇νφ− β′′(φ)∇µφ∇νφ

Cµνρσ = −β′(φ)R̃µνρσ



Can show that ξµ is characteristic iff p(ξ) = 0 where the
characteristic polynomial is

p(ξ) = (C−1)µνξµξνQ(ξ)

where Q is a homogeneous quartic polynomial with coefficients
depending on the background fields and their first and second
derivatives. p is a homogeneous polynomial of degree 6 which,
remarkably, factorises into a product of quadratic and quartic
polynomials. (Similar to linear elasticity theory for anisotropic solid
with hexagonal symmetry e.g. Zinc.)

Note that degree 6 is the minimum degree for a system with 3
physical degrees of freedom.

In 2-derivative Einstein-scalar theory, p(ξ) = −(gµνξµξν)3.
Factorisation also happens for other special theories or for
symmetrical backgrounds e.g. FLRW.

Can show that the characteristic cone p(ξ) = 0 has 3 sheets at
weak coupling. It is the union of quartic and quadratic cones.



Can visualise characteristic cone by taking a cross-section to define
a “slowness surface” in R3. Quadratic cone always lies between
sheets of quartic cone.

Left: slowness surface at generic point. Right: slowness surface at
non-generic point.

Region inside quartic surface defines the G̊arding cone in the
cotangent space. The dual cone in the tangent space should be
used to define notions of causality in these theories.



Summary

Effective field theory is an attractive formalism for parameterising
possible strong field deviations from GR.

For the case of scalar-tensor theory, the leading EFT corrections
have 4 derivatives.

For numerical simulations of BH mergers it is essential that a
formulation of these equations is found that is strongly hyperbolic
and hence admits a well-posed initial value problem.

We have found such a formulation, based on modified harmonic
gauge. It is well-posed at weak coupling.

The first simulations of BH mergers have been performed using
this formulation.



I have described a formalism for determining the physical
characteristics of any gravitational theory with second order
equations of motion.

For scalar-tensor EFT (or any Horndeski theory), in any
background, the characteristic polynomial of degree 6 always
factorises into a product of a quadratic and a quartic polynomial.

Future work: extend our results to other EFTs e.g.
Einstein-Maxwell EFT.


