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Hamilton’s Principle

q; < 5
Hamilton’s Principle states that the physical trajectories of the dynamical degrees of

freedom are the solutions which extremize the action integral.
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The Action: S|q| — / L(q.q.t)dt
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Assuming appropriate boundary conditions for the variation,
this implies the Euler-Lagrange equations of motion.
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The Action As a Generating Function

Let’s assume that q(t) extremizes the Action between
some endpoints o and g: and satisfies the E-L equation.

Similarly,

The extremal action is a (Type 1) generating function for the canonical transformation
that implements time evolution of the degrees of freedom (Hamilton-Jdacobi theory).



Piecewise Extremal Trajectories
& A “Perfect” Integrator

Let’s consider a sequence of points {qn} that represent the positions at time {t.,}.
We can connect these with a set of curves with {yn(t)} that are piecewise connected
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Piecewise Extremal Trajectories
& A “Perfect” Integrator

Let'spansisieeadieguanaquefipointsdaikéas heprasendsheppradignasd dme {tn).
We can connect these with a set of curves wvi g,t } that are piecewise connected
The total action is then,
n

Since each subpath is extregal, the’w}al—acﬁqgii extarized iff the derivative with

R‘each point gn+s-is-zero:
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We can treat this as a mapping between qn, pn -> Qn+1,

o oT ot
) 708 (Gn, Gni1)] "
/q/n—\"\

0S|v g
pn—l—l — [ ’ dri+ Pn+1 from Qgn+1, gn

n+1 defined by

Solve for gn+1
in terms of qn, pPn
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This defines a “perfect” but somewhat pmﬁtless integrator...



Variational Integrators

Consider approximations to the extremal action between each point in the sequence
{an}. This discretized action can be constructed with 2 ingredients:

1.  An approximation to the trajectory between the points
~ ~d
Yol dn+1](t) >~ Valan, gna](0)
2.  An approximation to the action integral itself (hnumerical quadrature)

S[’Yn] = Sd [/Yg]

These choices define different variational integrators.
Extremizing the discretized action wrt each point gives the discrete E-L equations,

Vn 0Sa[va(an, Gn+1)] | 9Sa[Vp41(gni1, qni2)]
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= Pn+1 from gn+1, On
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These define mappings gn, pPn => 0n+1, Pn+1 that are accurate to the same order as the
discretized action. Symplectic with long term conservation properties.



Noether’s Theorem

Symmetries MConserved
of the Action Quantities
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1.  An approximation to the trajectory between the points
Tn [QTM Qn—l—l] (t) =~ /Yg [QTM Qn—l—l] (t)

2.  An approximation to the action integral itself (numerical quadrature)

S{Vn] =2 Sa ['Yg,]

These choices define different variational integrators.

Name | Trajectory Method | Quadrature Method | Order | Notes

Galerkin-Gauss Lobatto Polynomial GL Quadrature O(At?2TT3) non-perturbative

(GGL) through GL pts

Stormer-Verlet Linear Trapezoid Rule O(At3) non-perturbative

(2nd order GGL) through end pts

Wisdom-Holman Keplerian GL Quadrature O(eAt?™13) + O(e?2 At3) | perturbative

Gauss-Lobatto (WHGL) b/w end points

Kick-Drift-Kick Keplerian Trapezoid Rule O(eAt3) + O(e2 At3) perturbative

(2nd order WHGL) b/w end points

Wisdom-Holman Keplerian Adaptive/Numerical O(e2At3) perturbative

Farr (WHFarr) b/w end points Quadrature Effective adaptive
method w/ fixed
formal step size

Using this ansatz it is easy to construct variational integrators that are symplectic,
conserve Noether charges, and can include both position and velocity dependent forces.



Variational Integration

... can only be applied to conservative systems?




Can we build integrators for
nonconservative dynamics that work as
well as symplectic integrators?



How does a problem become non-conservative?

e All classical systems are micro-physically conservative

e Nonconservative effects can arise when only a subset of the

e

dynamical variables are considered

7

e Hierarchy of “accessible” and “inaccessible”

i‘ 7\
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degrees of freedom

e This hierarchy can be due to explicit choice, observational

constraint, or natural separation of scales




Accessible/Inaccessible Hierarchy
In Nonconservative Systems

Accessible Inaccessible

Macroscopic or collective Integrated out/coarse-grained
variables (e.g. thermodynamic) away (e.g. individual x,v)
Explicitly tracked Explicitly untracked/unknown
(e.g. particle position) (unobserved, unmeasurable)
“Stiff” d.o.f. “Sloppy” d.o.f.

e.g. thermal degrees of freedom

e.g. oscillator position in the damper

e Finding a way of “integrating out” degrees of freedom at the level of the
Action can give us nonconservative physics, but...
* Trying this with the regular action gives non-causal solutions...



Coupled harmonic oscillators

As a whole, the oscillators conserve energy but not individually
E = Eq(t) + Eo(1)

What if we could only measure q(t)?



What if we could only measure q(t)?

q(t) 1s an

(

\_

EOM for g

\
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What would its EOM be?




"Integrating out" or "eliminating" Q(t) yields

)\2 tr
mi + metq = XQV() + 7, [ 6 Galt - ()
Li

sinQ(t —t')
Q

Get(t —t') =O(t — t')

EOM for q(t) are:

- Causal

- Solutions determined by initial data alone

- Dynamics at time t depends on the past history of g



What if we integrated out Q(t) at the level of the action?

but...

)\2 tr
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G

EOM for g

\
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The EOM for q(t) derived from the effective action with Hamilton's
Principle is
N (Y Gt — t') + Gago(t — 1)

- 2 (h) /
= A t)+ — [ dt

q(t')

Gret(t — t') + Gagu(t — t')  sinQ|t — t']

2 (2

EOM for q(t) are:

- Acausal

- Solutions determined by initial and final data

- Dynamics at time t depends on the past history and future evolution of g

- Not correct...



A hint...

The problem arises because g(t)q(t') is symmetric in t and t' in the
two-oscillator example...

Can we "break" this symmetry somehow?

What if we use two different sets of variables?

tr tr
/ dt dt’ q(t)Ge(t, t')g(t) / dt dt’ g1(t) Gree(t, t') (1)
t; Li

It seems that varying with respect to g1(t) would give the correct
time-asymmetric force if we set g>=qg1 afterwards
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Hamilton's principle of stationary action lies at the foundation of theoretical physics and is applied in
many other disciplines from pure mathematics to economics. Despite its utility, Hamilton's principle has a
subtle pitfall that often goes unnoticed in physics: it is formulated as a boundary value problem in time but
is used to derive equations of motion that are solved with initial data. This subtlety can have undesirable
effects. I present a formulation of Hamilton's principle that is compatible with initial value problems.
Remarkably, this leads to a natural formulation for the Lagrangian and Hamiltonian dynamics of generic
nonconservative systems, thereby filling a long-standing gap in classical mechanics. Thus, dissipative
effects, for example, can be studied with new tools that may have applications in a variety of disciplines.
The new formalism is demonstrated by two examples of nonconservative systems: an object moving in a
fluid with viscous drag forces and a harmonic oscillator coupled to a dissipative environment.
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The principle of stationary nonconservative action
for classical mechanics and field theories

Chad R. Galley”
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125, USA

David Tsang'
Department of Physics, McGill University, Montreal, QC, H3A 278, Canada

Leo C. Stein'
Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA

We further develop a recently introduced variational principle of stationary action for problems
in nonconservative classical mechanics and extend it to classical field theories. The variational
calculus used is consistent with an initial value formulation of physical problems and allows for
time-irreversible processes, such as dissipation, to be included at the level of the action. In this
formalism, the equations of motion are generated by extremizing a nonconservative action S, which
is a functional of a doubled set of degrees of freedom. The corresponding nonconservative La-
grangian contains a “potential” K which generates nonconservative forces and interactions. Such a
nonconservative potential can arise in several ways, including from an open system interacting with
inaccessible degrees of freedom or from integrating out or coarse-graining a subset of variables in
closed systems. We generalize Noether’s theorem to show how Noether currents are modified and no
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The principle of stationary nonconservative action
for classical mechanics and field theories

t =1y

Initial Value
Problem

Boundary Value
Problem

e allows self-consistent “integrating out” of degrees of
freedom at the level of the action!

e Physical Limit: g1 = qp

e Nonconservative (non-Hamiltonian) effects come in through
nonconservative “potential” K, which couples the doubled
paths together

e related to “closed loop” (in-in) formalism

For MUCH more info: Galley, DT, & Stein (2014)
[arXiv:1412.3082]



Generalized

Symmetries Noether’s Theorem Evolution of
of the “conserved”
quantities

Conservative

, according to the
Action

nonconservative
action

Galley, DT & Stein (2014)



Nonconservative (“Slimplectic”) Variational Integrators
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ABSTRACT

Symplectic integrators are widely used for long-term integration of conservative astrophysical problems due to
their ability to preserve the constants of motion; however, they cannot in general be applied in the presence of
nonconservative interactions. In this Letter, we develop the “slimplectic” integrator, a new type of numerical
integrator that shares many of the benefits of traditional symplectic integrators yet is applicable to general
nonconservative systems. We utilize a fixed-time-step variational integrator formalism applied to the principle of
stationary nonconservative action developed in Galley et al. As a result, the generalized momenta and energy
(Noether current) evolutions are well-tracked. We discuss several example systems, including damped harmonic
oscillators, Poynting—Robertson drag, and gravitational radiation reaction, by utilizing our new publicly available
code to demonstrate the slimplectic integrator algorithm. Slimplectic integrators are well-suited for integrations of
systems where nonconservative effects play an important role in the long-term dynamical evolution. As such they
are particularly appropriate for cosmological or celestial N-body dynamics problems where nonconservative
interactions, e.g., gas interactions or dissipative tides, can play an important role.

Key words: celestial mechanics — methods: numerical — planets and satellites: dynamical evolution and stability



Nonconservative (“Slimplectic”) Variational Integrators

Nonconservative Variational Integrators (Slimplectic Integrators) can be
built by discretizing the nonconservative action

L
Standard 55 =0
|ntegrator t variation
Action
. L
Variational At
|ntegrator t discretization
Action
Slimplectic
Variational _ A
Iscretization
Integrator p

Nonconservative
Action

Equations of Motion
T
t
Discretized Action

!

Nonconservative
Discretized Action

AN

discretization

U

Discrete
Equations of Motion

(SSd: O

variation

{

Discrete
Equations of Motion

[6S4]lpL, =0

variation

3 %
Ky

Discrete
Equations of Motion

Generalized Noether’s Theorem force Noether “charges” to evolve according to

discretized nonconservative potential

DT, Galley, & Stein (in prep)



Slimplectic Integrators
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Example: Simple Damped Harmonic Oscillator
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Slimplectic Integrators

Example: Simple Damped Harmonic Oscillator
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Orbital separation (km)

radius error |or| [km]

Slimplectic Integrators

Example: Post-Newtonian gravitational radiation reaction
(PN RR terms only, NS-NS quasi-circular inspiral)
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Orbital phase [rad]

Slimplectic Integrators

Example: Post-Newtonian gravitational radiation reaction
(PN RR terms only, NS-NS quasi-circular inspiral)
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Nonconservative actions for
classical field theories

Consider a set of fields ¢". Action is total space-
time integral of Lagrangian density along both
paths

by
Sle!, ol = / dt /V 2 Q6! 6] — /V Pr0el 6l

Q[¢{7 ¢£] — ‘C(¢{7 8;,#5{, x,u) o £(¢§7 aﬂu¢£7 37“) _I_ K(¢{7 ¢£7 8,u¢{7 8Iu§/5§, x,u).

Being careful about the boundary conditions, we can get the E-L eqgn:
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Nonconservative actions for

classical field theories

Consider a set of fields ¢, Action is total space-
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Example: The Canonical Stress-Energy Tensor
S = /d4x£(gbl(xo‘),3qu1(:1:0‘),.7:“)
V

Consider a system where the conservative action S is symmetric under
space-time translations z# — x* + §z*,

Taking §S = 0 and manipulating the RHS, we get
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Continuum Mechanics:
world lines as degrees of freedom

A onsta® M L
ll 'l tl &JQ/ t4
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) ,/ ,"' e const {a}
- —— S const {a}
,'/ j’, ' a® const {q}
Al

For continuum mechanics, we can label (fluid) elements with
_agrangian coordinates a®* which have world lines described by
“ulerian position ¢ = ¢'(t,a™).

We take the Lagrangian coordinates (+ time) to be the space-time
integration variables, while the world lines, ¢', are the dynamical

fields.



Continuum Mechanics:
world lines as degrees of freedom
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Hydrodynamics: Building An Action




Hydrodynamics: The Perfect Fluid

Consider an isentropic inviscid fluid:

Assume the internal energy (Eulerian) density of the fluid to be

g=2¢(p,3) overbar means Eulerian density
density with no overbar means Lagrangian

such that de = udp + T ds.

The action for such a perfect fluid is given by (e.g. Morrison 98)

| p S
S—= | dtd®a L — 2552 _ —(_ _)
/ a where L zpq JE T

— 0 ,55751)7; -+ pvj?jvi + ?@p 0

P=up+1s—-¢

;p(a’t) = 0 0ip + Vi(v'p) =



Hydrodynamics: The Perfect Fluid

Consider an isentropic inviscid fluid:

Assume the internal energy (Eulerian) density of the fluid to be

g=2¢(p,3) overbar means Eulerian density
density with no overbar means Lagrangian

such that de = udp + T ds.

The action for such a perfect fluid is given by (e.g. Morrison 98)

Since actien $ ig ifyariant upderdime and Eg)g?aﬂg%—éﬁorﬁ)nate shifts

the canonical stress-energy tensor is consefved 7

6S rm — ¢I 6‘6 _ 51/ _ _
~— =0 - TP OO, P Vv + Vi P = 0
q' _
i T VRN
0,T," =0 O, (§pv2+z—:(p,s)> + V; tﬂ (§pv2—|—5+P>] =0
Owp(a) =0 Oip + Vi(v'p) =0

Energy Equation



Hydrodynamics:

Consider an|isentropic viscous fluid:  0,s(a") =0

5:/dtd3a(51—£2+16) where L=—pg*—J&

w2 is the strain tensor

oM = (s PAPEP 4 CHPCYP) b is the viscous stress tensor

48 is the rate of strain tensor

— () ﬁétvi + ﬁfujvj?}i -+ VLP — vja'ji

1 _ /1 _ . o
o, T, =... Oy [—ﬁv2 + £(p, 5)] + V; {v’ <§ﬁv2 + h) — v’ azj} =|—-0"7V,vj,

viscous energy flux
viscous dissipation loss



Hydrodynamics: perfectly insulating fluid
Consider perfectly insulating viscous fluid:

_1 2 7= p S . AB
5—50(1 ‘]g(j’j) K=—lu-]apol

Replace isentropic condition with the closed system “closure” condition

>< 0,T," =0

The closed system condition implies the internal energy density accounts
for all the energy of the inaccessible degrees of freedom.

59 T
(Sqi =0 pat?}i + ,OUJVjUi + V,; P = VjO-JZ,




Hydrodynamics: perfectly insulating fluid

Consider perfectly insulating viscous fluid:

1 p S _ AB
cofur—re(55) K=teluod

Replace isentropic condition with the closed system “closure” condition

>< 0,T," =0

, . 5 oL oK 5
Nogther§J 8 sy sténd conditinm | ”l‘h?}l?gs[@ﬁ }»ter‘r‘ieﬁ Qn@ﬁgy density accounts
v a&)m]enener%y?f the inaccessible degrees of freedom.

“closu
6S ; + V ;
- =4V1 pUI\L;v;
At e (S )
| Energy Eq.
5755 + ?i(viE) = T(?'”vz?}]

Entropy Eq.

But what about heat flow?



Hydrodynamics: inviscid fluid w/ heat diffusion

42 A
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We allow the entropy “fluid” to flow.
The entropy fluid labels o*<are now degrees of freedom.
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Hydrodynamics: inviscid fluid w/ heat diffusion

42 A onst a?

(1)

Fourier’s Law

We allow the entropy “fluid” toflowl A"

Th t fluid label s de dom.
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Hydrodynamics: Navier-Stokes w/ Heat dift.

Putting all the pieces together: 3‘-—‘-‘-’

1o (P S B A
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5q' =0 p 0v; + pv! Vv, + VP = V07,
=0 F= - Er- svr
— ] — ——— i — —K ;
das C




Hydrodynamics: Navier-Stokes w/ Heat dift.

Putting all the pieces together:

1 . (P S
L = §pq2 — Jé j, j) IC = _C_|_ [atOH_]j%a
—[u_|aB o}
0S o _ = o
5 — 0 p 0v; + pv! Vv, + VP = V07,
58 = T8 y
_ Fi= 22N, T =—&V,T
dous 0 G i
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Noether S@IbQE'A) =0 "0sp ‘Q%z(vzﬁ) =0’
_ _ 1 _ _ 1
closure cond. 5+ V(T = VR T T T =577,




Name L K DoF System Type
Perfect Fluid 2pq® — JE(p, 5) - q conservative
§VB1
Cold Stone Fluid % pq® — JE(p, 5) —Vis(u—®v4) q ope(na 1§eEt83)plc
§V B2 L
Viscous Insulating 2pq® — J&(p, 5) —Vi(u—®v4) q closed (0,70 = 0)
Fluid §V B 3
Inviscid Fluid 20q° — J&(p, 5) —(4 (- - Orxy) q,o closed (0, 7To” = 0)
with Heat
Diffusion §V B4
Navier-Stokes 2pq*> — J&(p, 5) —Vii(u-®v4) — (+(a— - Oroy) q,o closed (0, 7To"” = 0)
Fluid §V B5
open isentropic
Microhydro- —J&(p, 3) —Vis(u—®v4) q (0rs = 0),
dynamics (Stokes movable boundaries
Limit) §V C
Perfect Elastic 20q° — Jeo(p, 5) — 2E:(uku) - q conservative
Material
Cold Stone Elastic| 1pg* — J&,(p,5) — 2E:(u®u) —Vis(u—_®v4) q Obetl 1seEtr0p1c:
. ... 2 2 (Ors = 0)

with Dissipation
Insulating Elastic 1pq® — J.(p,5) — 2 E:(uku) —Vis(u—®vy4) q closed (0,73 = 0)
with Dissipation
Elastic with Heat 2pq® — J.(p,5) — 2 E:(uku) —(+ (- - Oraey) q, closed (0,7 =0)
Diffusion
Elastic with 20q° — Jeo(p, 5) — 2 E:(uku) —Vii(u—®v4) — (4 (a- - Oray) q, o closed (0,7 =0)
Dissipation &
Heat Diffusion

: —TToTT
Cold Stone %PQQ — J&,(p, 5) — %8::(ue1®uel) —Vii(Up- @7pi4) q,Ch ope(rglzei (1;())p1(:
Maxwell Fluid '
Insulating 20G” — Jo(p,5) — 2E:: (U1 ®@Ue) — Vi (Upl— @Ypi+) q,Cp | closed (0,70" =0)
Maxwell Fluid
Viscoelastic 20G° — J2o(p, 5) — 2E:(Ua®Uer) | —V4i:(Upl—@7p14) — (+(a— - drat)| q,Cpi, | closed (0,70" = 0)

Maxwell Fluid
sV D




Towards a Variational Integrator for Hydrodynamics

Discretize space (or spacetime) using simplicial meshes:

e Scalar fields degrees of freedom (Eulerian position components) become
N numbers for each mesh vertex

e Action becomes a sum of discrete (N+1)-forms over (N+1)-volumes

e Use Discrete Exterior Calculus to determine (exterior) derivatives

/ dw = / W Stokes Theorem
V oV

< dw;, V"' >=< Wi, OV’ > Discrete Stokes Theorem

Discrete exterior derivative (] — 8T Discrete Boundary Operator



Towards a Variational Integrator for Hydrodynamics
2+1D Fluids

degrees of freedom:

o Eulerian position
0t components

A

Variational Problem becomes
minimisation problem for each

d.o.f. on each mesh point  { ' '  Lagrangian
(for each time) l | | -\ label space




