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Hamilton’s Principle

qi

qf
t = tf

t = ti

The Action:

Hamilton’s Principle states that the physical trajectories of the dynamical degrees of 
freedom are the solutions which extremize the action integral. 

  

Assuming appropriate boundary conditions for the variation,  
this implies the Euler-Lagrange equations of motion. 

  



The Action As a Generating Function
Let’s assume that q(t) extremizes the Action between  

some endpoints qo and qf and satisfies the E-L equation. 

0

Similarly,

The extremal action is a (Type 1) generating function for the canonical transformation  
that implements time evolution of the degrees of freedom (Hamilton-Jacobi theory).



Piecewise Extremal Trajectories 
& A “Perfect” Integrator

Let’s consider a sequence of points {qn} that represent the positions at time {tn}. 
We can connect these with a set of curves with {γn(t)} that are piecewise connected

Manifold Coordinates



Momentum of γn at tn+1 = Momentum of γn+1 at tn+1

We can treat this as a mapping between qn, pn -> qn+1, pn+1 defined by

Solve for qn+1  
in terms of qn, pn

pn+1 from qn+1, qn

This defines a “perfect” but somewhat pointless integrator…

Assume each γn (uniquely) extremizes S[γn] between points qn and qn+1

The total action is then,

Since each subpath is extremal, the total action is extremized iff the derivative with 
respect to each point qn+1 is zero:

Piecewise Extremal Trajectories 
& A “Perfect” Integrator

Let’s consider a sequence of points {qn} that represent the positions at time {tn}. 
We can connect these with a set of curves with {γn(t)} that are piecewise connected

Manifold Coordinates



Variational Integrators
Consider approximations to the extremal action between each point in the sequence 

{qn}. This discretized action can be constructed with 2 ingredients:  
1. An approximation to the trajectory between the points


2. An approximation to the action integral itself (numerical quadrature)

These choices define different variational integrators.
Extremizing the discretized action wrt each point gives the discrete E-L equations,

Solve for qn+1  
in terms of qn, pn

pn+1 from qn+1, qn

Or

These define mappings qn, pn -> qn+1, pn+1 that are accurate to the same order as the 
discretized action. Symplectic with long term conservation properties. 



Symmetries

of the Action

Conserved 

Quantities

Noether’s Theorem

Time-shift sym. Energy

Translational sym. Momentum

Rotational sym. Ang. Momentum



Action Equations of Motion Discrete 
Equations of Motion

variation discretization
Standard
Integrator

Action Discrete 
Equations of MotionDiscretized Action

variationdiscretization
Variational
Integrator

Nonconservative
Action

Discrete 
Equations of Motion

Nonconservative
Discretized Action

variationdiscretization

Slimplectic
Variational
Integrator

Symmetries of the 

Discrete Action

Conserved 

Quantities

Noether’s Theorem
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Name Trajectory Method Quadrature Method Order Notes
Galerkin-Gauss Lobatto

(GGL)

Polynomial
through GL pts

GL Quadrature O(�t2r+3) non-perturbative

Stormer-Verlet
(2nd order GGL)

Linear
through end pts

Trapezoid Rule O(�t3) non-perturbative

Wisdom-Holman

Gauss-Lobatto (WHGL)

Keplerian
b/w end points

GL Quadrature O("�t2r+3) +O("2�t3) perturbative

Kick-Drift-Kick
(2nd order WHGL)

Keplerian
b/w end points

Trapezoid Rule O("�t3) +O("2�t3) perturbative

Wisdom-Holman

Farr (WHFarr)

Keplerian
b/w end points

Adaptive/Numerical
Quadrature

O("2�t3) perturbative
Effective adaptive
method w/ fixed
formal step size

Table 1

Summary of the types of variational integrators (for orbital mechanics) explored in this paper.

For a given Keplerian path starting from position qo ⌘ �(to), and velocity vo ⌘ �̇(to), with constants

� ⌘
2M

ro
� v2

o (B4)

⌘o ⌘ qo · vo (B5)
⇣o ⌘ M � �ro (B6)

(where ro ⌘ |qo|), we can express the motion in the plane defined by qo and vo, through the f and g functions

�(t(X)) = fqo + gvo (B7)
�̇(t(X)) = ḟqo + ġvo (B8)

where

f = 1�M
G2

ro
, ḟ = �M

G1

ror
(B9)

g = �t�MG3, ġ = 1�M
G2

r
(B10)

where r ⌘ |�| = ro + ⌘oG1 + ⇣oG2, and Gn ⌘ Gn(�, X). Here X ⌘
R t
to
dt/r is the Levi-Civita time, such that

t(X)� to = �t(X) = roX + ⌘oG2 + ⇣oG3 (B11)

Determining the value of Xf for which h = �t(Xf ) is equivalent to solving Kepler’s equation, allowing the final position
and velocity to be evaluated through the f and g functions.

Farr Weights and momenta factors from the f and g Variation Equations

Using the above formulation it is straightforward to determine the linearized variation equations. For an infinitesimal
variation in the initial conditions �q, �vo, while keeping the time-step h fixed, the trajectory �(t) and velocity �̇(t) are
changed by

��i = [R]ij �q
j
o + [V ]ij �v

j
o (B12)

��̇i = [Ṙ]ij �q
j
o + [V̇ ]ij �v

j
o (B13)

where the 3x3 matrix elements [R]ij , [V ]ij , [Ṙ]ij , and [V̇ ]ij are given by

[R]ij ⌘ f�
i
j + q

i
o
@(�f)

@(�qjo)
+ v

i
o
@(�g)

@(�qjo)
(B14)
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o
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(B15)

[Ṙ]ij ⌘ ḟ�
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(B16)
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i
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o
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+ v
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o
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@(�vjo)
(B17)

1. An approximation to the trajectory between the points


2. An approximation to the action integral itself (numerical quadrature)

These choices define different variational integrators.

Using this ansatz it is easy to construct variational integrators that are symplectic, 
conserve Noether charges, and can include both position and velocity dependent forces.



Variational Integration 
… can only be applied to conservative systems?



Can we build integrators for 
nonconservative dynamics that work as 

well as symplectic integrators?



How does a problem become non-conservative?

• All classical systems are micro-physically conservative

• Nonconservative effects can arise when only a subset of the 
dynamical variables are considered

m

λk

• Hierarchy of “accessible” and “inaccessible” degrees of freedom

• This hierarchy can be due to explicit choice, observational 
constraint, or natural separation of scales



Accessible/Inaccessible Hierarchy  
in Nonconservative Systems

Accessible Inaccessible

Macroscopic or collective 
variables (e.g. thermodynamic)

Integrated out/coarse-grained 
away (e.g. individual x,v)

Explicitly tracked  
(e.g. particle position)

Explicitly untracked/unknown 
(unobserved, unmeasurable)

“Stiff” d.o.f. “Sloppy” d.o.f.

e.g. oscillator position e.g. thermal degrees of freedom 
in the damper 

• Finding a way of “integrating out” degrees of freedom at the level of the 
Action can give us nonconservative physics, but… 

• Trying this with the regular action gives non-causal solutions…



Coupled harmonic oscillators

Action:

S [q,Q] =

Z tf

ti

dt

⇢
m

2

�
q̇2 � !2q2

�
+ �qQ +

M

2

�
Q̇2 � ⌦2Q2

��

As a whole, the oscillators conserve energy but not individually
E = Eq(t) + EQ(t)

What if we could only measure q(t)? 



What if we could only measure q(t)? 

Eq(t)

q(t) is an  
"open system"

S [q,Q]

What would its EOM be?

EOM for  
q & Q

Solve 
for Q

EOM for q



"Integrating out" or "eliminating" Q(t) yields

mq̈ +m!2q = �Q(h)(t) +
�2

M

Z tf

ti

dt 0 Gret(t � t 0)q(t 0)

Gret(t � t 0) = ⇥(t � t 0)
sin⌦(t � t 0)

⌦

EOM for q(t) are:

- Causal

- Solutions determined by initial data alone

- Dynamics at time t depends on the past history of q



What if we integrated out Q(t) at the level of the action?

EOM for Q
Solve 
for Q

Se↵ [q]

EOM for q

S [q,Q]

Se↵ [q] =

Z tf

ti

dt

⇢
m

2

�
q̇2 � !2q2

�
+ �qQ(h)(t) +

�2

2M

Z tf

ti

dt 0 q(t)Gret(t � t 0)q(t 0)

�

Gadv(t � t 0) = Gret(t
0 � t)

�2

2M

Z tf

ti

dt dt 0 q(t)
Gret(t � t 0) + Gadv(t � t 0)

2
q(t 0)but...

t↔t’ symmetric



The EOM for q(t) derived from the effective action with Hamilton's 
Principle is

mq̈ +m!2q = �Q(h)(t) +
�2

M

Z tf

ti

dt 0
Gret(t � t 0) + Gadv(t � t 0)

2
q(t 0)

Gret(t � t 0) + Gadv(t � t 0)

2
=

sin⌦|t � t 0|
⌦

EOM for q(t) are:

- Acausal

- Solutions determined by initial and final data

- Dynamics at time t depends on the past history and future evolution of q

- Not correct...



A hint...

The problem arises because q(t)q(t') is symmetric in t and t' in the 
two-oscillator example...

What if we use two different sets of variables?

Z tf

ti

dt dt 0 q(t)Gret(t, t
0)q(t 0)

Z tf

ti

dt dt 0 q1(t)Gret(t, t
0)q2(t

0)

Can we "break" this symmetry somehow?

It seems that varying with respect to q1(t) would give the correct 
time-asymmetric force if we set q2=q1 afterwards





t = tf

t = ti

1

2
Boundary Value  

Problem
Initial Value  

Problem

• allows self-consistent “integrating out” of degrees of 
freedom at the level of the action! 

• Physical Limit: q1 = q2  
• Nonconservative (non-Hamiltonian) effects come in through 

nonconservative “potential” K, which couples the doubled 
paths together 

• related to “closed loop” (in-in) formalism

Galley, DT, & Stein (2014)  
[arXiv:1412.3082]

For MUCH more info:



Symmetries 
of the  

Conservative 
Action

Evolution of  
“conserved” 
quantities 

according to the  
nonconservative 

action  

Generalized 
Noether’s Theorem

Galley, DT & Stein (2014) 



Nonconservative (“Slimplectic”) Variational Integrators



Nonconservative (“Slimplectic”) Variational Integrators
Nonconservative Variational Integrators (Slimplectic Integrators) can be 
built by discretizing the nonconservative action 

Action Equations of Motion Discrete 
Equations of Motion

variation discretization
Standard
Integrator

Action Discrete 
Equations of MotionDiscretized Action

variationdiscretization
Variational
Integrator

Nonconservative
Action

Discrete 
Equations of Motion

Nonconservative
Discretized Action

variationdiscretization

Slimplectic
Variational
Integrator

Generalized Noether’s Theorem force Noether “charges” to evolve according to 
discretized nonconservative potential

DT, Galley, & Stein (in prep)  



Slimplectic Integrators
Example: Simple Damped Harmonic Oscillator

2nd order RK, 4th order RK, 2nd order “Slimplectic”, 4th order “Slimplectic”, Analytic

L =
1

2
mq̇2 � 1

2
kq2

K = ��q̇+q�

� = 10�4(mk)1/2

DT, Galley, Stein, & Turner (2015) 

m

λk



Slimplectic Integrators
Example: Simple Damped Harmonic Oscillator

2nd order RK, 4th order RK, 2nd order “Slimplectic”, 4th order “Slimplectic”, Analytic

Accuracy Lunch  
Special $8.99

TipMomentum 
Energy

$0.00
$0.00
$8.99



Example: Post-Newtonian gravitational radiation reaction  
(PN RR terms only, NS-NS quasi-circular inspiral)

Slimplectic Integrators

DT, Galley, Stein, & Turner (2015) 



Slimplectic Integrators

DT, Galley, Stein, & Turner (2015) 

Example: Post-Newtonian gravitational radiation reaction  
(PN RR terms only, NS-NS quasi-circular inspiral)



Nonconservative actions for  
classical field theories
Consider a set of fields     . Action is total space-
time integral of Lagrangian density along both 
paths

Being careful about the boundary conditions, we can get the E-L eqn:



Nonconservative actions for  
classical field theories
Consider a set of fields     . Action is total space-
time integral of Lagrangian density along both 
paths

Being careful about the boundary conditions, we can get the E-L eqn:

Noether’s theorem procedure is similar: 
1) Determine the continuous symmetries of the 

conservative action; 
2) Find how the Noether currents are changed 

due to nonconservative potential density K 
and RHS above. 

Again we have a generalized Noether's Theorem:

If the conservative action S is invariant under a continuous symmetry 
then there exists a shifted Noether current  

that changes in time according to K



Example: The Canonical Stress-Energy Tensor

Consider a system where the conservative action S is symmetric under 
space-time translations

Taking            and manipulating the RHS, we get

Total stress energy tensor (including n.c. parts)



Continuum Mechanics:  
world lines as degrees of freedom

For continuum mechanics, we can label (fluid) elements with 
Lagrangian coordinates     which have world lines described by 
Eulerian position                    .

We take the Lagrangian coordinates (+ time) to be the space-time 
integration variables, while the world lines,   , are the dynamical 
fields. 



As the material moves in the Eulerian coordinates q, the volume of 
an element will change. The volumes in the Lagrangian and 
Eulerian coordinates are related by

Continuum Mechanics:  
world lines as degrees of freedom

For continuum mechanics, we can label (fluid) elements with 
Lagrangian coordinates     which have world lines described by 
Eulerian position                    .

We take the Lagrangian coordinates (+ time) to be the space-time 
integration variables, while the world lines,   , are the dynamical 
fields. 



Hydrodynamics: Building An Action



Consider an isentropic inviscid fluid: 

Hydrodynamics:  The Perfect Fluid

Assume the internal energy (Eulerian) density of the fluid to be 

such that                         . 

The action for such a perfect fluid is given by (e.g. Morrison 98)

where 

overbar means Eulerian density 
density with no overbar means Lagrangian



Since action S is invariant under time and Lagrange-coordinate shifts 
the canonical stress-energy tensor is conserved

Energy Equation

Consider an isentropic inviscid fluid: 

Hydrodynamics:  The Perfect Fluid

Assume the internal energy (Eulerian) density of the fluid to be 

such that                         . 

The action for such a perfect fluid is given by (e.g. Morrison 98)

where 

overbar means Eulerian density 
density with no overbar means Lagrangian



Consider an isentropic viscous fluid: 

Hydrodynamics:  The “Cold Stone” Limit

where 

is the strain tensor 
is the viscous stress tensor 
is the rate of strain tensor

viscous energy flux

viscous dissipation loss



Hydrodynamics:  perfectly insulating fluid
Consider perfectly insulating viscous fluid: 

The closed system condition implies the internal energy density accounts 
for all the energy of the inaccessible degrees of freedom.

Replace isentropic condition with the closed system “closure” condition



Noether’s Thm: 

“closure” cond’n:

Energy Eq. 

Entropy Eq. 

Hydrodynamics:  perfectly insulating fluid
Consider perfectly insulating viscous fluid: 

Replace isentropic condition with the closed system “closure” condition

The closed system condition implies the internal energy density accounts 
for all the energy of the inaccessible degrees of freedom.

But what about heat flow? 



Hydrodynamics: inviscid fluid w/ heat diffusion

We allow the entropy “fluid” to flow.  
The entropy fluid labels       are now degrees of freedom.



Fourier’s Law

Noether’s Thm: 

“closure” cond’n:

Hydrodynamics: inviscid fluid w/ heat diffusion

We allow the entropy “fluid” to flow.  
The entropy fluid labels       are now degrees of freedom.



Putting all the pieces together:

Hydrodynamics:  Navier-Stokes w/ Heat diff. 



Noether’s Thm 

closure cond.

Putting all the pieces together:

Hydrodynamics:  Navier-Stokes w/ Heat diff. 
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Name L K DoF System Type

Perfect Fluid
§VB1

1
2⇢q̇

2 � J "̄(⇢̄, s̄) - q conservative

Cold Stone Fluid
§VB2

1
2⇢q̇

2 � J "̄(⇢̄, s̄) �V+::(u�⌦�+) q
open isentropic

(@ts = 0)

Viscous Insulating
Fluid §VB3

1
2⇢q̇

2 � J "̄(⇢̄, s̄) �V+::(u�⌦�+) q closed (@⌫T0
⌫ = 0)

Inviscid Fluid
with Heat
Di↵usion §VB4

1
2⇢q̇

2 � J "̄(⇢̄, s̄) �⇣+(↵� · @t↵+) q,↵ closed (@⌫T0
⌫ = 0)

Navier-Stokes
Fluid §VB5

1
2⇢q̇

2 � J "̄(⇢̄, s̄) �V+::(u�⌦�+)� ⇣+(↵� · @t↵+) q,↵ closed (@⌫T0
⌫ = 0)

Microhydro-
dynamics (Stokes
Limit) §VC

�J "̄(⇢̄, s̄) �V+::(u�⌦�+) q
open isentropic

(@ts = 0),
movable boundaries

Perfect Elastic
Material

1
2⇢q̇

2 � J "̄o(⇢̄, s̄)� 1
2E::(u⌦u) - q conservative

Cold Stone Elastic
with Dissipation

1
2⇢q̇

2 � J "̄o(⇢̄, s̄)� 1
2E::(u⌦u) �V+::(u�⌦�+) q

open isentropic
(@ts = 0)

Insulating Elastic
with Dissipation

1
2⇢q̇

2 � J "̄o(⇢̄, s̄)� 1
2E::(u⌦u) �V+::(u�⌦�+) q closed (@µT µ

0 = 0)

Elastic with Heat
Di↵usion

1
2⇢q̇

2 � J "̄o(⇢̄, s̄)� 1
2E::(u⌦u) �⇣+(↵� · @t↵+) q,↵ closed (@µT µ

0 = 0)

Elastic with
Dissipation &
Heat Di↵usion

1
2⇢q̇

2 � J "̄o(⇢̄, s̄)� 1
2E::(u⌦u) �V+::(u�⌦�+)� ⇣+(↵� · @t↵+) q,↵ closed (@µT µ

0 = 0)

Cold Stone
Maxwell Fluid

1
2⇢q̇

2 � J "̄o(⇢̄, s̄)� 1
2E::(uel⌦uel) �V+::(upl�⌦�pl+) q,Cpl

open isentropic
(@ts = 0)

Insulating
Maxwell Fluid

1
2⇢q̇

2 � J "̄o(⇢̄, s̄)� 1
2E::(uel⌦uel) �V+::(upl�⌦�pl+) q,Cpl closed (@⌫T0

⌫ = 0)

Viscoelastic
Maxwell Fluid
§VD

1
2⇢q̇

2 � J "̄o(⇢̄, s̄)� 1
2E::(uel⌦uel) �V+::(upl�⌦�pl+)� ⇣+(↵� · @t↵+) q,Cpl,↵ closed (@⌫T0

⌫ = 0)

TABLE I. The Lagrangian densities (L) and nonconservative potential densities (K) used to construct the nonconservative
actions in example continuum systems. Here we use the notation T ::(X⌦Y ) ⌘ T ABCDXABYCD for compactness. “DoF”
indicates the accessible degrees of freedom (i.e., the generalized coordinates) considered. “System Type” denotes whether
the accessible degrees of freedom are open, conservative, closed, etc. This table demonstrates the modularity of building
nonconservative actions for di↵erent physical systems.

the nonconservative action is defined as an integral for-
ward in time along one set of generalized coordinate
paths, and backwards in time along the second set of
paths, with their variations satisfying the equality con-
dition such that the two copies of the coordinates (and
their generalized momenta) are equal, but unspecified at
the final time. After extremizing the nonconservative ac-
tion,

S[q1, q2] =

Z tf

ti

dt ⇤(q1, q2, q̇1, q̇2, t) ,

the equations of motion are recovered by applying the
physical limit, which equates the two paths. The non-

conservative Lagrangian ⇤ can be separated into a con-
servative piece L(q1) � L(q2) plus a nonconservative po-
tential, K(q1, q2), which couples the paths together, and
can be used to model or derive general nonconservative
forces acting on the system. The nonconservative po-
tential may arise from an open system interaction with
inaccessible degrees of freedom or from integrating out
or coarse-graining a subset of the degrees of freedom in a
conservative system. The equations of motion for the sys-
tem include the e↵ects of the nonconservative potential
and are found to satisfy the new Euler-Lagrange equa-



Towards a Variational Integrator for Hydrodynamics

Discretize space (or spacetime) using simplicial meshes: 
•Scalar fields degrees of freedom (Eulerian position components) become 

N numbers for each mesh vertex 
•Action becomes a sum of discrete (N+1)-forms over (N+1)-volumes 
•Use Discrete Exterior Calculus to determine (exterior) derivatives

<latexit sha1_base64="XMiqylPVvl1sx2cSXQrA3jQvduU="></latexit>

Stokes Theorem

<latexit sha1_base64="w+tMmhek/buHE1b+VIPfceqG03Y="></latexit>

Discrete Stokes Theorem

<latexit sha1_base64="HaoICck1fgqUFRNfAh2Y7DR0m0A=">AAAB/HicbZDLSsNAGIUnXmu9Rbt0M1gEVyXRYpNd0Y3LCr1BE8tkMmmHTi7OTAoh1Fdx40IRtz6IO9/GJA3i7cDAx/kv83OciFEhNe1DWVldW9/YrGxVt3d29/bVg8O+CGOOSQ+HLORDBwnCaEB6kkpGhhEnyHcYGTizq7w+mBMuaBh0ZRIR20eTgHoUI5lZY7XmQovcxXQOrQhxSRG77Y7VutbQCsG/oJdQB6U6Y/XdckMc+ySQmCEhRroWSTvN92FGFlUrFiRCeIYmZJRhgHwi7LQ4fgFPMseFXsizF0hYuN8nUuQLkfhO1ukjORW/a7n5X20US8+wUxpEsSQBXn7kxQzKEOZJQJdygiVLMkCY0+xWiKeIIyyzvKpFCKbRMjUT5mBoZrOAlnFx/hVC/6yhaw39pllvX5ZxVMAROAanQAct0AbXoAN6AIMEPIAn8KzcK4/Ki/K6bF1Rypka+CHl7ROHypUE</latexit>

Discrete exterior derivative Discrete Boundary Operator



t Lagrangian
label space

degrees of freedom:
Eulerian position
components

Towards a Variational Integrator for Hydrodynamics
2+1D Fluids

Variational Problem becomes  
minimisation problem for each  

d.o.f. on each mesh point  
(for each time)


