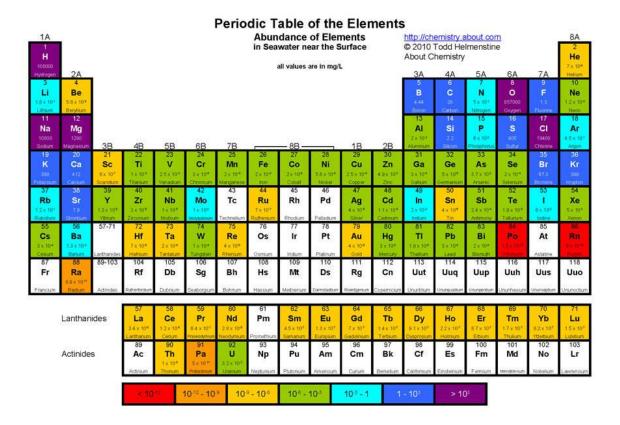


Making minerals from seawater

by

Professor R A Mills


The LRET Research Collegium Southampton, 16 July – 7 September 2012

Making minerals from seawater.

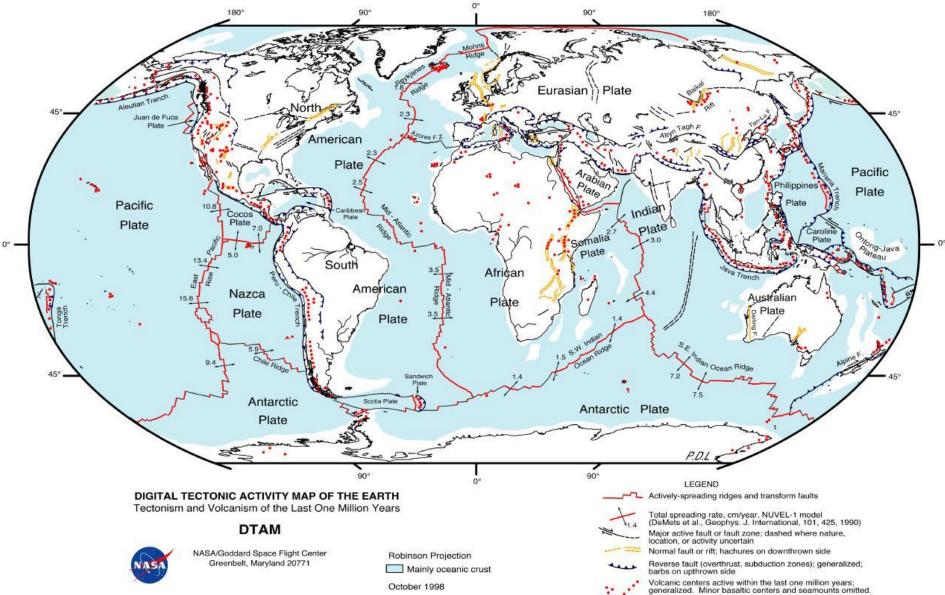
Professor Rachel A Mills National Oceanography Centre, Southampton 19 July 2012

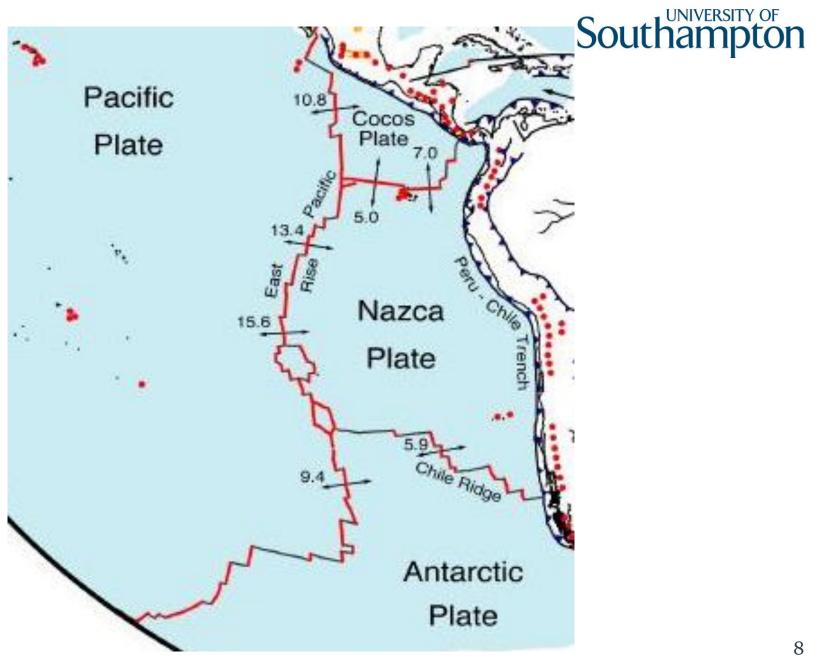
Seawater Composition

http://chemistry.about.com

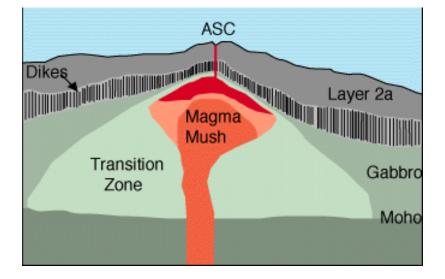
Trace metals in the oceans

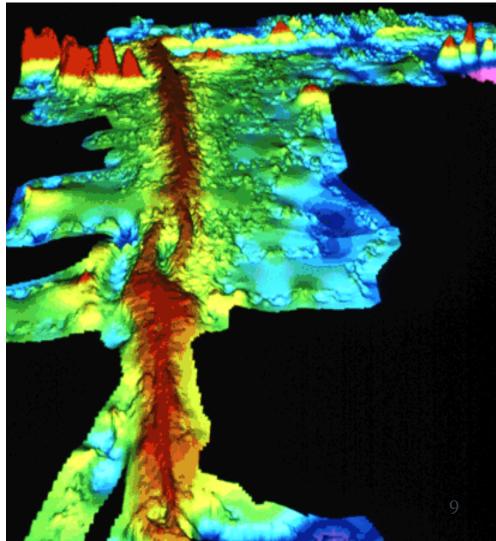
- Trace metals are present in seawater at extremely low levels
- These metals are vital for cellular biological processes
- Our understanding of the sources, fluxes and timescales for removal of metals from seawater is still poor
- Metals are removed from seawater to form mineral deposits at the seafloor
- As the demand for metals increases, the feasibility of ocean mineral resources increases


How are minerals formed in the ocean?

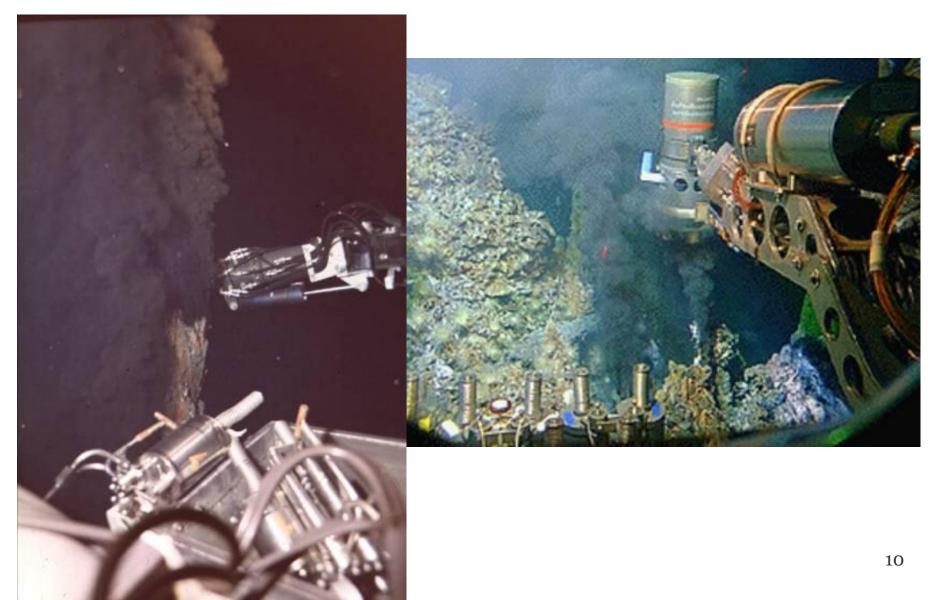


- 1. Hydrothermal deposits and seafloor minerals
- 2. Hydrothermal plumes and metalliferous sediments
- 3. Manganese nodules and crusts

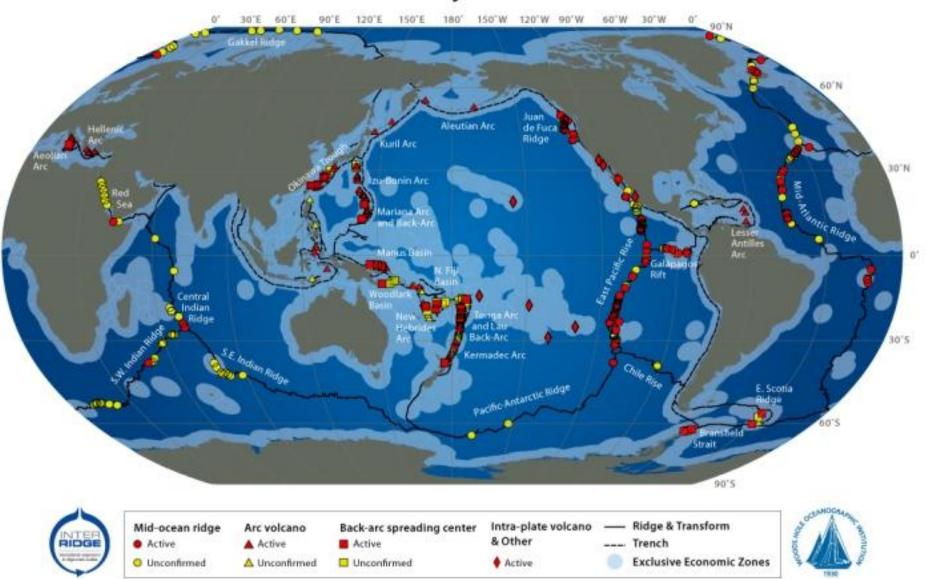


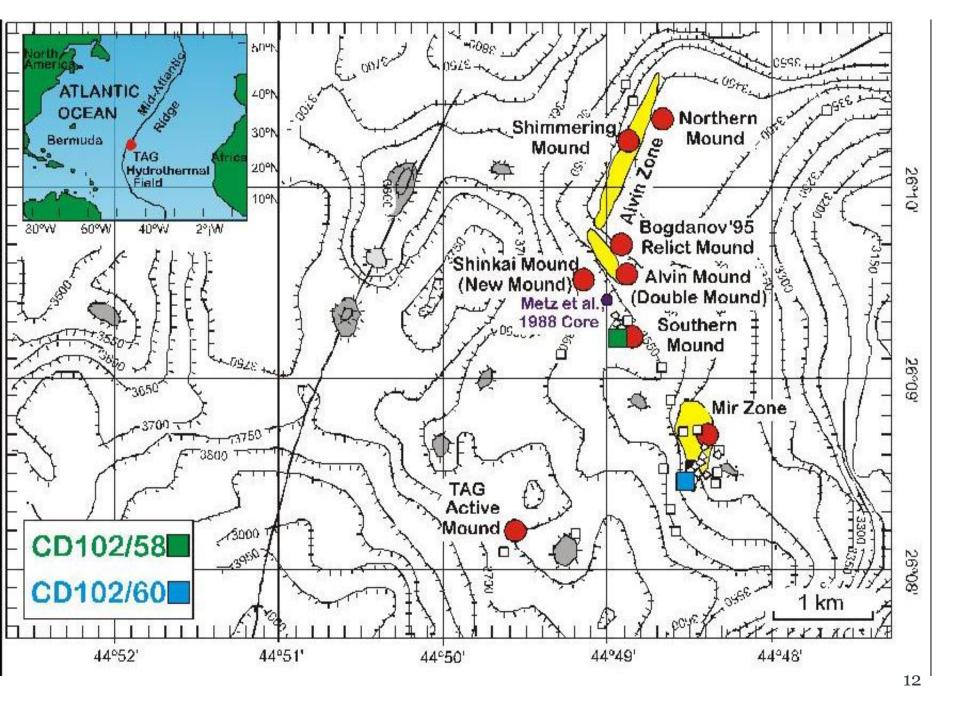


Southampton Schematic cross section through the East Pacific Rise

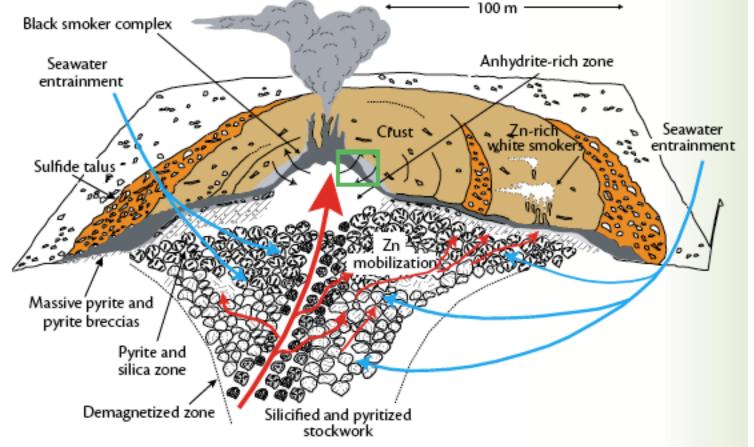


ASC = Axial Summit Caldera

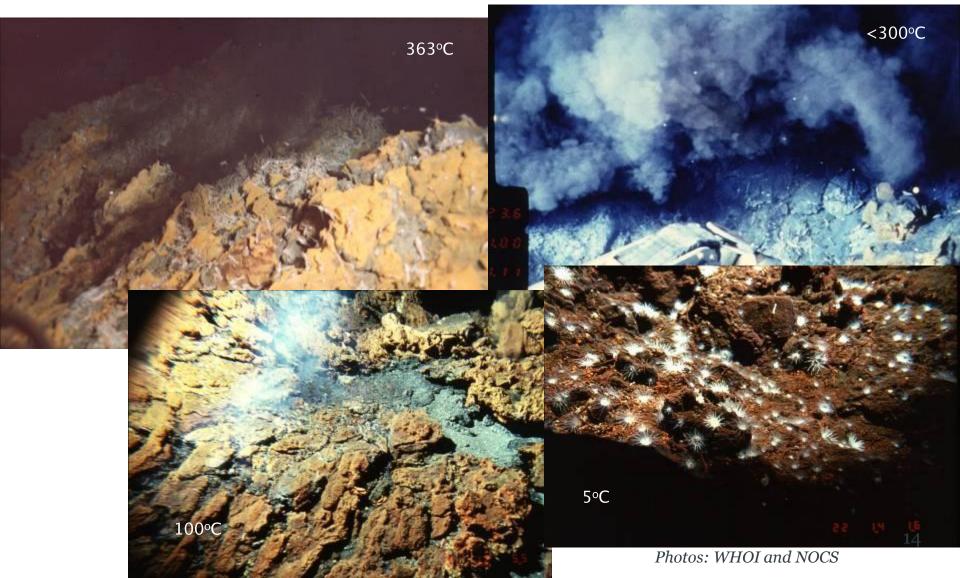



High temperature fluid expulsion at seafloor

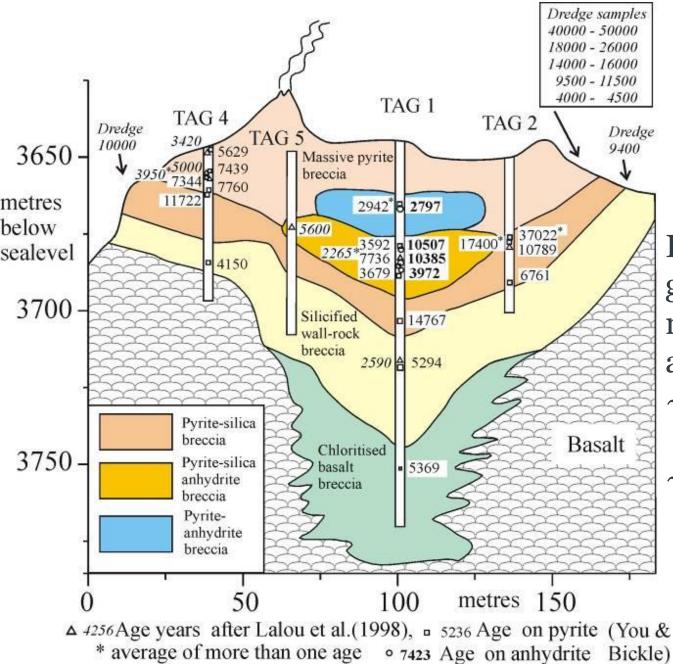
Southampton



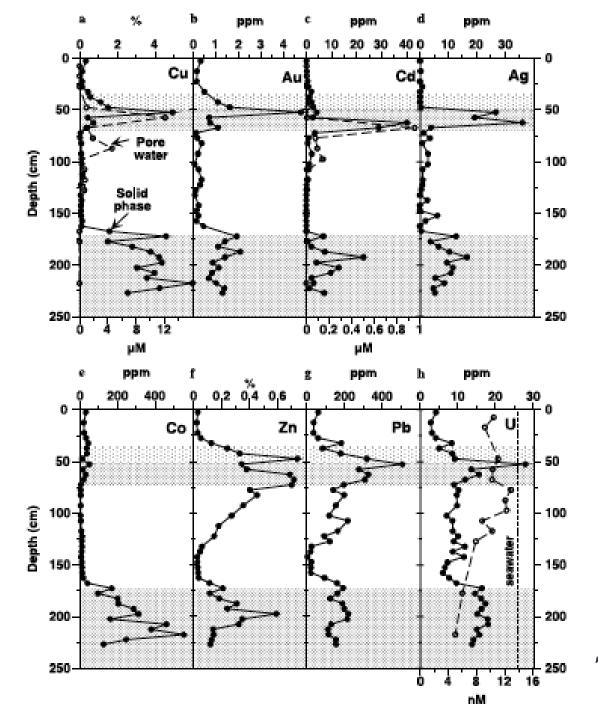
Global Distribution of Hydrothermal Vent Fields


Southampton Anatomy of an active hydrothermal mound

Tivey, 2008, adapted from Humphris et al., 1995


Fluid flow out of an active hydrothermal deposit

Southampton



How fast do deposits form?

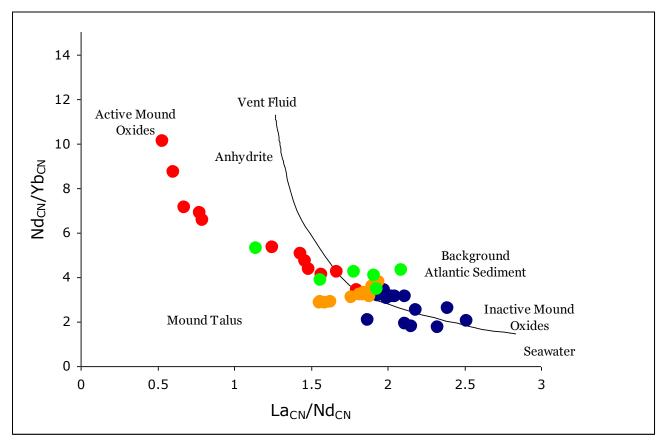
Episodic mound growth, oxidation, reworking of sulfide and anhydrite over ~10 000 years

~ 5 Mtonnes sulfide

High grade metal enrichment (several parts per million to %) indicates significant redox recycling and secondary mineralisation over thousands of years

Severmann et al., 2006

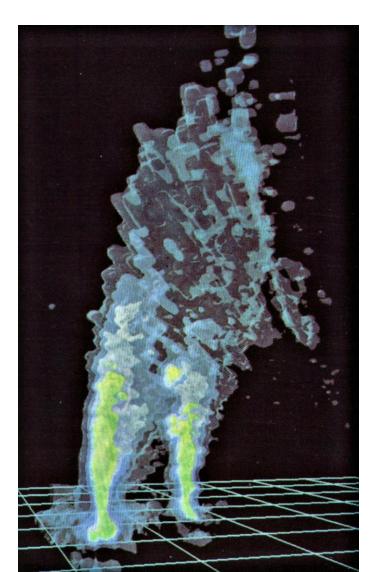
Southampton Seawater and the Rare Earth Elements (Lanthanides)

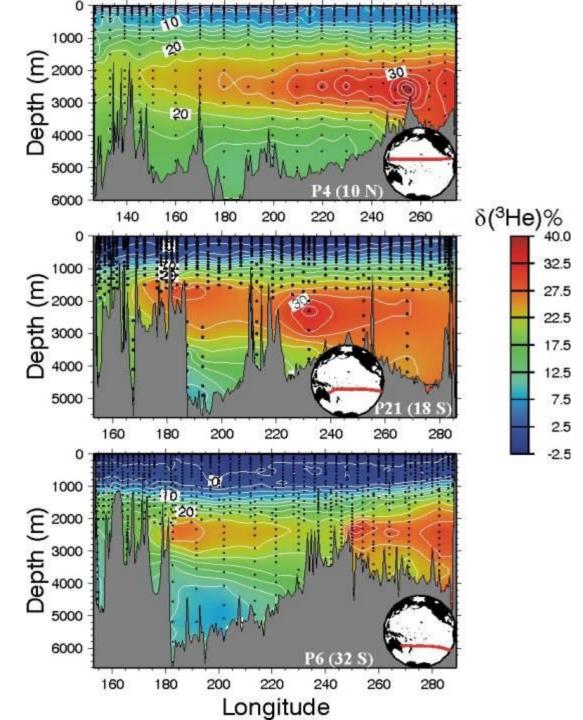

						Perio	dic T	able	of the	e Eler	nents	5					
1A 1 H			Abundance of Elements http://chemistry.abou in Seawater near the Surface © 2010 Todd Helmer About Chemistry										Imenstin			8A 2 He	
108000 Hydrogen 2A					all values are in mg/L							3A	4A	5A	6A	7A	7 x 10 ⁴ Helium
Hydrogen 3	2A 4	4									5	-4A 6	5A 7	8	9	10	
Li	Be										в	С	N	0	F	Ne	
1.8 x 10 ⁺	5.6 x 10*											4:44	28	5 x 10 ⁻⁴	857000	13	1.2 x 10
Lithium 11	Beryllium 12											Boron 13	Carbon 14	Nitrogen 15	Oxygen 16	Fluonne 17	Neon 18
Na	Mg											A	Si	P	S	CI	Ar
	1290	199102										2 x 10*	22	6.x 10+	905	19400	4.5 x 10
Sodium	Magnesium	3B	4B	5B	6B	7B	-	- 8B -	-	1B	2B	Aluminum	Silicon	Phosphorus	Sultur	Chlorine	Argon
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
399	412	6x 10 ⁴	1 x 10 ⁻²	2.5 × 10 ²	3 x 10*	2 × 10 ⁻⁴	2 × 10 ⁻⁹	28.104	5.6 x 10*	2.5 x 10*	4.9 x 10 ⁴	3 x 104	5x 104	AS 3.7 x 10 ⁴	2 x 10 ⁻⁴	67.3	399
otassium	Calpum	Scandium	Titanum	Vanadium	Chromium	Manganese	iron	Cobalt	Nickel	Copper	Zinc	Gallum	Germanium	Arsenic	Selenium	Bromine	Krypto
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
2 x 10 ⁻¹	7.9 Strontium	1.3 x 10 ⁴ Yttmm	3 x 18 ⁴ Zirconaum	1 x 10 ⁻⁶	1 x 10 ² Monobelenum	Technetium	7 x 10 ⁻⁷ Ruthenium	Rhodium	Palladium	4 x 10 ⁴ Silver	1.1 x 10 ⁻⁴ Cedmam	2 x 10 ⁻²	4 x 10*	2.4 x 10 ⁴ Artimony	1.9 x 10 ⁴ Telunum	6 x 10 ^a lodrae	5 x 10 Xenon
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
3 x 10 ⁴	.1.3 x 10*	5700 55	7 x 10*	2 x 10* Tantalum	1 × 104	4 x 10* Rhenum	0201	332	1200	4 x 10* Gold	3 x 10* Mercury	1.9 x 10* Thallum	3 x 10 ⁴ Lead	2 × 10*	1.5 ± 10#	S-22076	8 = 101
Cesium 87	Banum 88	Lanthanides 89-103	Hatnium 104	105	Tungsten 106	107	Osmium 108	Indium 109	Platnum 110	111	112	113	114	Bismuth 115	116	Astatine 117	118
Fr	Ra	00071010080	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuc
rancium	8.9 x 10** Radium	Actinides	Rutherfordium	Dubnium	Seaborgium	Bohnum	Hassium	Metherium	Damstadtum	Roentgenium	Copernicium	Ununtrium	Ununguadium	Unurperdum	Ununhexium	Ununseptum	Ununocti
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanides		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			3.4 x 10 ⁴	1.2 × 10* Cerium	6.4 x 10 ⁻⁷ Praseodymium	2.8 x 10* Neodumium	Promethium	4.5 x 10 ⁺ Samarum	1.3 x 10 ⁺ Fumpium	7 x 10* Gadolinium	1.4 x 10 ⁺ Terteim	9.1 x 10*	22x10* Holmum	8.7 × 10 ⁷ Ethum	1.7 x 10 ⁻⁷	8.2 x 10 ² Viterbium	1.5 x 1
	Actinides		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			Actinum	1 x 10* Thorum	5 x 10 ^{-H} Protectinium	3.2 x 10 [±] Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermum	Mendelevium	Nobelium	Lawrence
			< 10	12	10 ⁻¹² - 10	9 10	⁹ - 10 ⁻⁶	10 ⁸ -	10-3	10 ⁻³ - 1	1	- 10 ³	> 1(D ³			

http://chemistry.about.com 18

Rare Earth Elements (REE)

- Relatively abundant (~ppm) in crust but dispersed widely
- Global commercial reserves of REE, particularly the heavy REE are diminishing rapidly
- Global requirement (120 000 tonnes yr⁻¹) exceeds current supply
- Very low abundance in seawater (~10⁻⁷ ppm)
- Forming minerals from seawater fractionates and concentrates the REE


REE fractionation in hydrothermal minerals



Data from Mitra et al., 1990; German et al., 1993; Mills and Elderfield, 1995; Humphris, 1998; Goulding et al., 1998; Severmann et al., 2004; Mueller et al., 2009

Hydrothermal plumes

- Vent fluid mixes rapidly with seawater and is dispersed through the ocean basin as a plume of particles
- Whole ocean is cycled through global plume system in ~10 000 yrs
- Plumes particles scavenge REE from seawater

Inert tracer shows that hydrothermal plumes are dispersed right across ocean basins

32.5

27.5

22.5

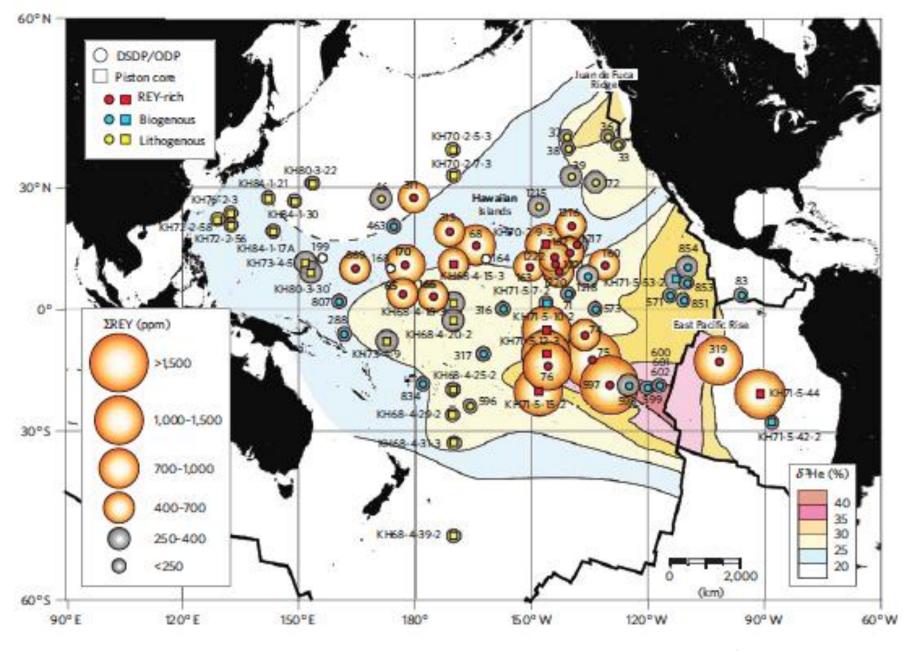
17.5

12.5

7.5

2.5

-2.5


Metalliferous sediments

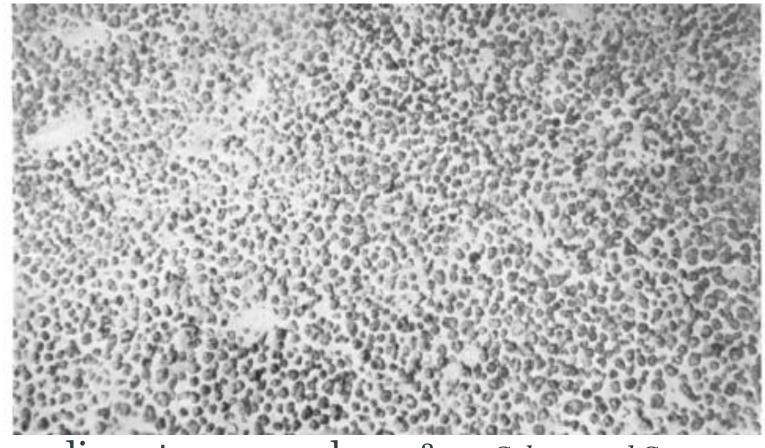
80° 180°W 160° 140° 120° 100° AL ratios x 100: AI+Fe+Mn 40°N >60 60 - 40 10 - 20- 10 CREST OF ACTIVE RIDGE - 20° 0° 20° 40°S

Plume particles settle to sea floor and form metalliferous sediments over ~Ma (million years)

^s Bostrom and Peterson, 1969

Southampton

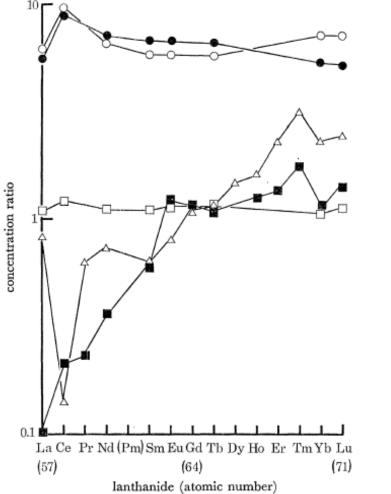
Kato et al., 2011


REE resources in metalliferous sediments

- 1 5 km² area of Pacific sediment, 10-70 m thick would supply significant proportion of the global REE demand
- REEs could be recovered through simple acid leaching of the sediment

BUT.....

• Detailed mapping of the resource required and there are significant logistical issues around deep sea mining

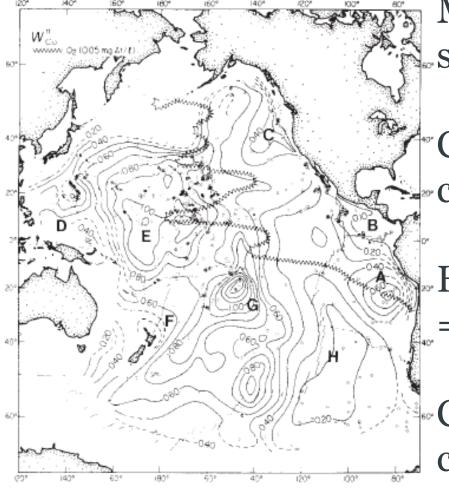

Manganese nodules cover the Pacific seafloor at 4-6 km depth

2-5 cm diameter; 10-40 kg m⁻² Calvert and Cronan, 1978

REE in Mn nodules

 $Mn\,nodules$

Seawater x 10⁷


Pelagic clay

Calvert and Cronan, 1978 ₂

Mn nodule accumulation rates

- Mn nodules grow at mm Ma⁻¹
- Enriched in Mn, Fe, Cu, Ni, Co and REE
- Deep sea sediments accumulate at m Ma⁻¹
- How do the nodules remain at the sediment surface?
- Are growth rates underestimated? Are accumulation rates variable? Do burrowing organisms move nodules to the surface? Do bottom currents winnow the sediments?

Cobalt in Mn crusts

Mn crusts accumulate on hard substrates exposed on seafloor

Co content negatively correlates with growth rate

High Co accumulation
= very slow crust growth

Co chronometer provides crust growth rates

Manheim and Lane-Bostwick, 1988

Are deep sea mineral deposits a viable resource?

Deep sea mineral resources

- Nautilus Minerals Inc are developing a production system to extract copper and gold from a relict hydrothermal deposit offshore Papua New Guinea in ~1550m water depth
- The extreme depths and location in International Waters mean that mining of Mn nodules, crusts and REE enriched sediments is logistically extremely challenging and unlikely to be developed in the next few decades

Summary

- Seafloor hydrothermal deposits can be substantial in size (several million tonnes of sulfide)
- Low temperature alteration of deposits generates significant metal enrichment (up to high grade ore)
- Hydrothermal plumes are rich in iron oxides that scavenge metals out of seawater and deposit them at the seafloor (significant deposits of REE)
- At extremely low sediment accumulation rates, minerals form at the seafloor with large metal enrichment (Mn nodules and crusts)

Find out more:

- <u>http://www.noc.soton.ac.uk/chess/</u>
- <u>http://www.whoi.edu/workshops/deepseamining/</u>
- Kato, Y. et al, Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements, Nature Geoscience, doi: 10.1038/NGEO1185.
- http://www.nautilusminerals.com/s/Home.asp
- <u>http://www.geotraces.org</u>

Questions?