# Black Hole from Colors

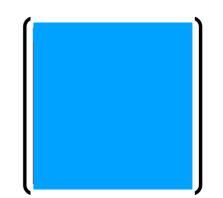
### Masanori Hanada University of Southampton

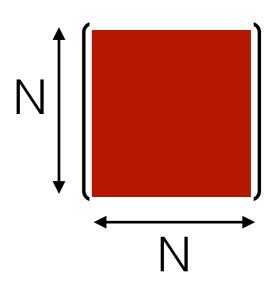
Oct. 09, 2019 @ Southampton

M.H.-Maltz, 1608.03276 M.H.-Ishiki-Watanabe, 1812.05494 M.H.-Jevicki-Peng-Wintergert, 1909.09118 + work in progress • Confinement phase:  $E \sim N^0$ 

• Deconfinement phase:  $E \sim N^2$ 



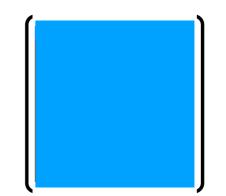


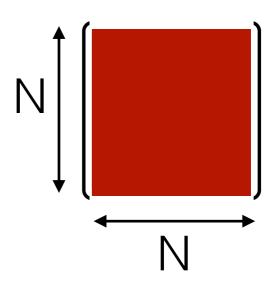


• Confinement phase:  $E \sim N^0$ 

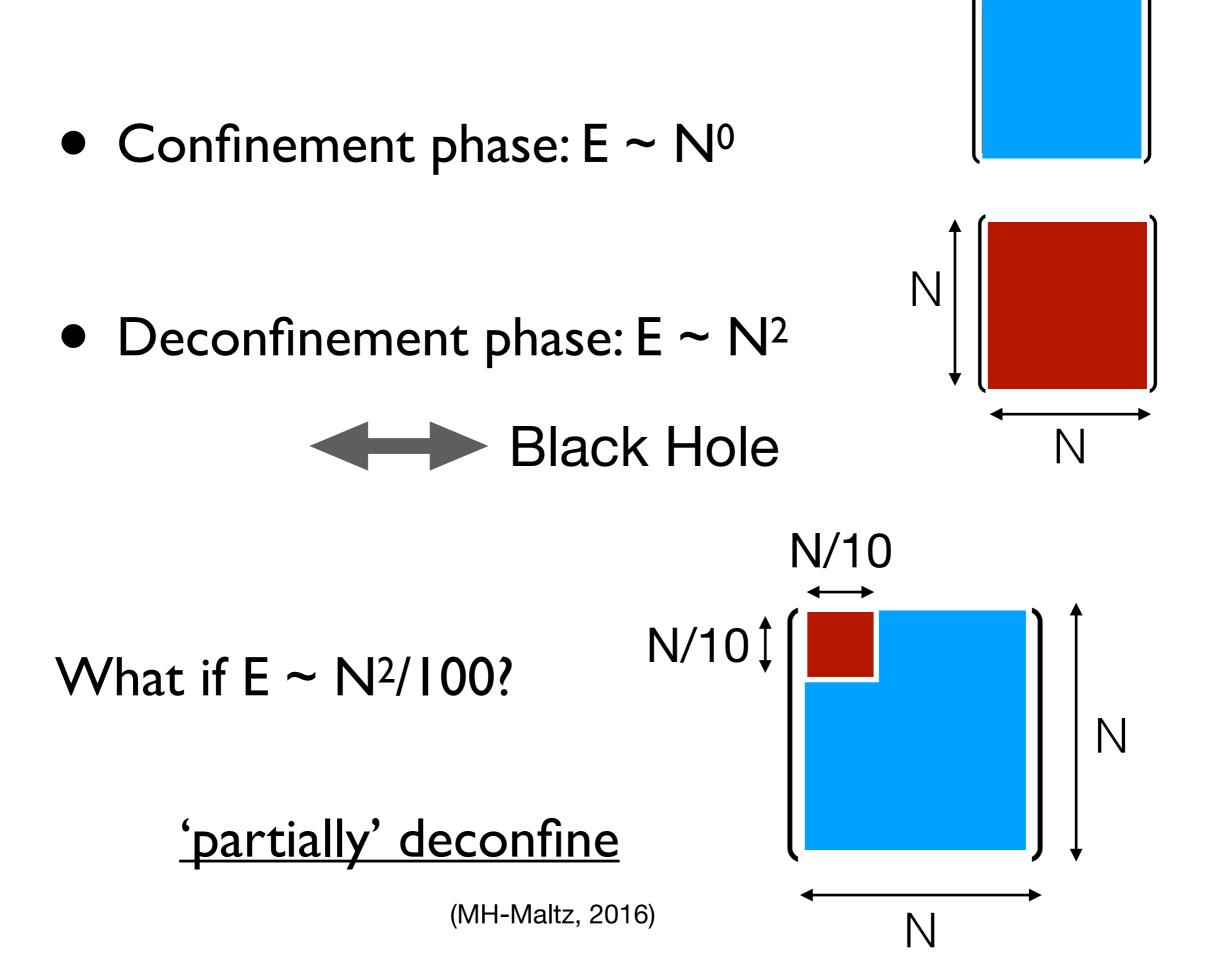
• Deconfinement phase: E ~ N<sup>2</sup>

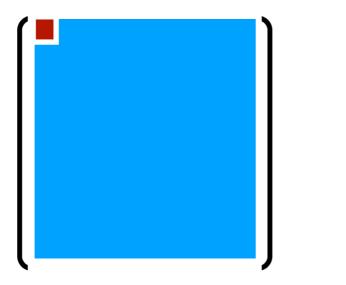


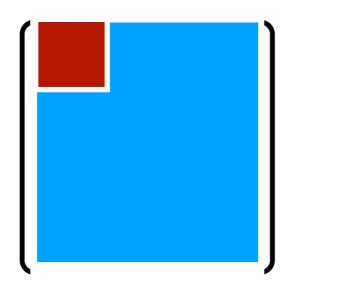


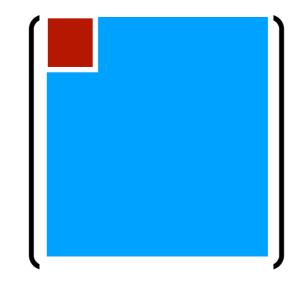


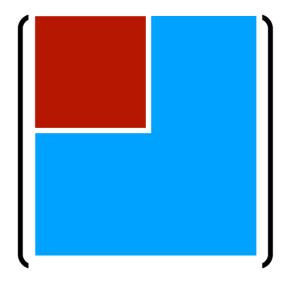
What if  $E \sim N^2/100$ ?

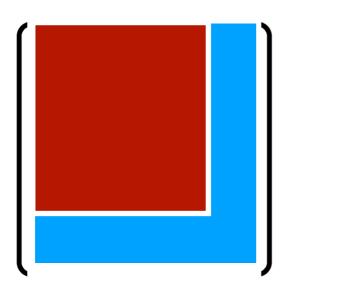


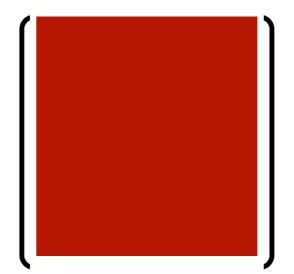


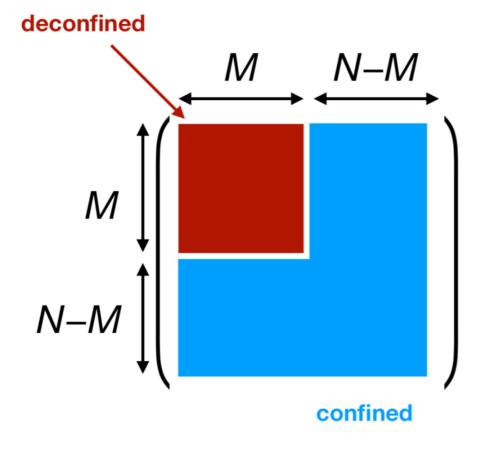


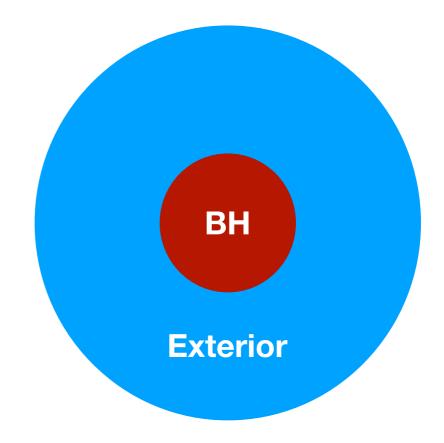








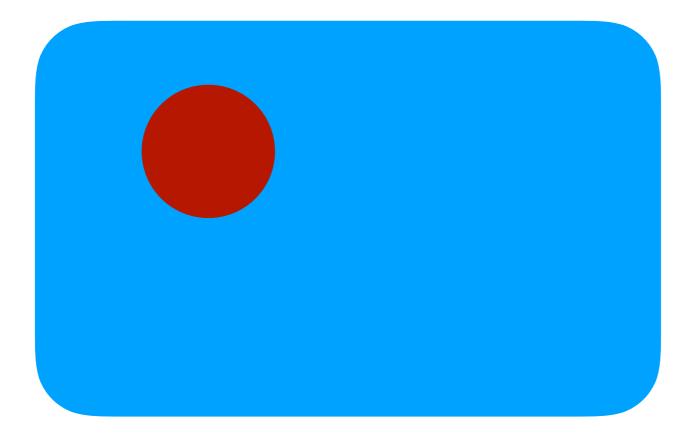




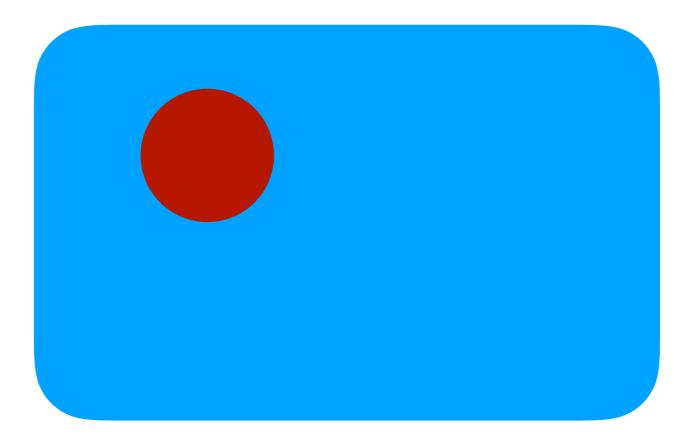
# Heuristic justification

(more precise argument is given later)

#### Why doesn't a part of the volume deconfine?



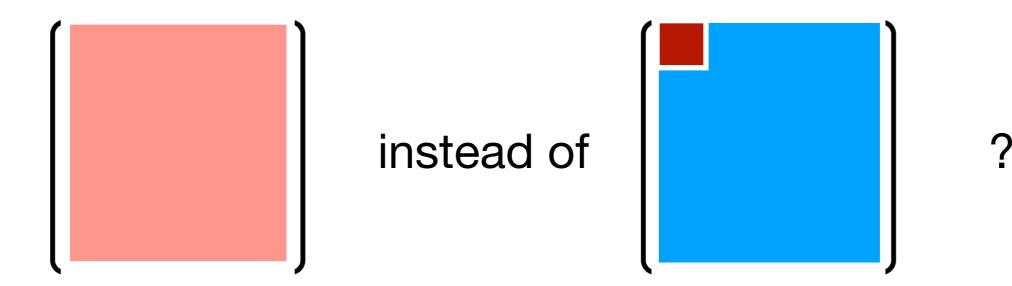
#### Why doesn't a part of the volume deconfine?



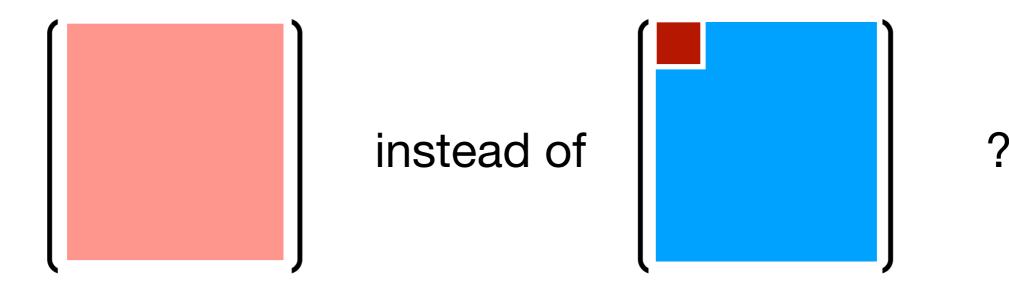
Deconfinement takes place even in matrix model, which has no spatial dimensions.

(Exception: first order transition, large volume)

#### Why don't all N<sup>2</sup> d.o.f. gently excited?

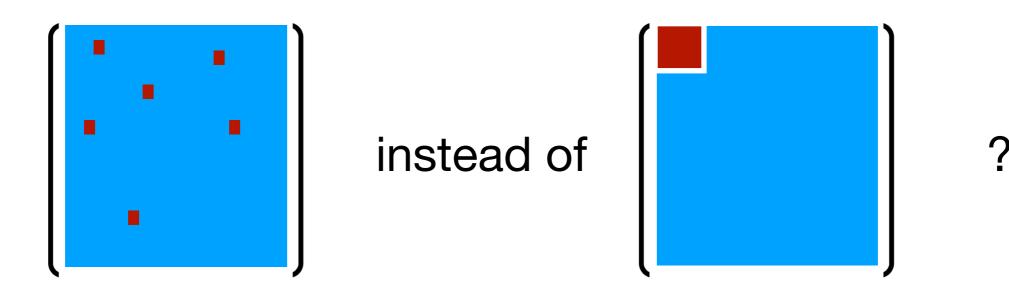


#### Why don't all N<sup>2</sup> d.o.f. gently excited?

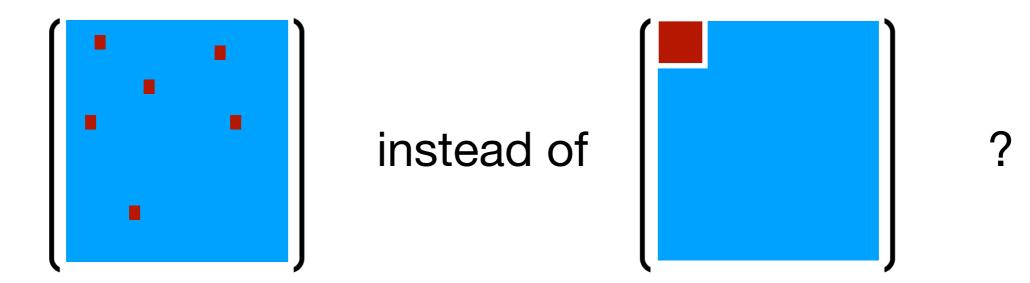


# In quantum mechanics, parametrically small excitation is impossible.

Why should symmetry preserved partly?



Why should symmetry preserved partly?

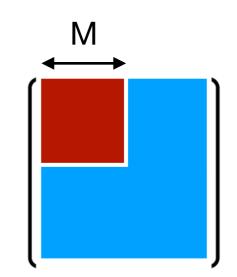


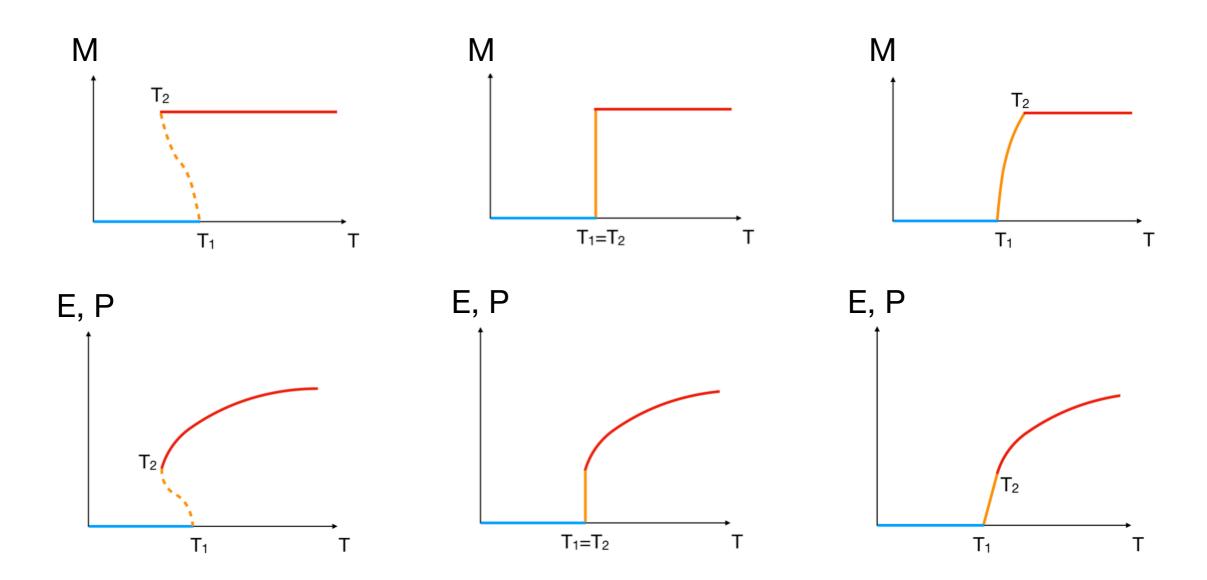
# It is natural to expect a large symmetry at saddle point.

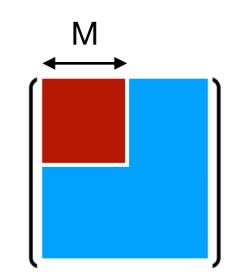
# Phase Diagrams

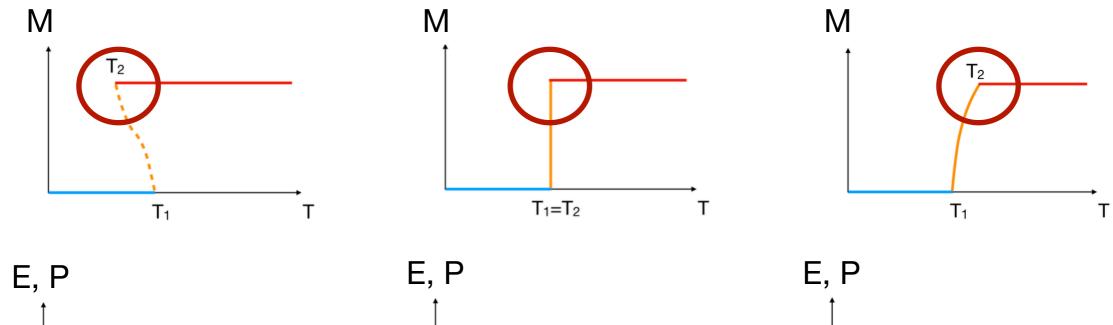
Hagedorn transition Gross-Witten-Wadia transition Gauge symmetry breaking

(more precise argument is given later)

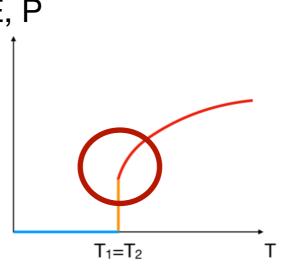


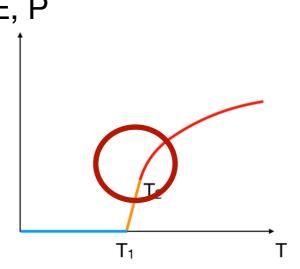




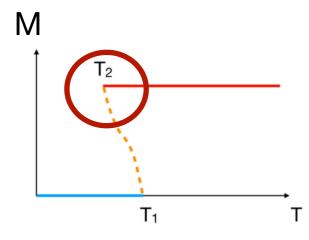


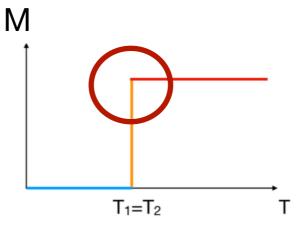


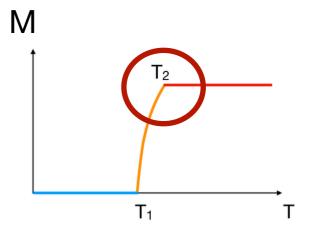




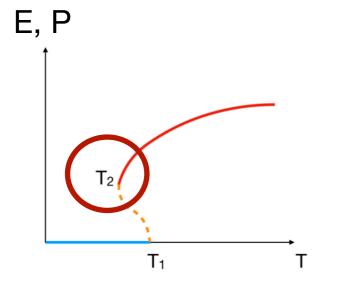
## **Gross-Witten-Wadia transition**

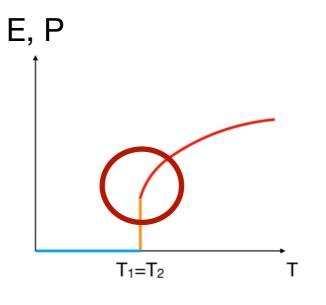


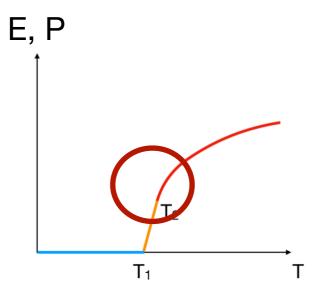




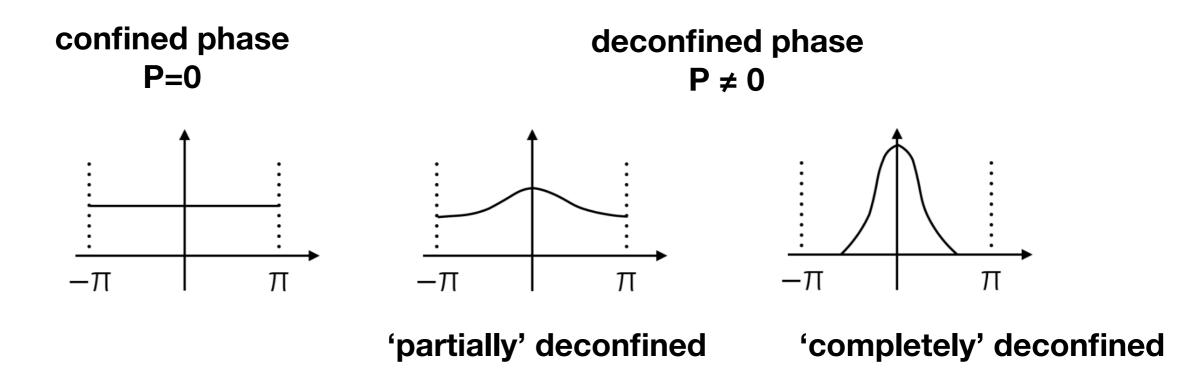
Μ







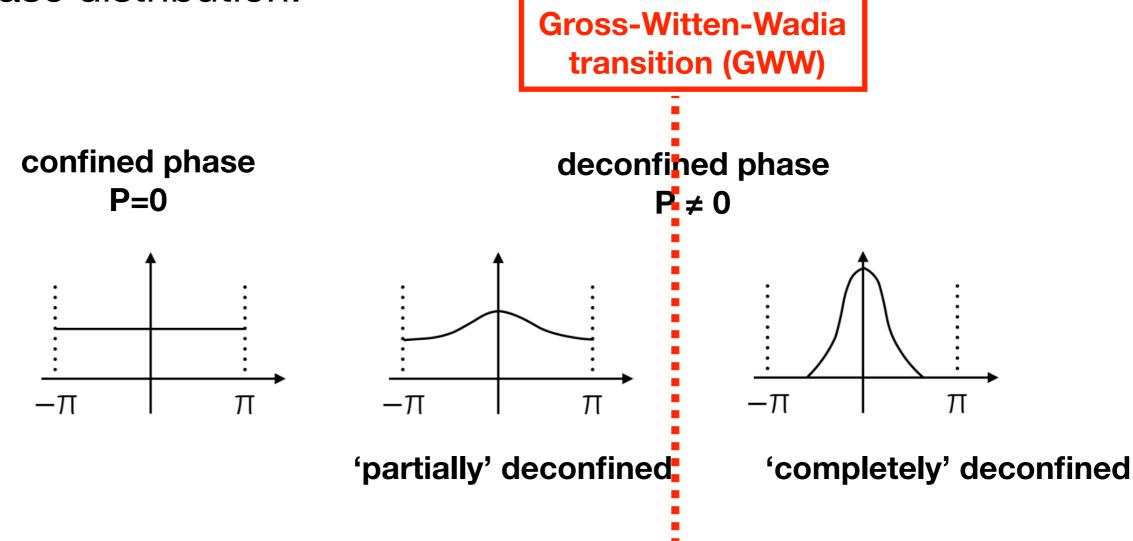
- Polyakov loop  $P = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j}$
- Phase distribution:



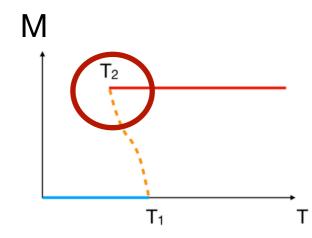
Polyakov loop

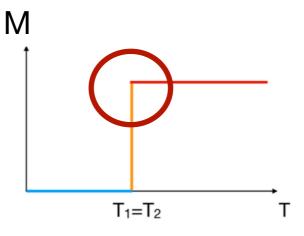
$$P = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j}$$

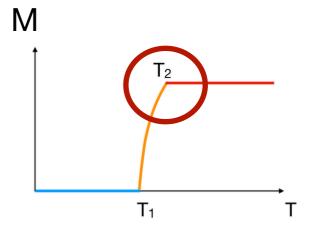
• Phase distribution:

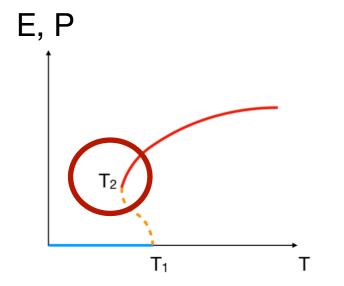


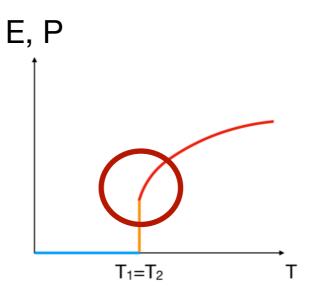
# Gross-Witten-Wadia transition = "partial deconfinement → complete deconfinement" transition

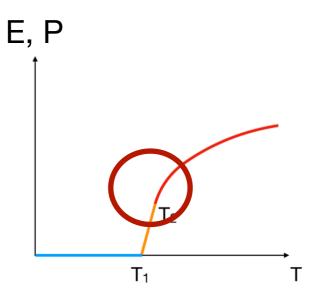








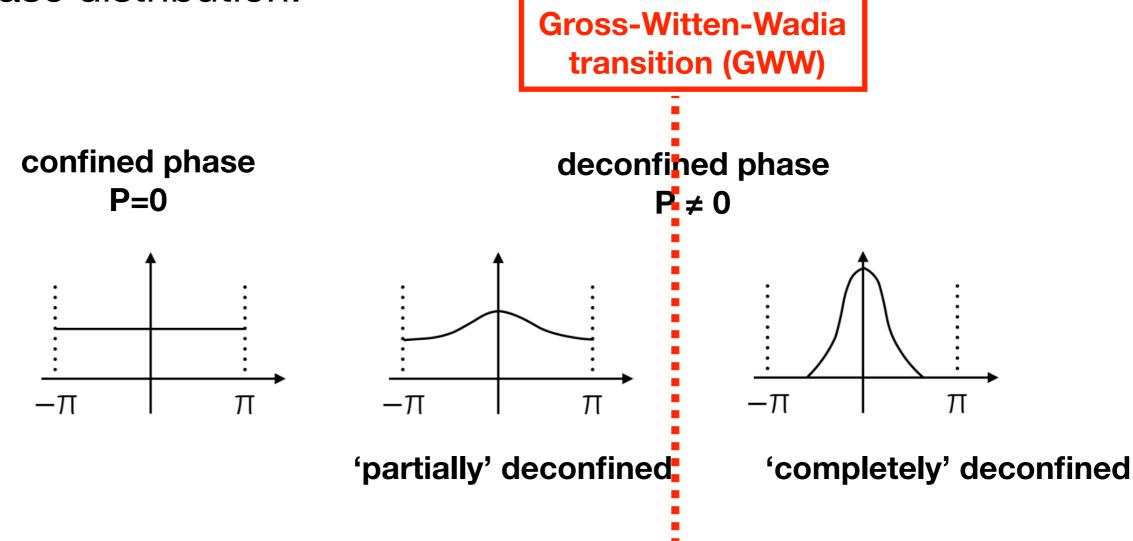




Polyakov loop

$$P = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j}$$

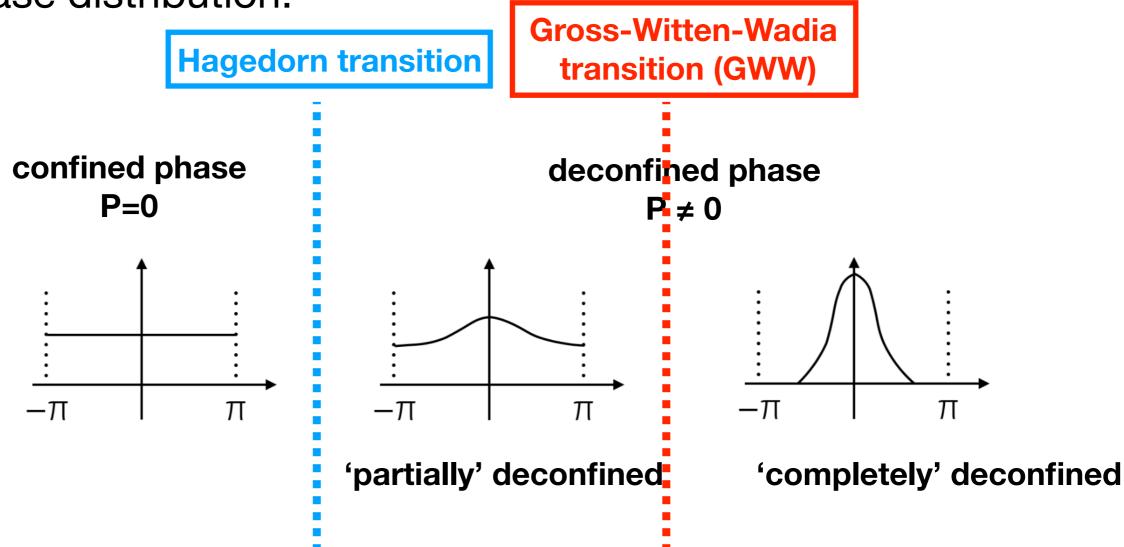
• Phase distribution:

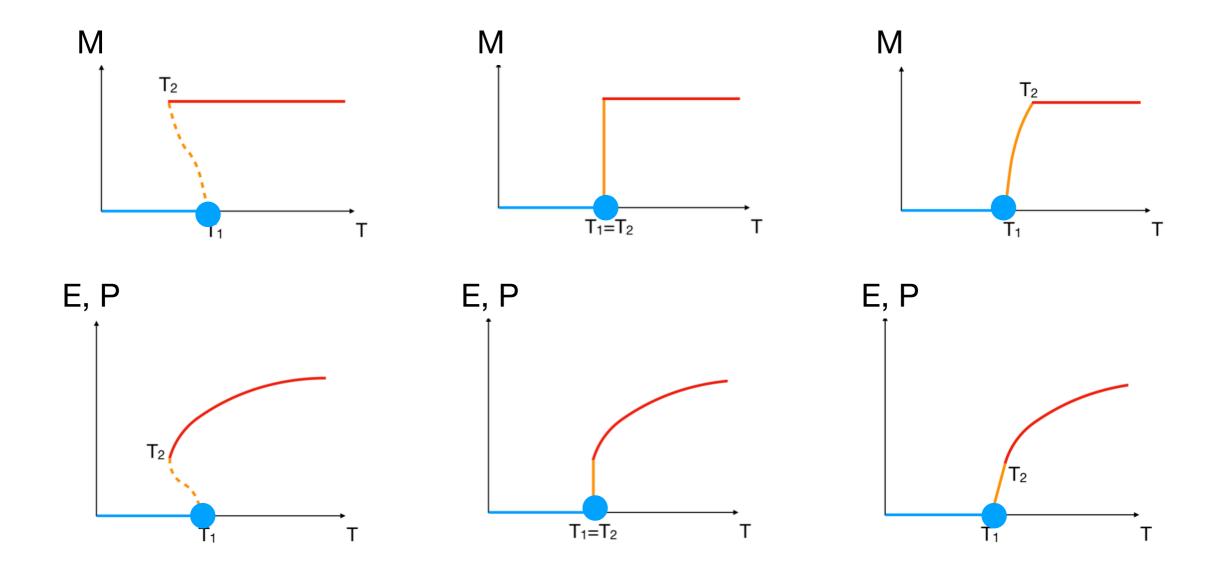


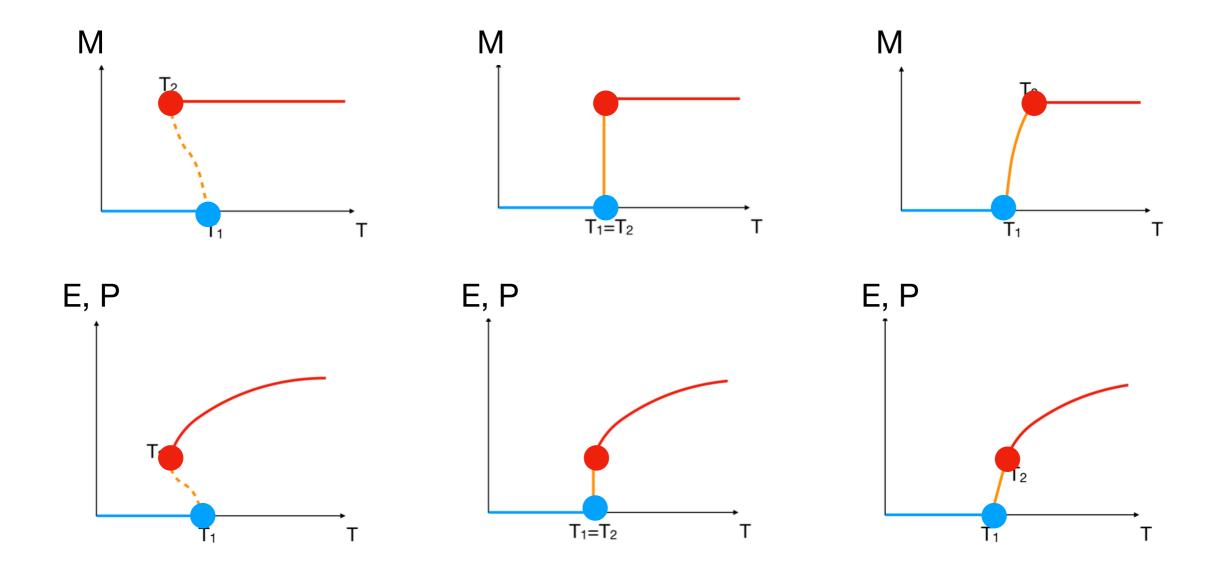
• Polyakov loop P =

$$\mathbf{P} = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j}$$

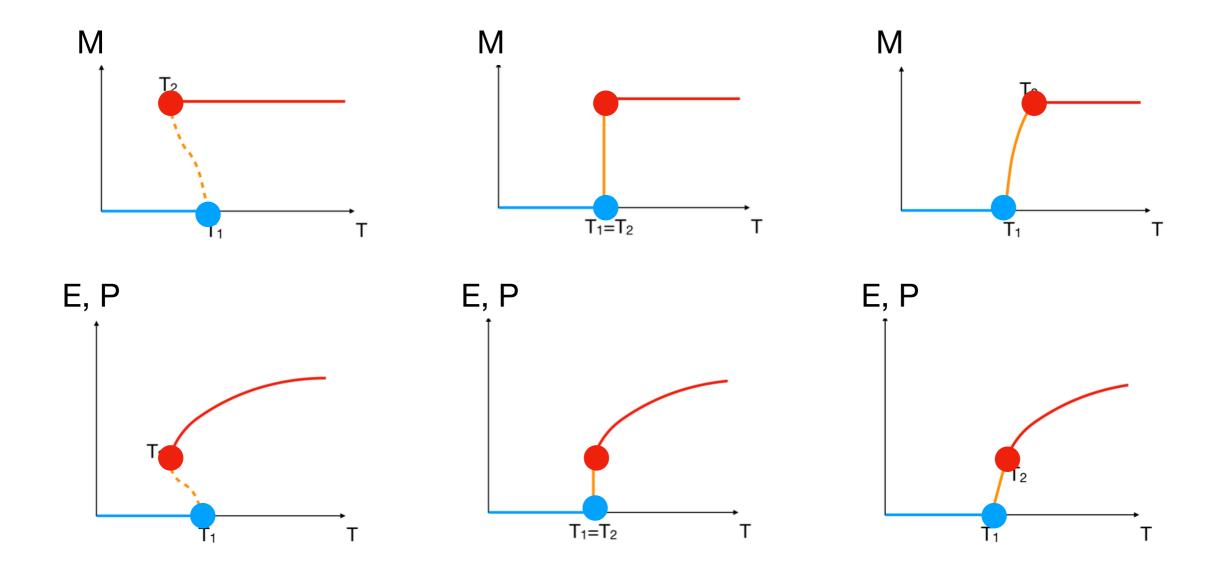
• Phase distribution:





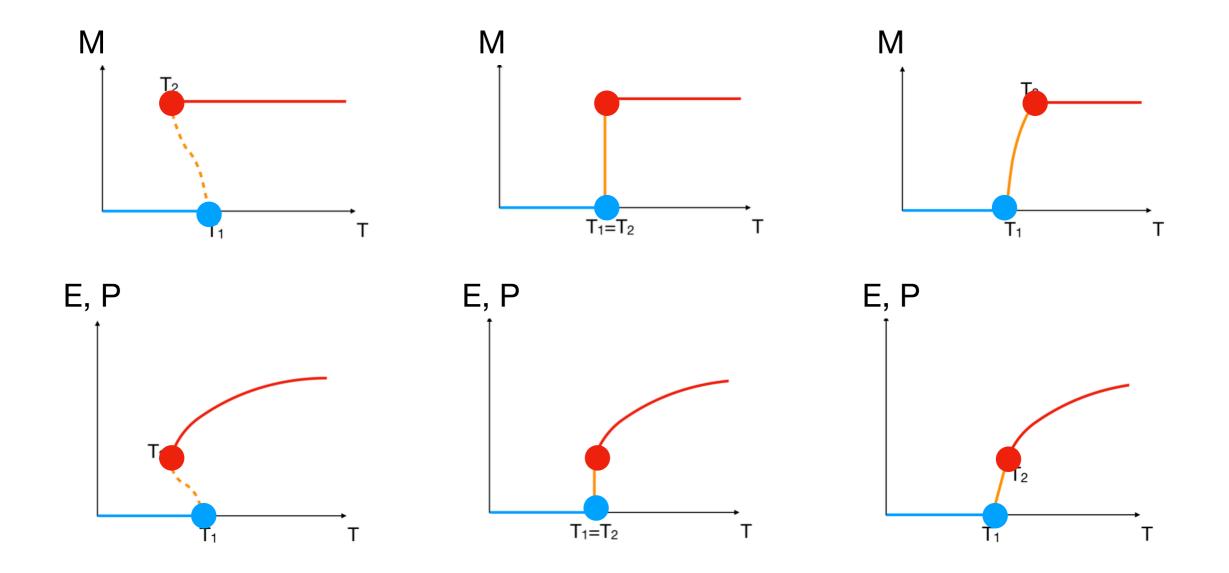


transition 2: partial deconfinement to complete deconfinement (black hole formation ends)



transition 2: partial deconfinement to complete deconfinement (black hole formation ends)

 $SU(N) \rightarrow SU(M) \times SU(N-M) \times U(1) \rightarrow SU(N)$ 



transition 2: partial deconfinement to complete deconfinement (black hole formation ends)

$$SU(N) \rightarrow SU(M) \times SU(N-M) \times U(1) \rightarrow SU(N)$$

No need for center symmetry. No need for chiral symmetry. Applies to QCD.

# Where did it come from?



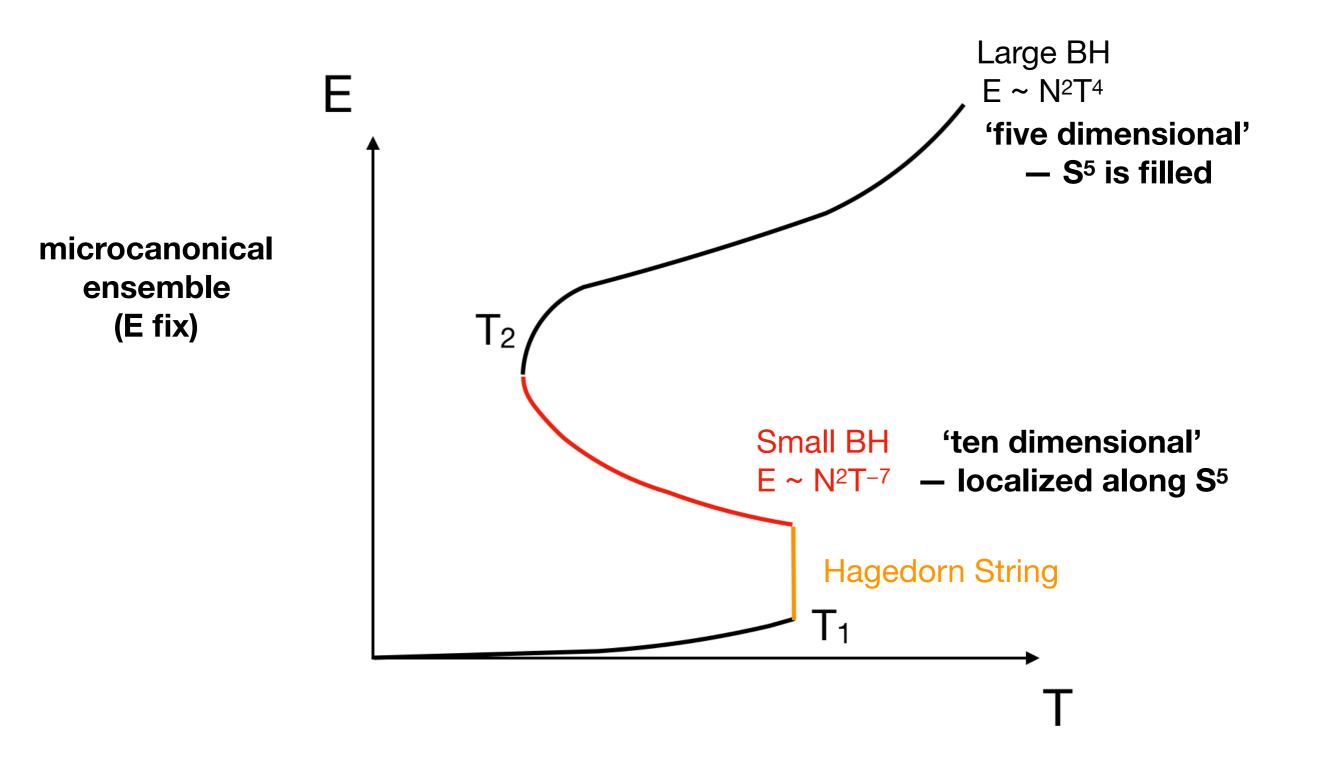
J. Maltz

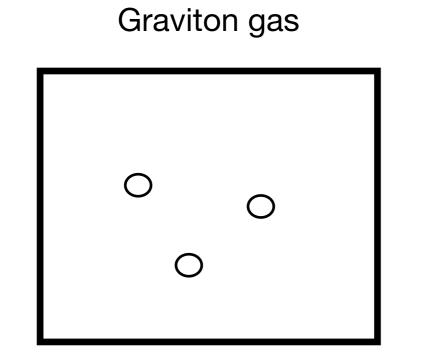


E. Berkowitz

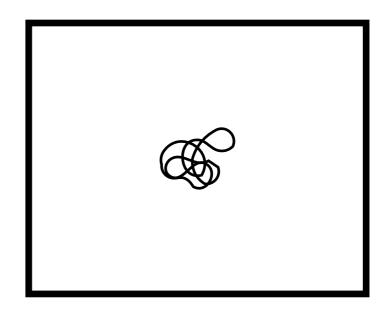
Berkowitz-M.H.-Maltz, 2016, PRD (Higgsing version) M.H.-Maltz, 2016, JHEP; Susskind, unpublished

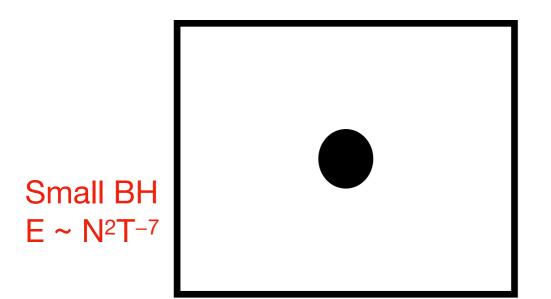
## Black Hole in $AdS_5 \times S^5 = 4d N = 4 SYM on S^3$

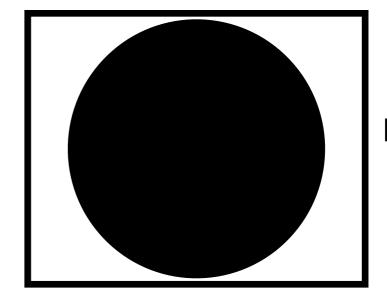




#### Hagedorn String

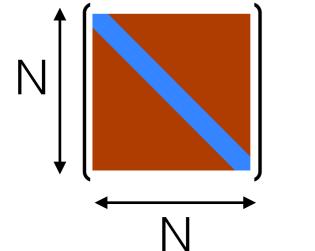


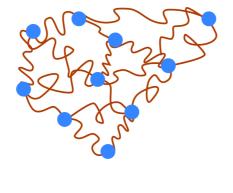


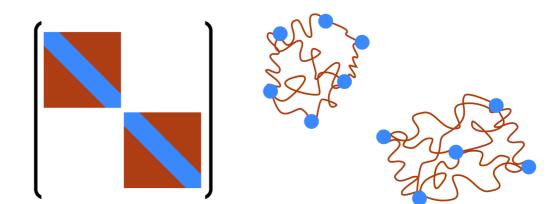


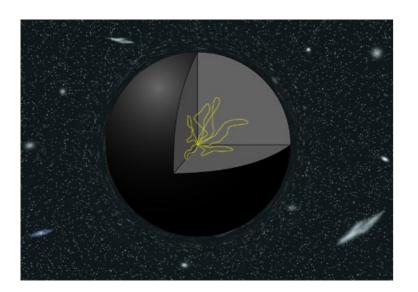
Large BH E ~ N<sup>2</sup>T<sup>4</sup>

## **Higgsing Picture of Yang-Mills and String**









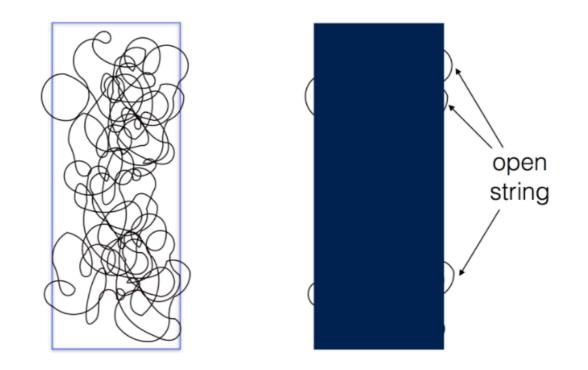
diagonal elements = particles (D-branes) off-diagonal elements = open strings

(Witten, 1994)

black hole = bound state of D-branes and strings

#### **'SU(N)** theory describes N D-branes + strings'

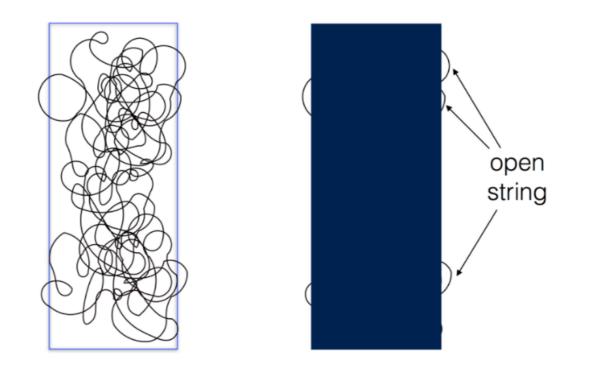
## Confinement/Deconfinement Picture of Yang-Mills and String



**D**-brane = condensation of string = deconfinement phase

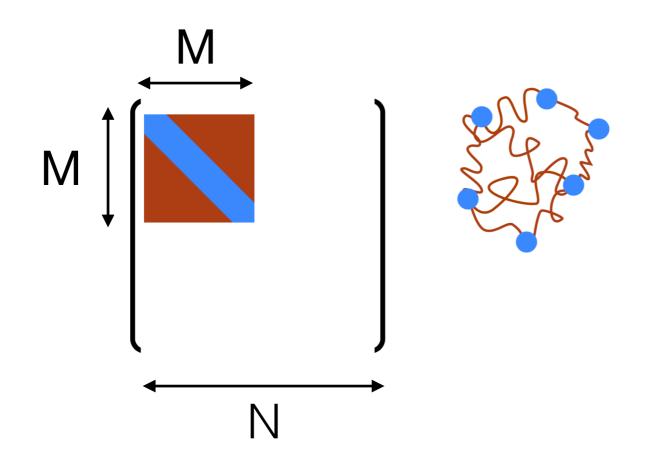
Confinement phase  $\rightarrow$  no D-brane Deconfinement phase  $\rightarrow$  N D-branes

## Partial Deconfinement Picture of Yang-Mills and String



#### D-brane = condensation of string = deconfined sector

'SU(N) theory describes N or less D-branes + strings'



#### Bound state of M D-branes

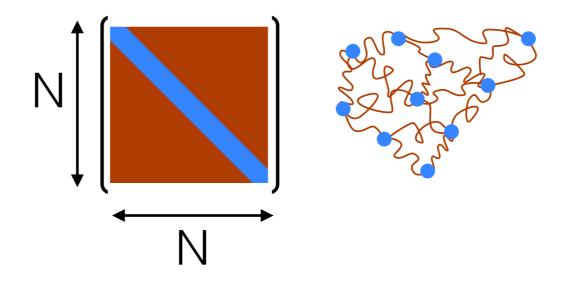
U(M) is deconfined — 'partial deconfinement'

#### It can explain E ~ $N^2T^{-7}$ for 4d SYM, $N^{3/2}T^{-8}$ for ABJM

(String Theory  $\rightarrow$  10d) (M-Theory  $\rightarrow$  11d)

(MH-Maltz, 2016)

## Why is positive specific heat natural?

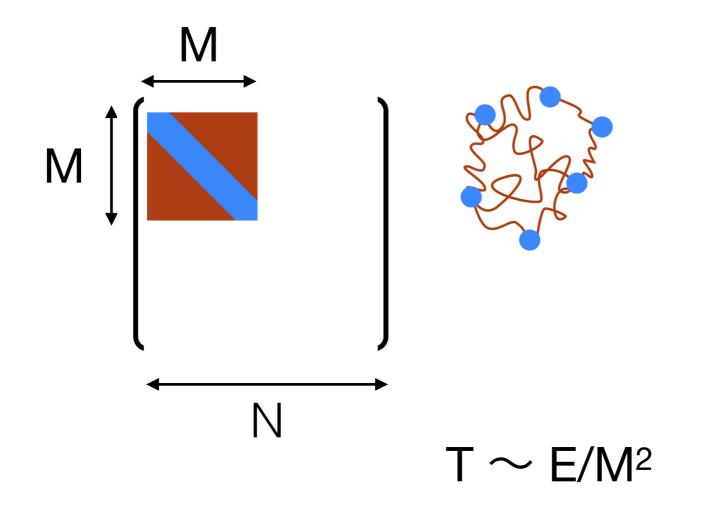


T~E/N<sup>2</sup>

 $T' \sim E'/N^2$ 

N<sup>2</sup> is fixed  $\rightarrow$  T'>T if E' > E

# Why can negative specific heat appear?

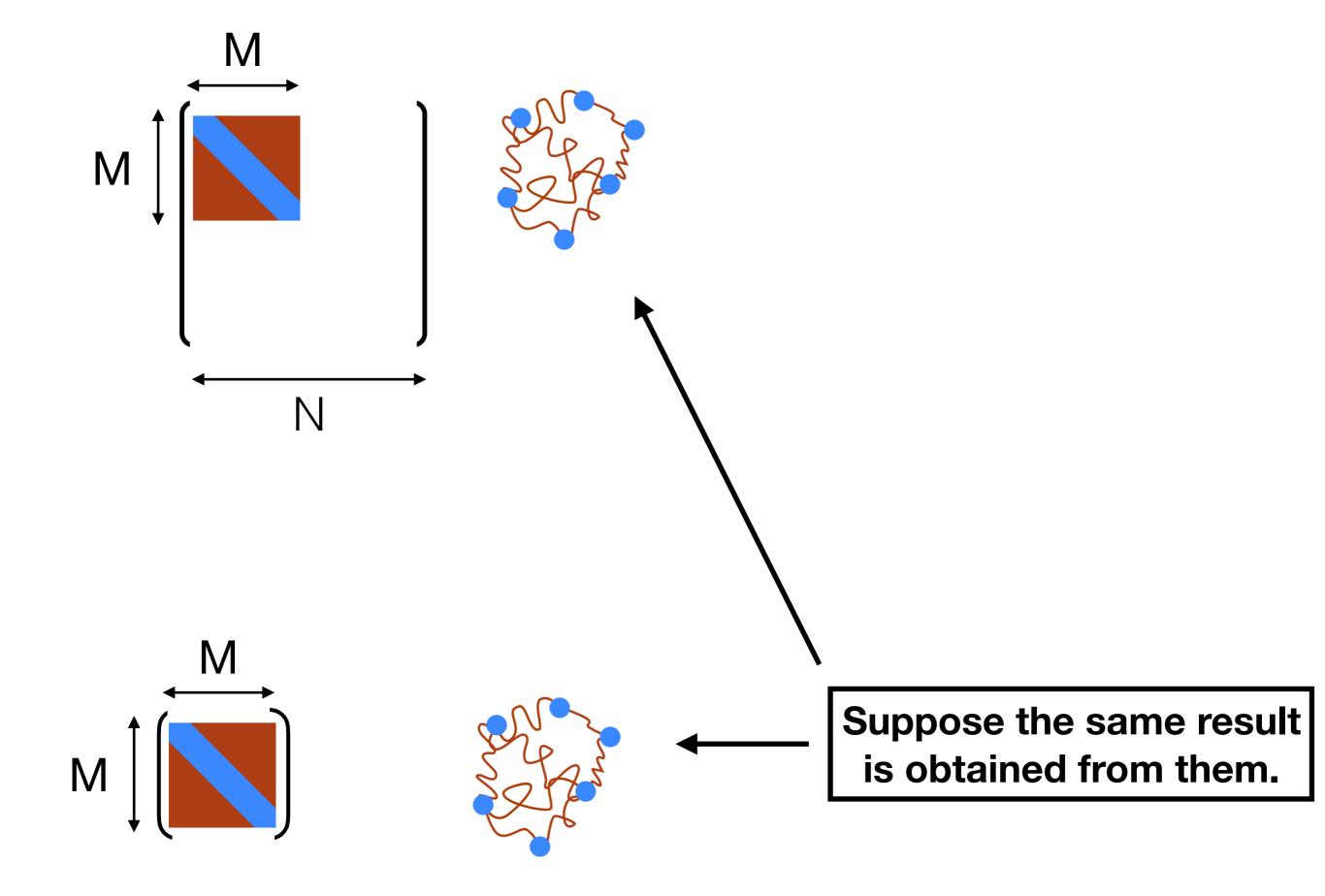


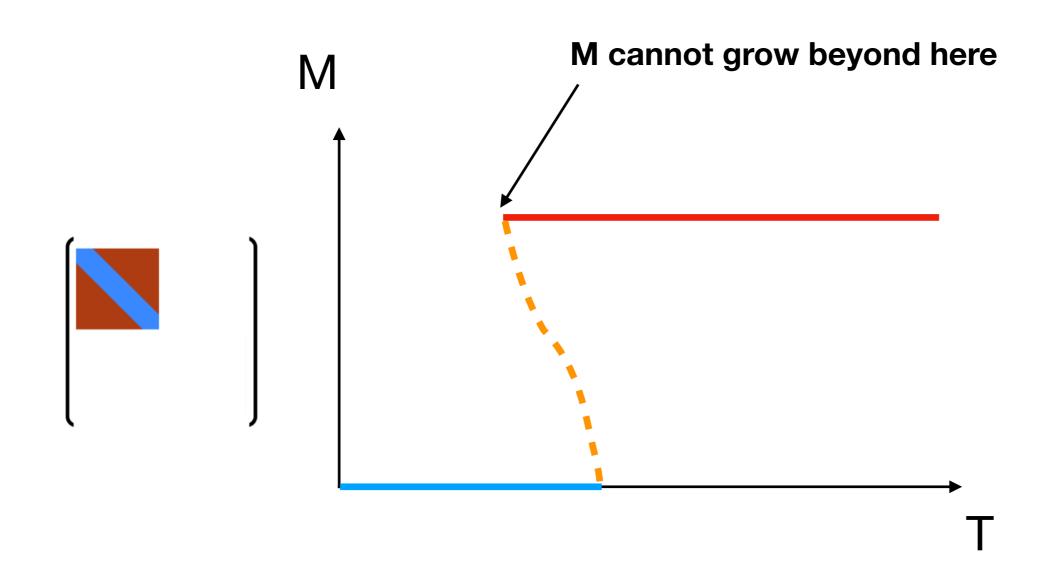
M is a function of E

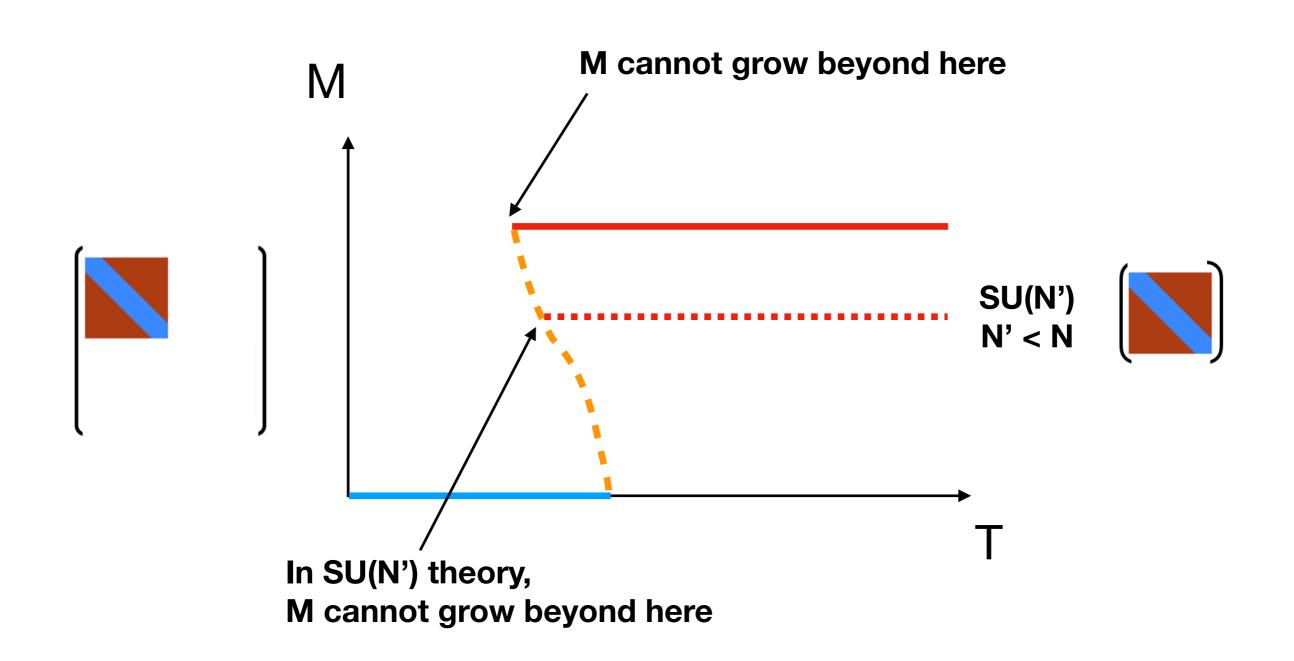
Berkowitz-M.H.-Maltz, 2016, PRD (Higgsing version) M.H.-Maltz, 2016, JHEP

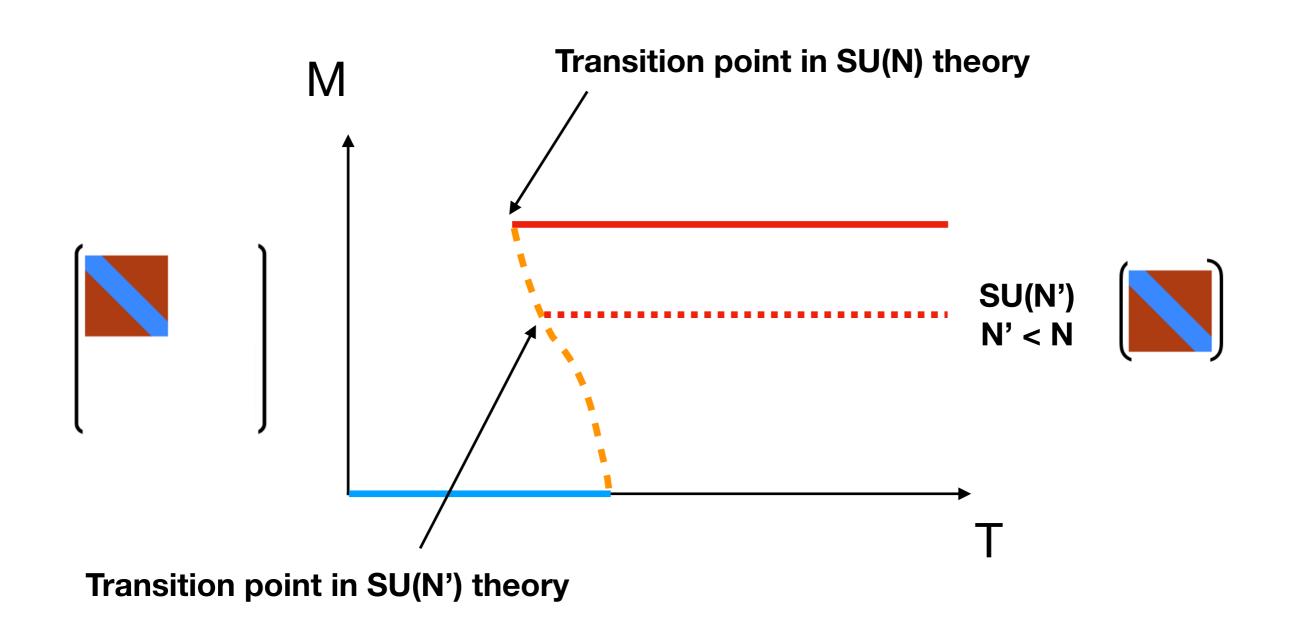
# Explicit demonstration in simple theories

M.H., Jevicki, Peng, Wintergerst, 1909.09118 [hep-th]

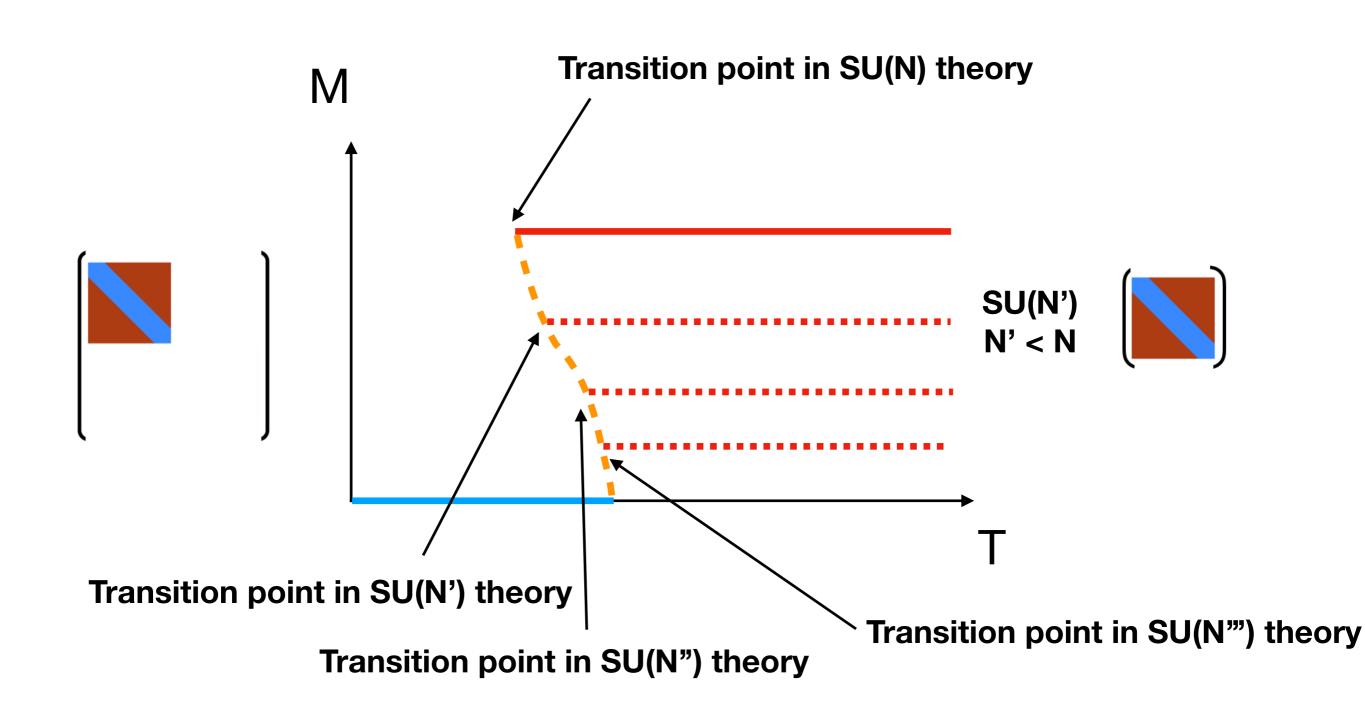








M.H., Maltz, 2016



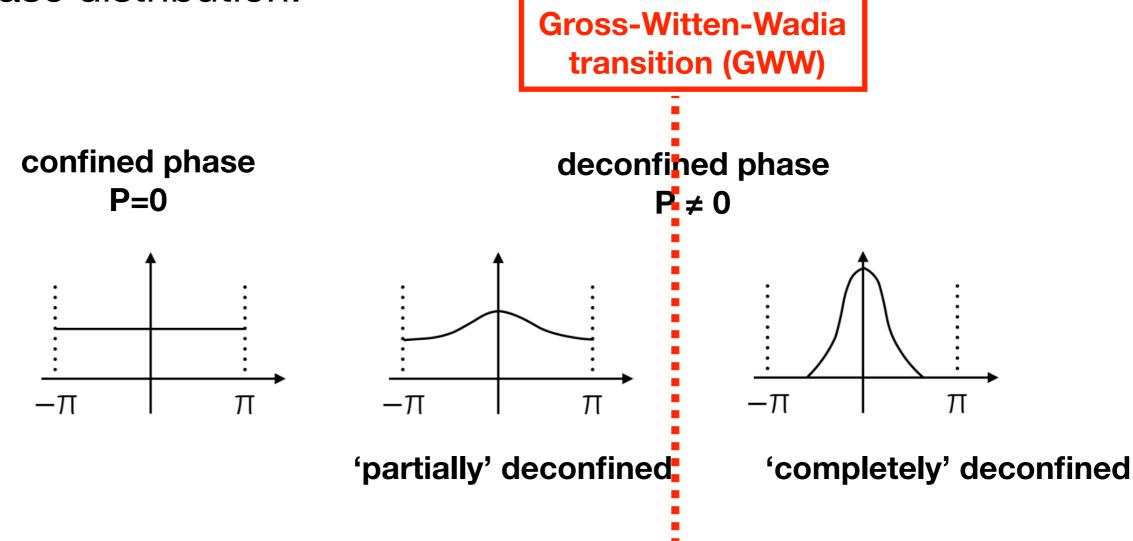
N''' < N'' < N' < N

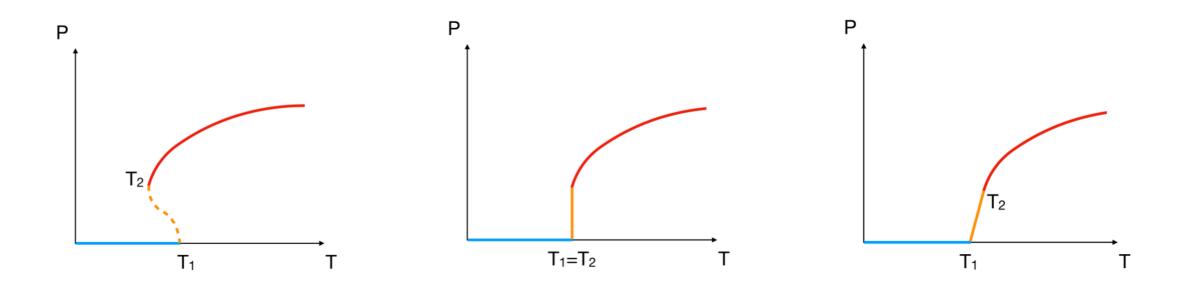
M.H., Maltz, 2016

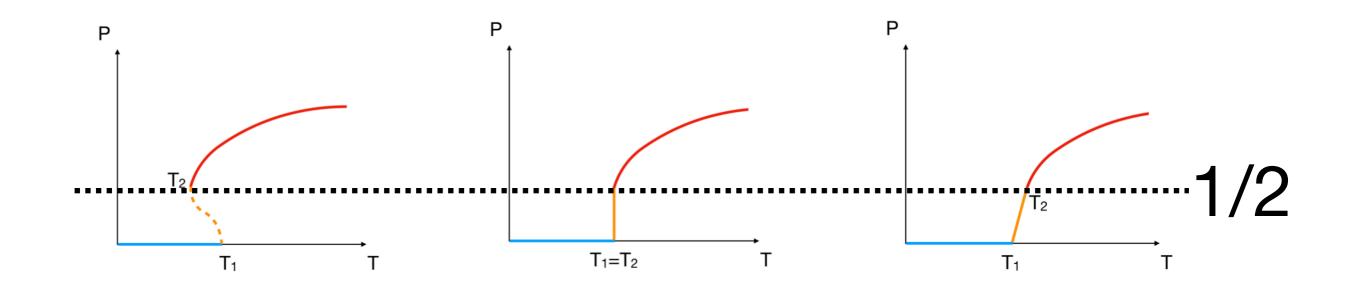
Polyakov loop

$$P = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j}$$

• Phase distribution:



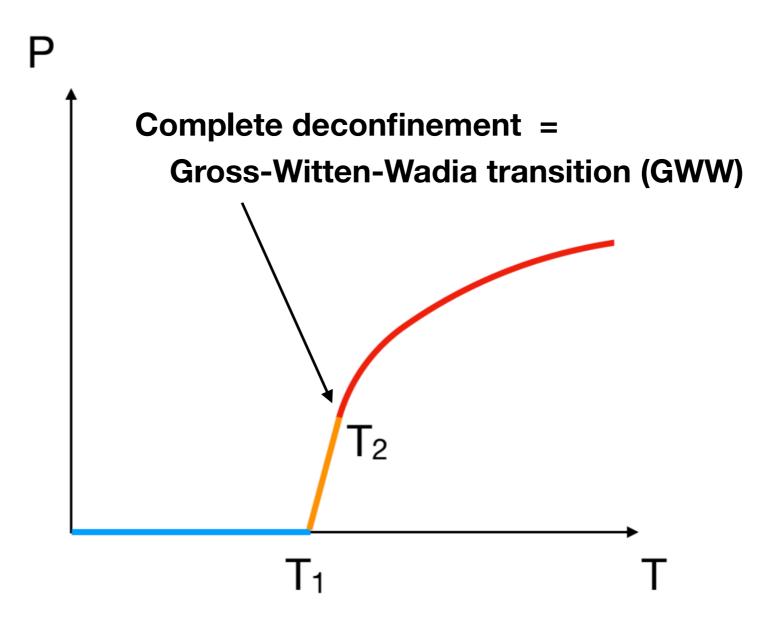


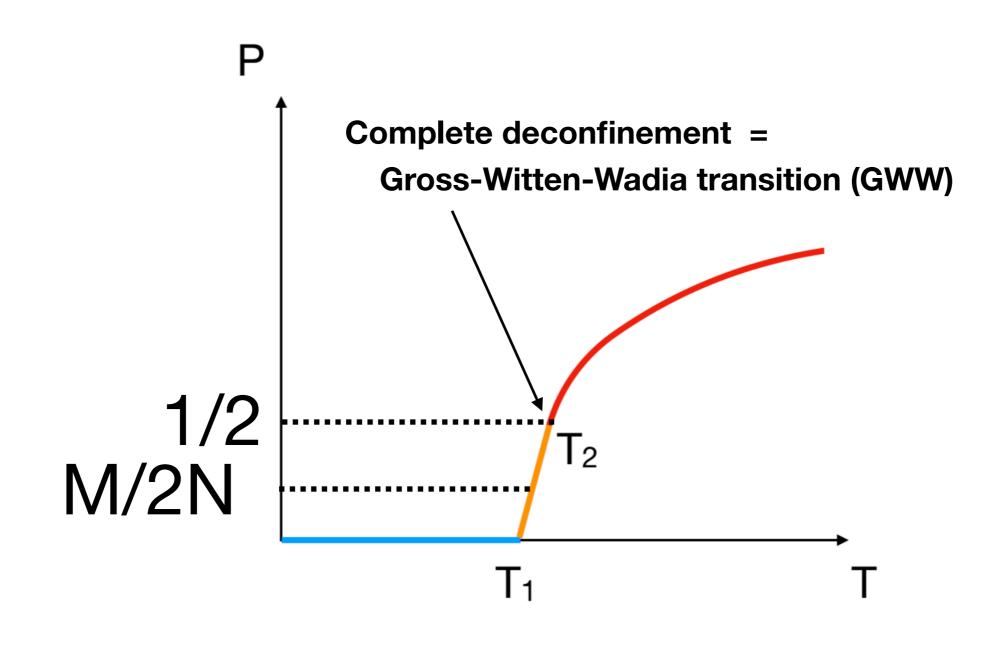


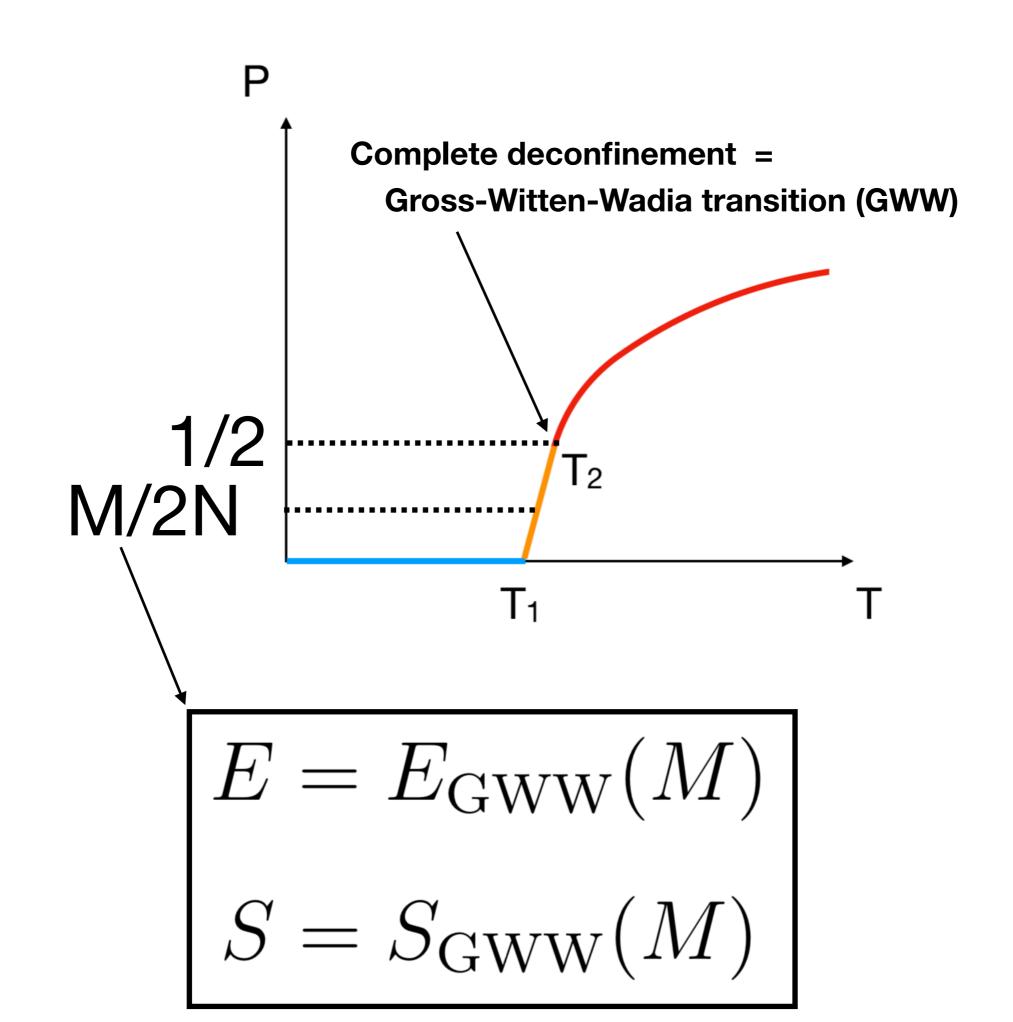
$$\rho(\theta) = \left(1 - \frac{M}{N}\right)\rho_{\text{confine}}(\theta) + \frac{M}{N} \cdot \rho_{\text{GWW}}(\theta; M)$$
$$= \frac{1}{2\pi} \left(1 - \frac{M}{N}\right) + \frac{M}{N} \cdot \rho_{\text{GWW}}(\theta; M).$$

Holds in all examples we have studied.

M.H.-Ishiki-Watanabe, 2018





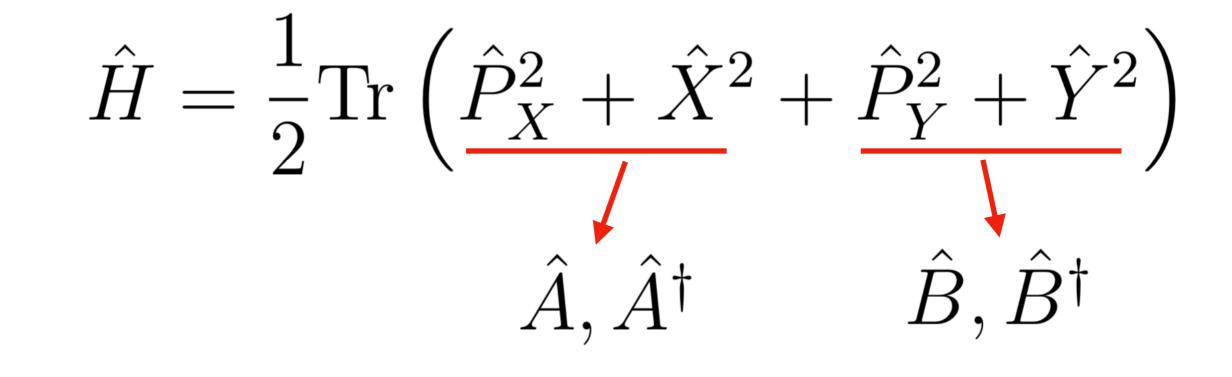


### Simplest Example:

### Gauged Gaussian Two Matrix Model

$$\hat{H} = \frac{1}{2} \text{Tr} \left( \hat{P}_X^2 + \hat{X}^2 + \hat{P}_Y^2 + \hat{Y}^2 \right)$$

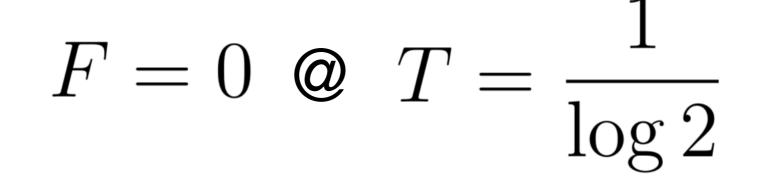
(Other cases are very similar)

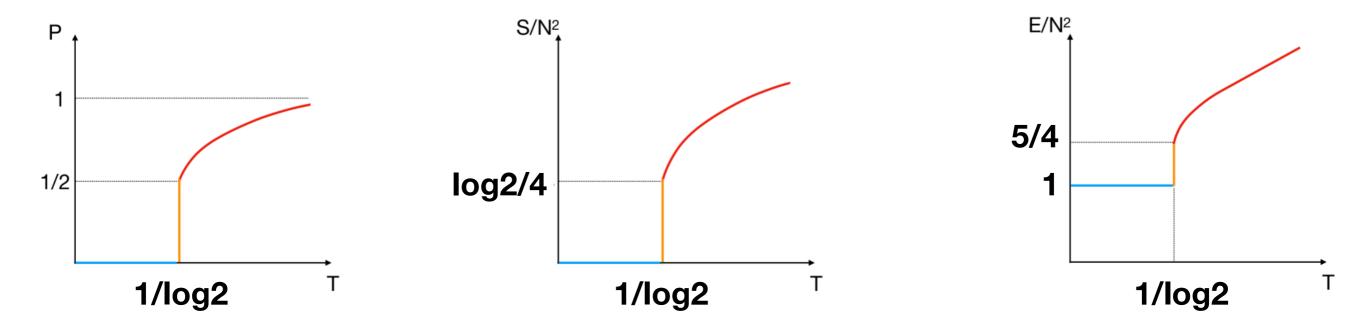


 $\operatorname{Tr}\left(\hat{A}^{\dagger}\hat{A}^{\dagger}\hat{B}^{\dagger}\hat{A}^{\dagger}\cdots\right)\left|0\right\rangle$ 

E = L (up to zero-pt energy)  $S = L \log 2$  (# of states ~ 2<sup>L</sup>)

# $F = E - TS = L(1 - T\log 2)$ (up to zero-pt energy)

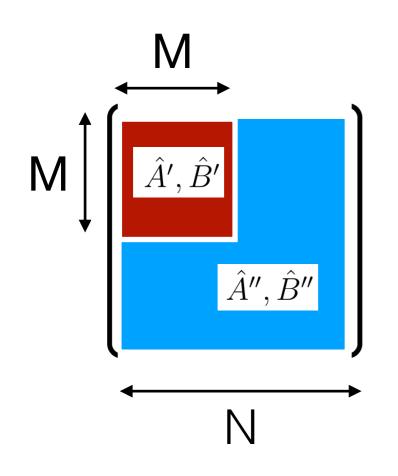




$$E(T = T_c, P, N) = N^2 + N^2 P^2 = N^2 + \frac{M^2}{4}$$
$$S(T = T_c, P, N) = \frac{M^2}{4} \log 2$$
$$\rho(\theta) = \frac{1}{2\pi} (1 + 2P \cos \theta) = (1 - 2P) \cdot \frac{1}{2\pi} + 2P \cdot \frac{1}{2\pi} (1 + \cos \theta)$$
$$= \left(1 - \frac{M}{N}\right) \cdot \frac{1}{2\pi} + \frac{M}{N} \cdot \frac{1}{2\pi} (1 + \cos \theta)$$

$$E = E_{\rm GWW}(M)$$
$$S = S_{\rm GWW}(M)$$

We will construct the states explicitly, and demonstrate the partial deconfinement.

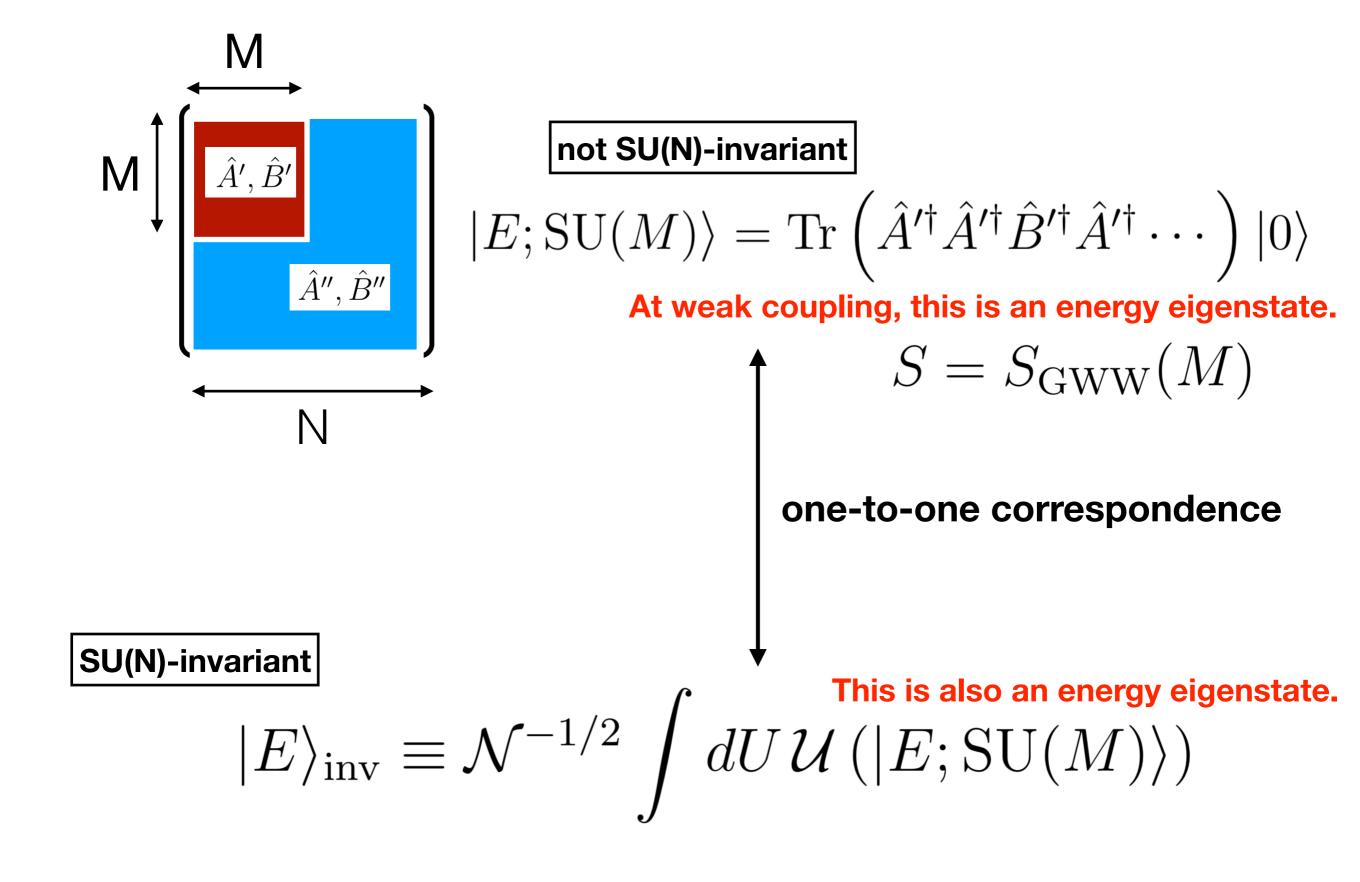


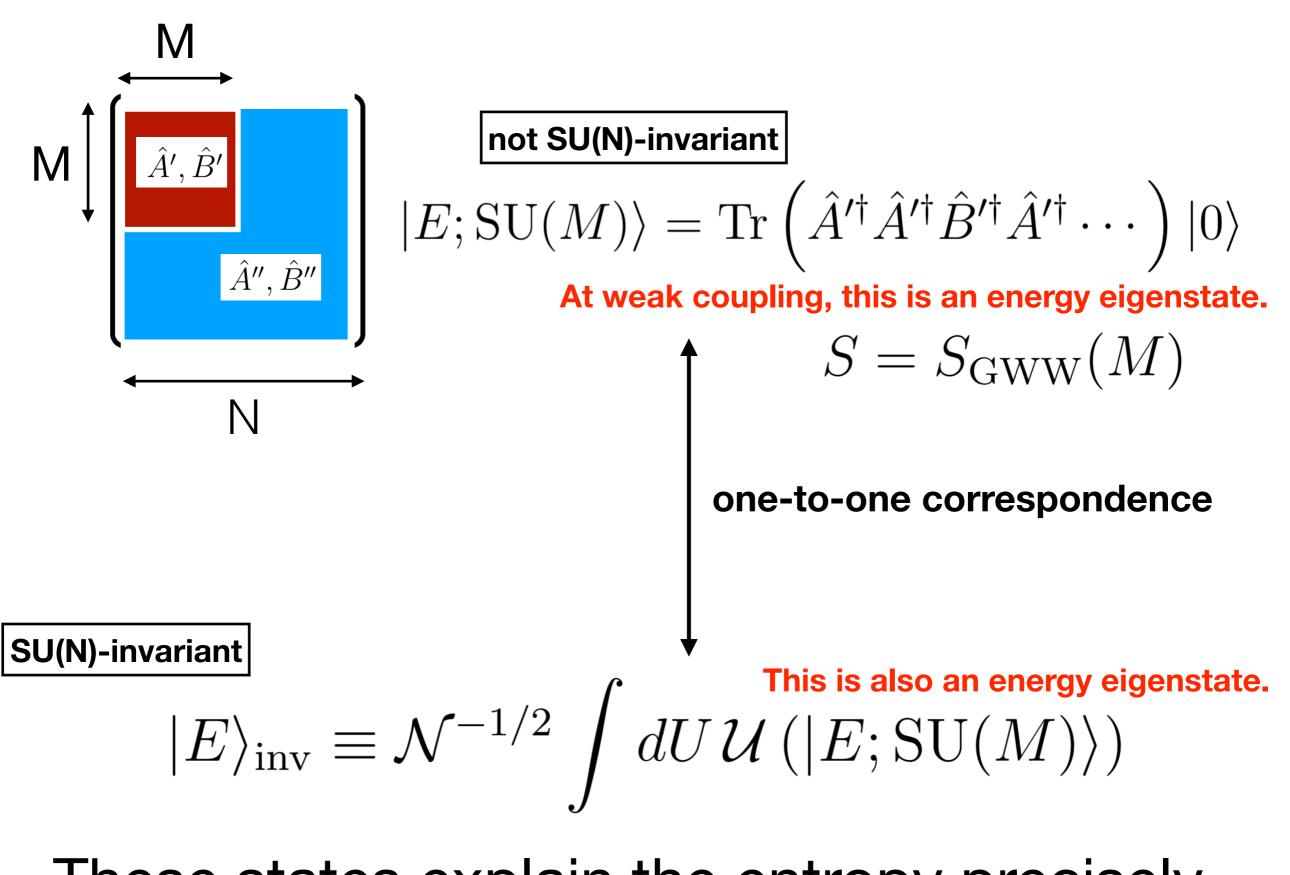
#### not SU(N)-invariant

$$E; \mathrm{SU}(M) \rangle = \mathrm{Tr}\left(\hat{A}^{\prime \dagger} \hat{A}^{\prime \dagger} \hat{B}^{\prime \dagger} \hat{A}^{\prime \dagger} \cdots\right) |0\rangle$$

At weak coupling, this is an energy eigenstate.

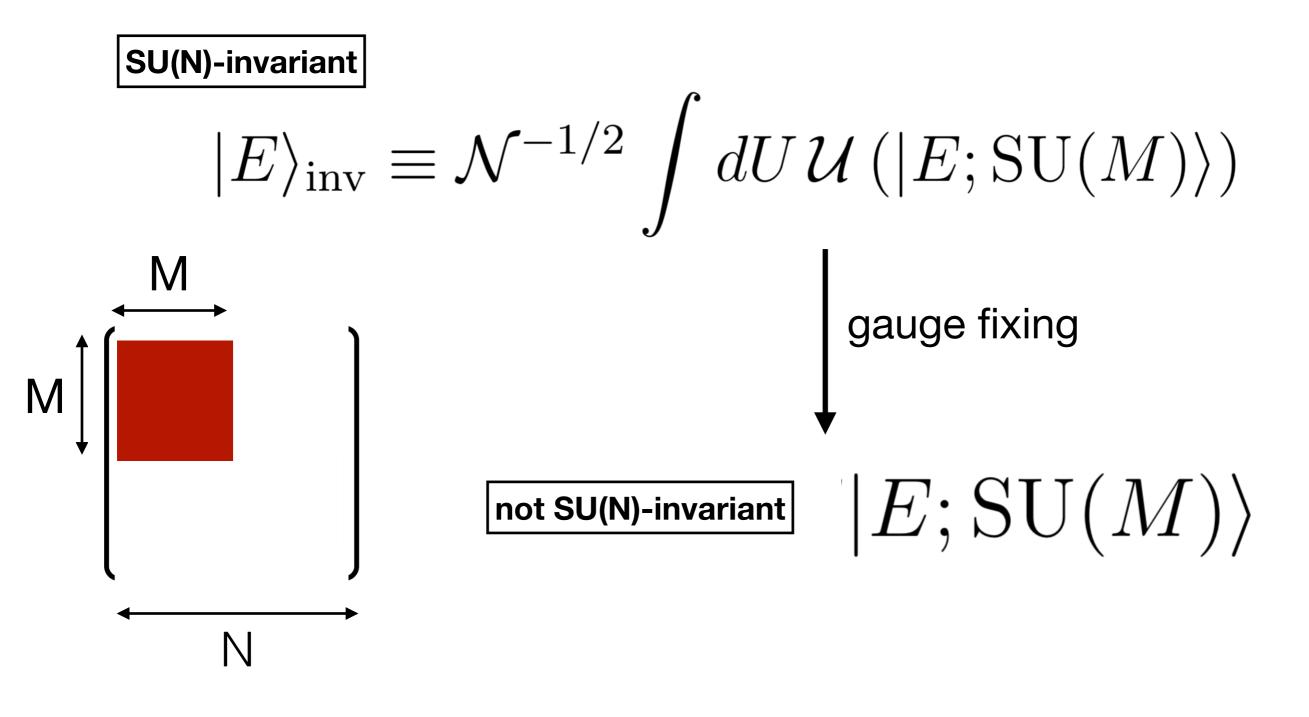
$$S = S_{\rm GWW}(M)$$



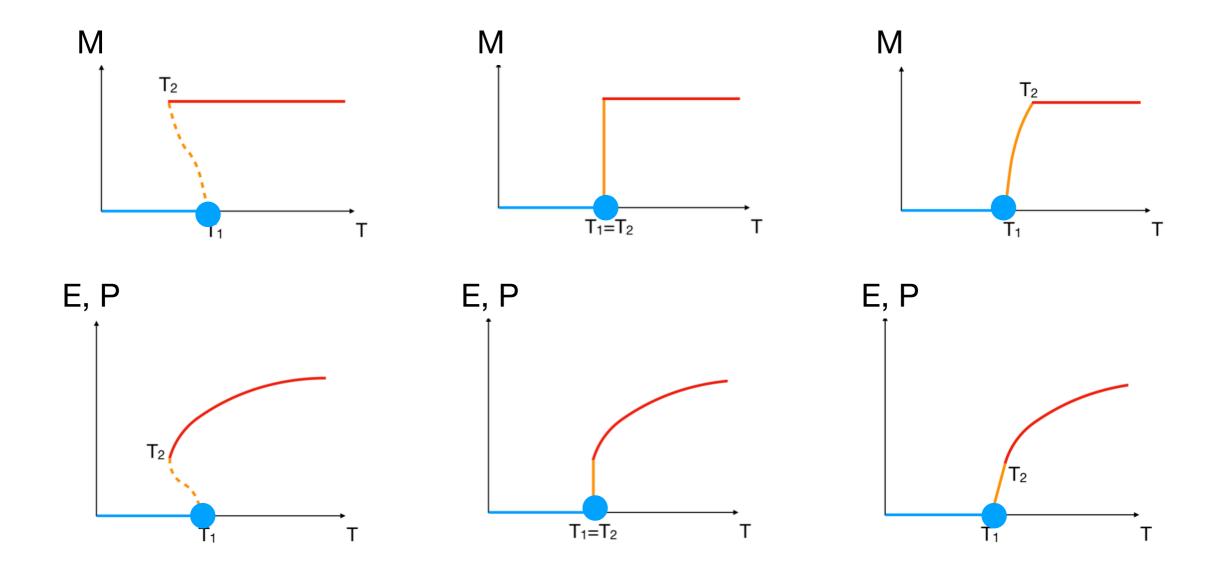


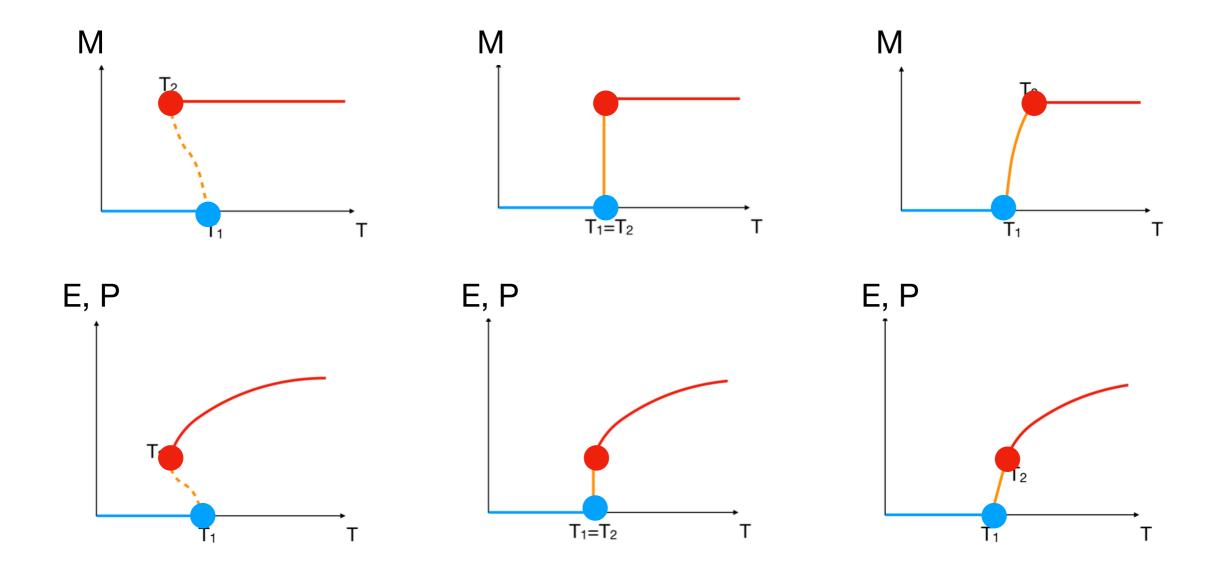
#### These states explain the entropy precisely.

#### 'Spontaneous gauge symmetry breaking'

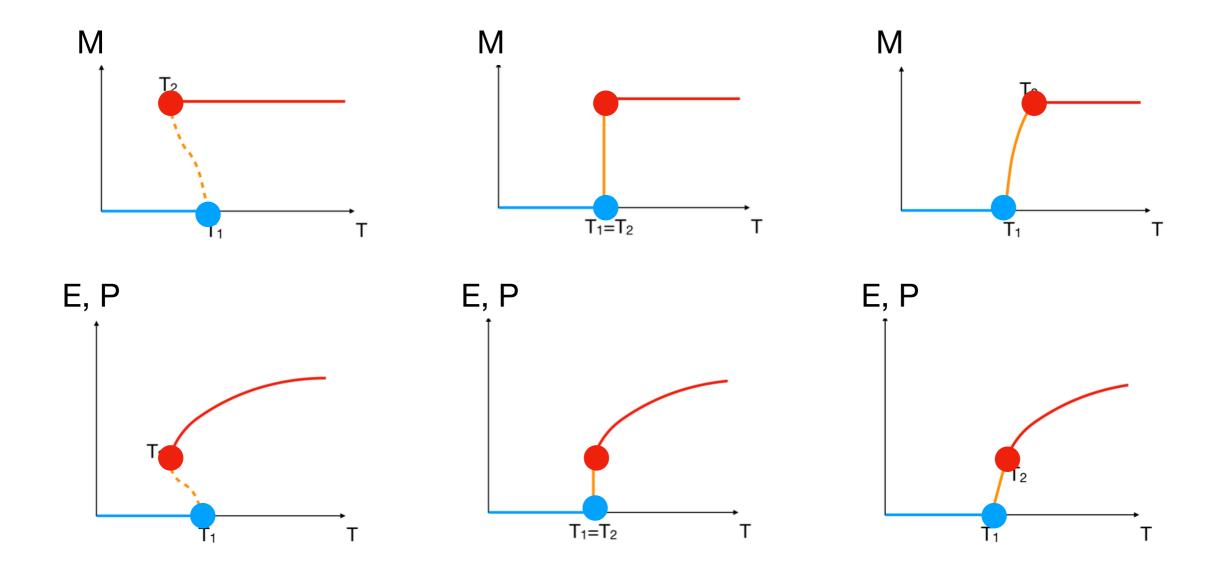


- Global part of gauge symmetry breaks spontaneously.
- It is convenient to fix the local part, like usual Higgsing.
- 'Gauge symmetry breaking' provides us with a 'useful fiction' which makes physics understandable.



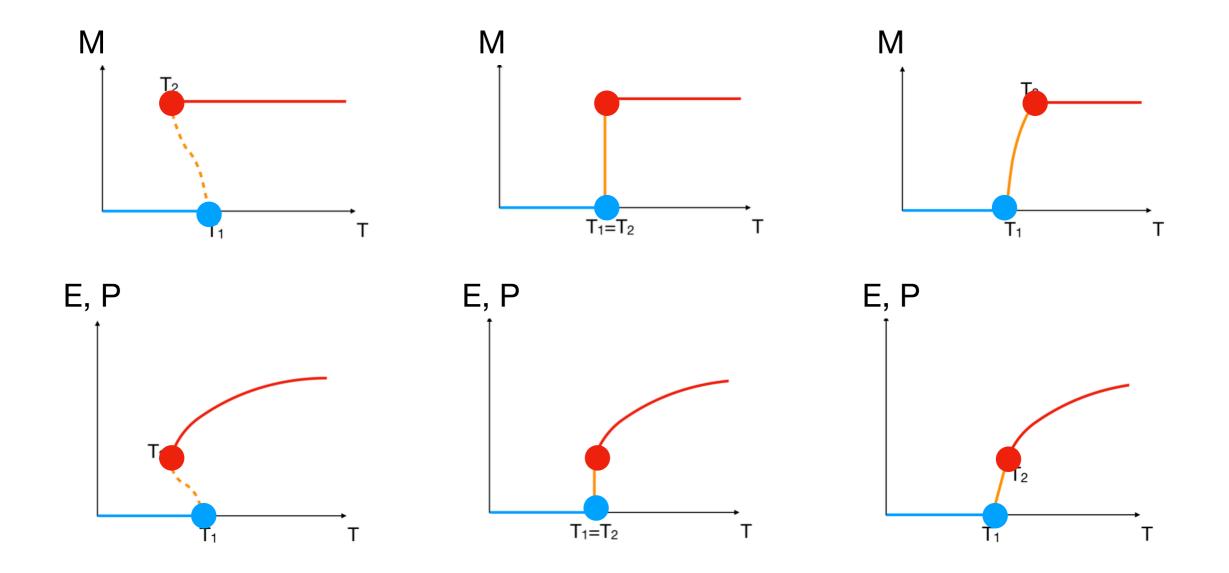


transition 2: partial deconfinement to complete deconfinement (black hole formation ends)



transition 2: partial deconfinement to complete deconfinement (black hole formation ends)

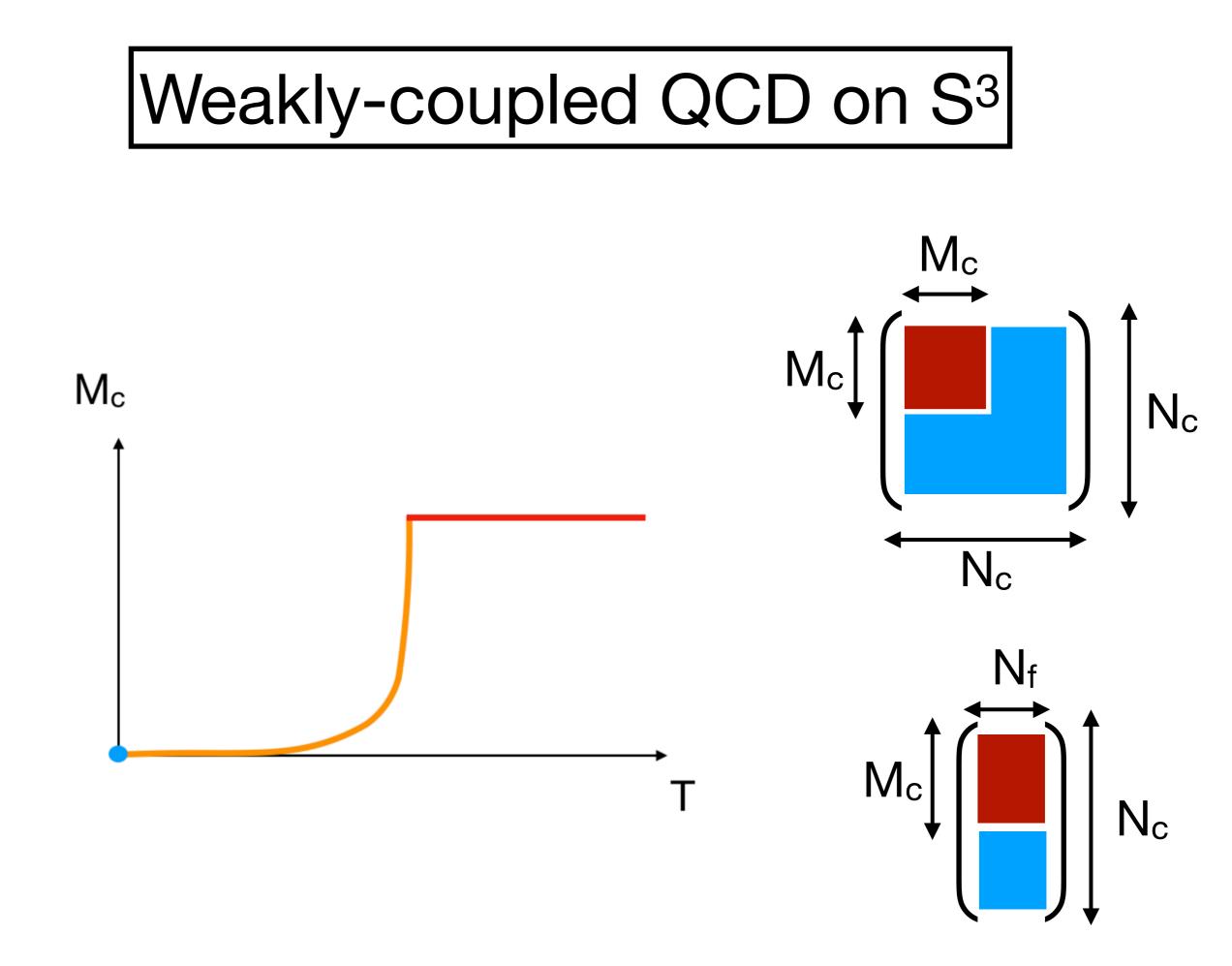
 $SU(N) \rightarrow SU(M) \times SU(N-M) \times U(1) \rightarrow SU(N)$ 



transition 2: partial deconfinement to complete deconfinement (black hole formation ends)

$$SU(N) \rightarrow SU(M) \times SU(N-M) \times U(1) \rightarrow SU(N)$$

No need for center symmetry. No need for chiral symmetry. Applies to QCD.

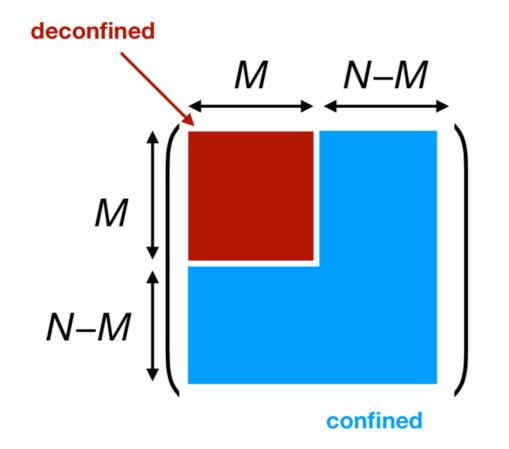


### Quantum Entanglement

between color d.o.f.

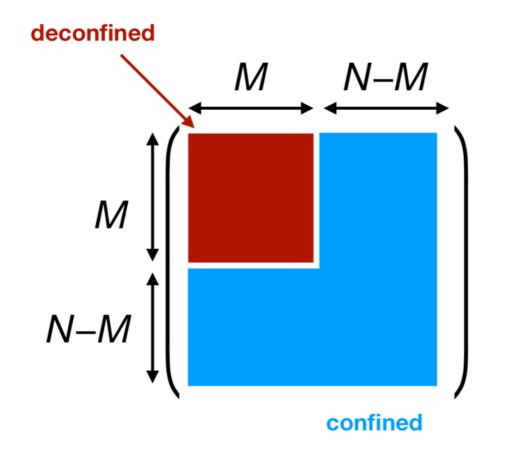
- Typically, ground state of interacting system is highly entangled.
- Thermal excitations can destroy the entanglement.

- Typically, ground state of interacting system is highly entangled.
- Thermal excitations can destroy the entanglement.



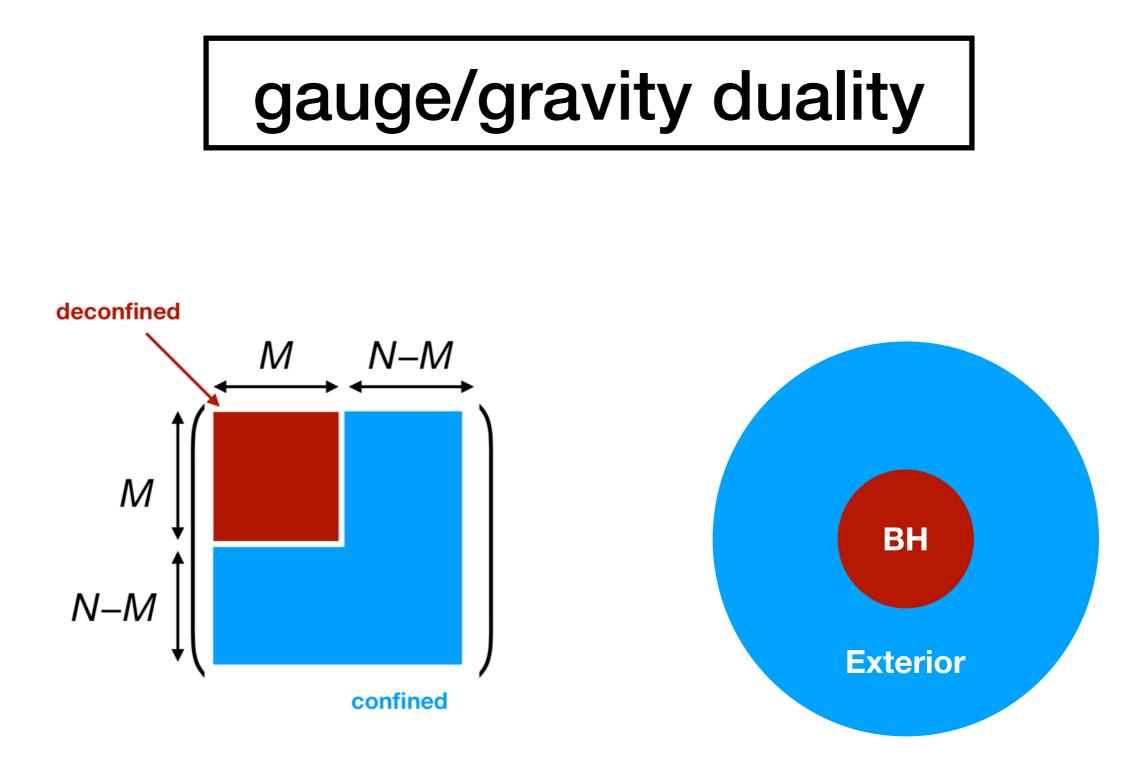
#### Confined → ground state up to 1/N corrections

- Typically, ground state of interacting system is highly entangled.
- Thermal excitations can destroy the entanglement.



Confined → ground state up to 1/N corrections

Large entanglement can survive even at finite temperature.



Entanglement between color d.o.f.  $\rightarrow$  geometry outside the horizon?

## **Future Directions**

Hiromasa Watanabe is visiting us from Univ. Tsukuba, until Oct 31.

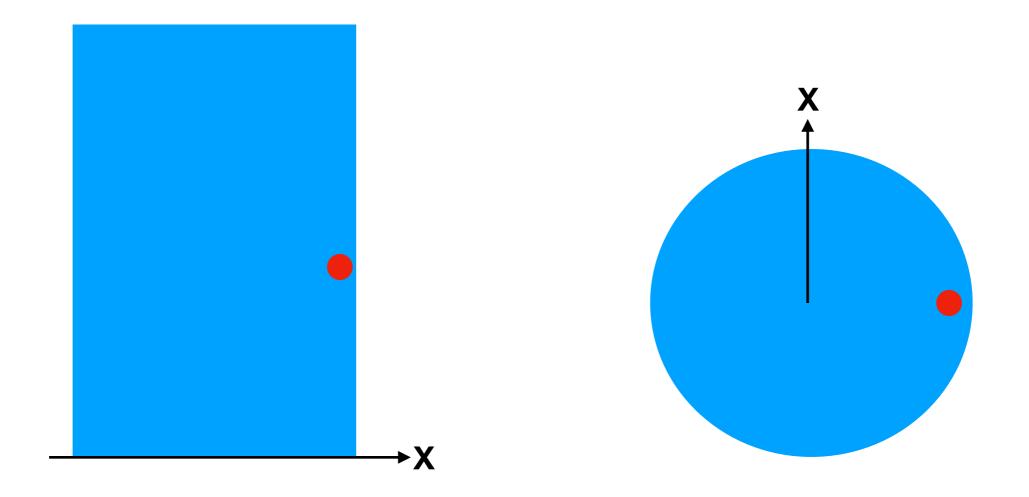
- We can use lattice simulation for nonperturbative study.
- We can get actual matrices as lattice configurations.
- It should be possible to separate color degrees of freedom to "black hole" and "exterior" by fixing gauge.



#### Get Gauge Fixing Done

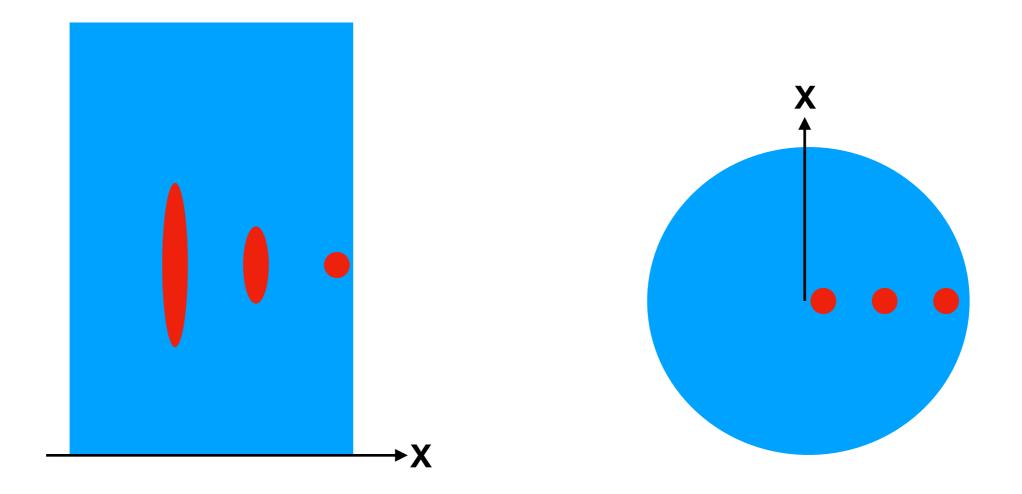
## More on 'Bulk from Matrices'?

(popped up in my mind last night)



Local operator adds energy to the state and creates small deconfined block

'Boundary' = large X = high energy



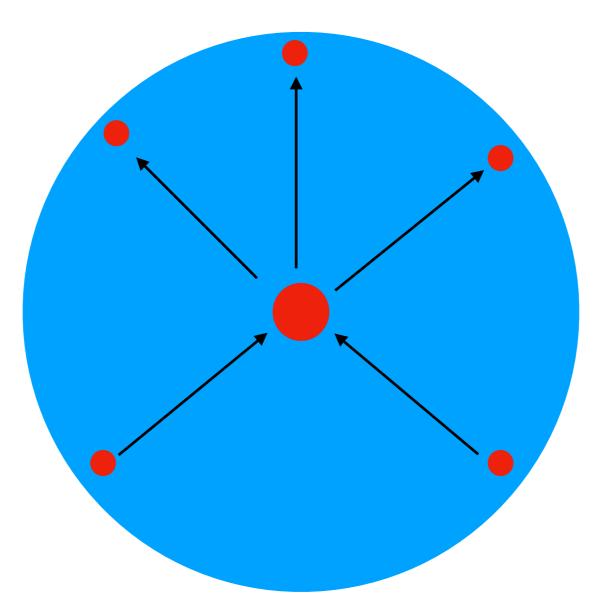
Local operator adds energy to the state and creates small deconfined block

**'Boundary' = large X = high energy** 

'Bulk' = small X = low energy

Volume of the deconfined block increases (total energy fixed)

May lead to a better understanding about "space from colors"?

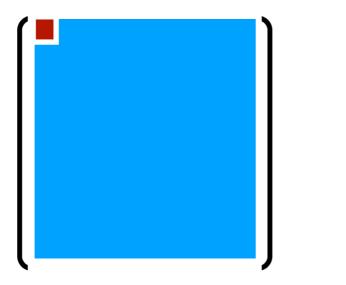


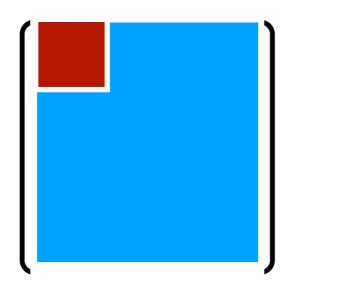
Bulk dynamics looks like Banks-Fischler-Shekner-Susskind picture

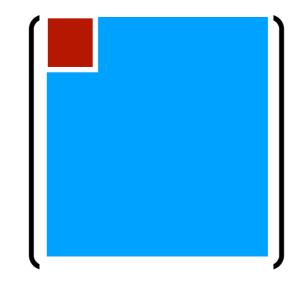
'Matrix model as second quantization'

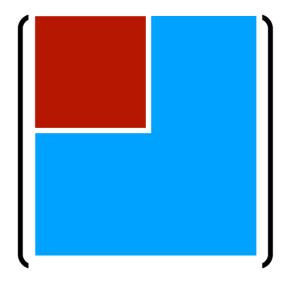
Partial deconfinement, instead of Higgsing Number of 'D-branes' = N <u>or less</u>

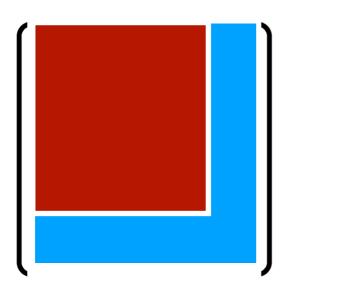
## Summary

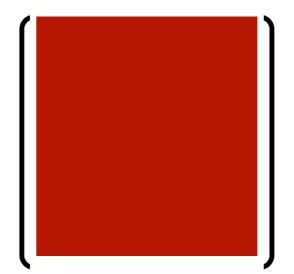


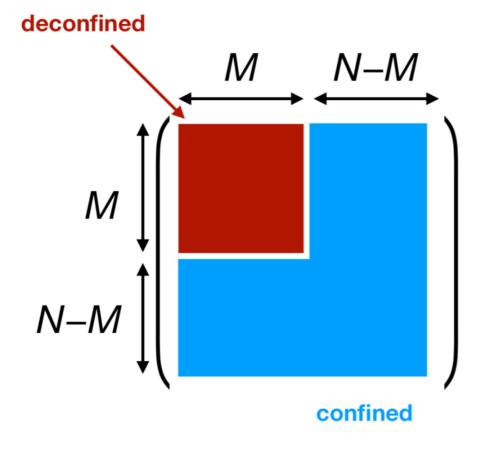


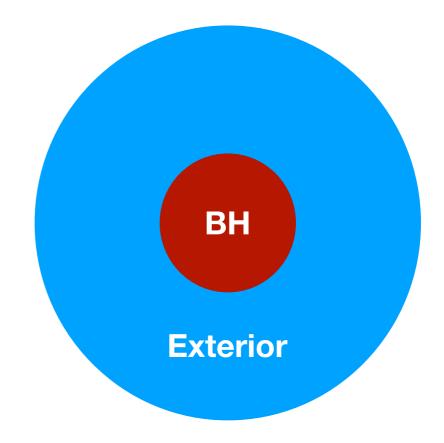


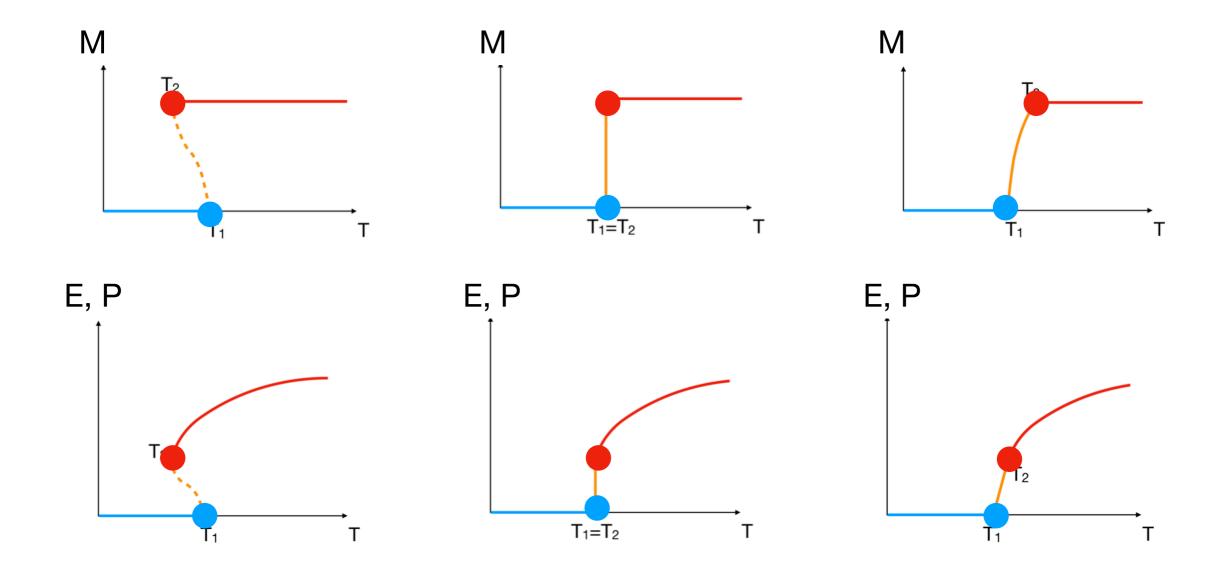












transition 2: partial deconfinement to complete deconfinement (black hole formation ends)

 $SU(N) \rightarrow SU(M) \times SU(N-M) \times U(1) \rightarrow SU(N)$ 

No need for center symmetry. No need for chiral symmetry. Applies to QCD.