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Figure 5. Snapshots of density contour lines and velocity vectors
in the equatorial plane at t = 0 (left) and Ω0t ≈ 390 (right)
for Â = 0.3 and Ca = 0.605. The contour lines are drawn for
ρ/ρmax = j/10 (j = 1 ∼ 9) and 0.95 (solid curves) and for
ρ/ρmax = 0.01 (dotted curve), where ρmax denotes the maximum
density.
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(Thorne 1987; Lai & Shapiro 1995; Liu & Lindblom 2001;
Liu 2001). Thus, gravitational waves from protoneutron
stars of a high degree of differential rotation and of mass
∼ 1.4M! and radius several 10 km in the distance of ∼ 100
Mpc can be a source for laser interferometric detectors such
as LIGO (Thorne 1995). We emphasize that f and heff de-
pend weakly on β (or β′) for Â = 0.3. This implies that even
if the star is not rapidly rotating, the dynamical instability
can set in and as a result, differentially rotating stars can
emit gravitational waves of a large amplitude.

To summarize, we have studied dynamical bar-mode in-
stability of differentially rotating stars focusing on the f-
mode. We have found that rotating stars of a high degree of
differential rotation are dynamically unstable against non-
axisymmetric deformation even for β # 0.27.

Figure 6. Gravitational waves for Â = 0.3 and Ca = 0.605.
Upper figure: h+ (solid curve) and h× (dotted curve) in units of
M2/R as a function of Ω0t. Lower figure: Ė in units of (M/R)5.

Figure 7. Ω0/
√

M/R3 as a function of β. The solid circles de-
note the dynamically unstable stars we found.

It is worthy to note that the real parts of the eigen fre-
quencies do not vanish but approach to finite values as the
value of β decreases, i.e. in the spherical limit. This behav-
ior is totally different from those of the r-modes (see e.g.
Karino et al. 2001), several self-gravity induced instability
modes of slender tori or annuli such as I-modes and J-modes
(Goodman & Narayan 1988; Andalib et al. 1997), or shear
instability modes (or P-modes) such as Papaloizou-Pringle
instability for toroids (Papaloizou & Pringle 1984) and for
spheroids (Luyten 1990). Therefore, we have identified the
unstable modes we find in this paper as the f-mode.

The physical mechanism for the onset of dynamical in-
stabilities found in this Letter may be explained in the fol-
lowing manner: For a small value of Â, non-spherical de-
formation of a stellar configuration is significant around the
rotational axis although the distant part from the rotational
axis is almost spherical. Thus, with decrease of the value of
Ca, most rotational energies are confined to the region near
the rotational axis. Increase of the rotational energy can be
much larger than those of the gravitational and internal en-
ergies, because the overall shape cannot be much different
from that of a sphere. As a result, the total energy becomes
large with small values of Ca. However, if the rotational en-
ergy exceeds a certain amount in the region near the rota-
tional axis, there may exist other equilibrium configurations
with lower total energies, as in the case of bifurcation of
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Figure 3. Summary of the dynamics of some representative models, i.e. M.1.150, M.1.160,
M.1.200, M.1.220, M.1.241 and M.1.250, with increasing values of β. For each panel, the
upper part reports the evolution of the bar-distortion parameter η+, while the lower part shows the
evolution of the power in the different modes of the Fourier decomposition of the rest-mass density
Pm. See the text for details. Note that we here report only some models with Â = 1 as they are
also representative of those with Â = 2.

larger values of β, the m = 1 mode never attains values comparable with either the m = 2 or
the m = 3, which instead control the evolution.
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Originally found in numerical simulations by Centrella et al. (2001), Shibata et al. (2002)

Low T/W instability

It develops in highly differentially rotating stars even for β = T/ W ~ 0.01

Several modes are excited during the instability

Growth time  ~ 1-4 ms
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Figure 1. The l = m = 2 f mode frequency (left-hand panel) and the pattern speed (right-hand panel) with respect to the star’s rotation β = T/|W| for four
sequences of differentially rotating stars with, respectively, A = 0.1, 0.2, 0.32 and 1. The mode frequency and pattern speed are given in dimensionless units.
The horizontal dotted line in each panel denotes the neutral line of the secular instability, βs, where an initially retrograde mode (according to an inertial
observer) becomes prograde as a result of star’s rotation. The critical value βd (indicated in the right-hand panel) denotes the points in the β–σ plane where
the two branches of l = m = 2 f mode merge and, consequently, the dynamical bar-mode instability is expected to develop.

or the backreaction on the star, for which a non-linear analysis is
essential.

Seminal work on non-axisymmetric instabilities in rotating bod-
ies (Friedman & Schutz 1975, 1978a,b) identified key quantities
which can be used to monitor the development of an instability; the
canonical energy and angular momentum. In an inviscid system a
dynamical instability can develop only if these canonical quantities
both vanish. This guarantees that an unstable mode does not violate
the energy and angular momentum conservation laws. At first, one
might think that it ought to be straightforward to use our results to
confirm this expectation. Unfortunately, this is not the case. First of
all, it is not clear that our extraction of the eigenfunctions, which are
required for the evaluation of the canonical quantities, is accurate
enough due to the growth of the perturbation variables during the
evolution. Not only are the eigenfunctions contaminated by numer-
ical noise, there may also be traces of other oscillation modes that
are present during the evolution. Secondly, the instability criterion
strictly holds only for inviscid systems. In our case, it is not clear
what effect the numerical viscosity has on the analysis. In principle,
one could argue that a numerical simulation provides the ‘exact’
(inviscid) result as long as the code is convergent. One may, for
example, try to extrapolate towards infinite resolution from a set
of results with different numerical resolution. Unfortunately, our
method is not good enough for us to be able to test this strategy. The
same is true for the Jordan chain argument from Schutz (1980a,b),
which indicates the degeneracy associated with the merger of two
linear perturbation modes (as for example in the case of the classic
bar-mode instability at βd, see Fig. 1).

Nevertheless, the canonical energy and angular momentum pro-
vide important measures. In terms of the enthalpy, the canonical
energy is given by (Friedman & Schutz 1978a)

Ec = 1
2

∫
dr

[
ρ|∂tξi |2 − ρ|vj∇j ξi |2 + ρ ξ iξ j∗∇i∇j (h + %)

+ ∂h

∂ρ
|δρ|2 − 1

4πG
|∇iδ%|2

]
, (25)

while the canonical angular momentum follows from (Friedman &
Schutz 1978a)

Jc = −Re

∫
drρ ∂φξ i∗ (

∂tξi + vj∇j ξi

)
, (26)

where the integrals are calculated over the star’s volume and Re
denotes the real part. Note that these expressions are given in a
coordinate basis, not the orthonormal basis used elsewhere in the
paper. Building on the work of Saijo & Yoshida (2006) we will use
the integrands from equations (25) and (26) to identify the region
in the star where the instability develops.

3.1 The f mode

As we have already mentioned, the current understanding is that the
low T/W instability sets in when the f mode enters the corotation
region. In order to support this notion, it is natural to determine
the mode frequencies along a differential rotation sequence and at
the same time keep track of the corotation region. The latter task
is straightforward since it only requires the background configura-
tions. The determination of the oscillation frequencies for a set of
stars along a given sequence is more time consuming. We obtain the
required results by first evolving in time the linearized dynamical
equations (11)–(13), and then calculating the mode frequencies by
performing a fast Fourier transformation on the time evolution data.
In order to test the reliability of the method we have confirmed
that the results agree with data available in the literature (Karino,
Yoshida & Eriguchi 2001; Karino 2003).

Fig. 1 shows the l = m = 2 f-mode frequencies, measured in
the inertial reference frame, for four sequences of models with a
different degree of differential rotation. The stars with the lowest
level of differential rotation are parametrized by A = 1, while the
highest differential rotation models have A = 0.1. For small values
of A the fastest spinning stellar models assume a ‘toroidal-like
configuration’ with a small axis ratio and a mass density whose
maximum is not at the rotation axis. For instance, for A = 0.1 the
fastest model studied in this work has β = 0.064 and Rp/Req = 0.067.
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Figure 3. The inferred shear instability growth time, τ , for differentially rotating stars with A = 0.32 (left-hand panel) and A = 0.1 (right-hand panel). We
also show the f-mode pattern speed, σ , and the corotation region (grey). All the quantities of this figure are shown in dimensionless units.
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Figure 4. A sample of results for the time evolution of the kinetic energy
associated with the f mode for models with A = 0.32 and different values
for the rotation parameter β (see legend). The evolution time and the kinetic
energy are given in dimensionless units. The vertical axis displays the natural
logarithm of the kinetic energy, ln Ek.

dissipation only at the level of about 0.1 per cent even when the vis-
cosity factor is an order of magnitude larger than the fiducial one
used, εD = 0.01. Hence, the extracted growth times are not signif-
icantly affected by the artificial damping. Of course, it is still the
case that the numerical damping will overcome the growth of a very
slowly growing unstable mode, e.g. near the corotation boundary.

In order to check that we are tracking a given unstable mode along
the stellar sequence, we monitor the canonical energy and angular
momentum integrands (see equations 25 and 26). Qualitatively, one

would expect the unstable mode to be associated with the region
near the corotation point in the star. If the low T/W instability is the
result of an energy exchange between a corotating mode and the
fluid bulk flow, this should be reflected in the energy and angular
momentum integrands. This behaviour was, in fact, observed for
the canonical angular momentum by Saijo & Yoshida (2006), who
showed that the Jc integrand grows when an instability is present
while remaining zero at the corotation point.

To study the behaviour of Ec and Jc it is useful to determine
the cylindrical radius, % cor, at which a given mode corotates with
the star (where % = rsin θ ). For the j-constant rotation law, we
can determine from equation (21) and the mode frequency, ω, the
following expression for the corotation point:

%cor = A

√
m(c − Re ω

Re ω
. (29)

In Fig. 5, we show the canonical energy distribution inside the star
and the corotation radius % cor calculated from equation (29), for a
selection of unstable models with A = 0.32. As expected, Ec grows
around the corotation point and vanishes at % cor. The same feature
has been observed for the canonical angular momentum. These
results confirm that the growth time extracted from our numerical
simulations is associated with the l = m = 2 f mode (as expected).

The dependence of the instability growth time on the position
of the corotation point is evident from Fig. 3. In order to understand
the behaviour better, we consider the variation of τ with the degree
of differential rotation and try to relate the results with the stellar
parameters. Typical results are provided in Fig. 6, where we show the
variation of the unstable mode’s imaginary part, ωI = 2π/τ , with
respect to the rotation parameter β (left-hand panel) and cylindrical
corotation radius (right-hand panel) for stars with A ranging between
0.1 and 0.6. Note that % cor = 0 corresponds to the condition σ = (c,
while % cor = 1 implies that σ = (eq. Along each rotating sequence,
corresponding to a specific A, ωI exhibits a maximum inside the
corotation band and decays towards the boundaries of the region.
It is also interesting to note that for higher differential rotation the
instability region appears at smaller rotation rates.

MNRAS 446, 555–565 (2015)
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Figure 5. Examples of the extracted canonical energy density inside the
neutron star. The vertical white line in each panel denotes the corotation
cylindrical radius ! cor.

The results in Fig. 6 make qualitative sense given our expecta-
tions for the low T/W instability, but we would obviously like to
understand the detailed features better. There are two main aspects
to this. First of all, the maximum ωI is not centred in the middle
of the corotation band, where ! cor = 0.5. Secondly, ωI appears to
reach its largest absolute value in the A = 0.4 model.

If the shear instability depends on an energy exchange between
the bulk motion and the corotating mode, one would expect the
instability time-scale to depend on the energy and degree of dif-
ferential rotation present at the corotation point. Considering the
behaviour of the variables involved, we find that the function,

ψ = −β
∂%

∂!

∣∣∣∣
!cor

, (30)

where the derivative of the star’s angular velocity is calculated
at the corotation radius, has a maximum at the same point as ωI

along the stellar sequence. Actually, we find that ψ increases from
A = 0.1 to 0.5 and then decreases. Hence, the function ψ accounts
reasonably well for the main features observed in our results, e.g.
the faster instability growth of the model with A ∼ 0.4. Moreover,
for each rotating model (with a given A) the function ψ can be
used to determine the position of the shortest growth time inside the
instability region.

It is worth noting that ψ can be re-written in terms of the star’s
parameters and the mode’s pattern speed, using equation (29),

ψ = 2β

A%c

(%c − σ )1/2 σ 3/2 . (31)

Our numerical data suggest that ωI is reasonably well approximated
by the following empirical relation:

χ = a ψ10A , (32)

where a is a constant, and A is the usual differential rotation param-
eter. For the various models considered in this work the function χ

is shown in Fig. 7, while the corresponding (dimensionless) values
of a are given in Table 2. The maximum and the behaviour at small
corotation radii are well captured by χ , there is a slight horizontal
offset for A = 0.2 and 0.6 but they only amount to 1–2 per cent with
respect to the ωI peak. For larger ! cor, the function χ generally as-
sumes slightly larger values than ωI, while for A = 0.1 the opposite
is the case. For the latter model, this behaviour could be due to the
presence of other unstable modes, but we did not manage to resolve
this issue with our simulations.

Considering the explorative approach adopted in our investiga-
tion, it is interesting to note how well the function χ captures the
main properties of the instability growth time and how it iden-
tifies the model with the strongest instability along a sequence.
This provides interesting pointers towards future work. First of all,
one should investigate if our empirical expression remains useful
also for other models, e.g. different polytropic indices and rota-
tional laws. If the suggestion proves robust one should also try to
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Figure 6. Imaginary part of the l = m = 2 mode frequency, ωI = 2π/τ , for several sequences of differentially rotating stars with A = 0.1–0.6. The left- and
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Figure 7. Comparison between the imaginary part of the l = m = 2 f mode and the empirical function χ for six differentially rotating models. Each panel
corresponds to a model with a specific A (see legend). The horizontal and vertical axes show, respectively, the dimensionless " cor and ωI. The filled dots
represent the numerical values and the red lines the function χ . In the panels for the A = 0.2 and 0.6 models we also show a dashed red line, which provides a
correction of the function χ to match the ωI values.

Table 2. The dimensionless values of the coeffi-
cient a, see equation (32), for stellar models with
A = 0.1–0.6.

A 0.1 0.2 0.3 0.4 0.5 0.6

a 0.072 0.74 2.32 5.26 12.4 32.9

understand the underlying physics. This might shed useful light on
the nature of this class of instabilities.

Before moving on, let us point out that most of the numerical
results have been presented in dimensionless units, and the shortest
growth time calculated in this work is τ = 29.25/

√
Gρm for a model

with A = 0.4 and axis ratio Rp/Req = 0.4. In physical units, this
value is τ = 5.13 ms, for a typical star with M = 1.4M" and EoS
parameters γ = 2 and k = 6.674 · 104 g−1cm5s−2.

4 A S L I G H T A S I D E : T H E IN E RTI A L R M O D E S

The perturbative time evolution code obviously allows us to con-
sider a wider range of problems involving differentially rotating
stars. As a pertinent example, let us make some comments on the in-
ertial r modes. These modes are rotationally restored by the Coriolis
force and are of particular interest since they suffer the gravitational-
wave instability already at low rotation rates in uniform stars. Much
effort has gone into understanding the astrophysical relevance of this
instability, e.g. the role of various internal viscosity mechanisms,
but the bulk of the work has considered stars in uniform rotation.

If the r-mode instability acts very early on in a neutron star’s life
or is triggered in the hot remnant immediately after binary neutron
star merger, then we would need to understand how differential ro-
tation affects the mechanism. It is easy to see that the corotation
point could be relevant for this discussion. According to an inertial
observer the r mode is prograde for any stellar rotation rate with
a frequency proportional to the bulk rotation rate (like all inertial
modes). If such a mode enters the corotation region it should do so
by crossing the low-frequency boundary which corresponds to the
equatorial angular velocity 'eq (at least for ‘reasonable’ rotation
laws like the j-constant law).

However, it is not clear from the results in the literature if the r
mode actually enters the corotation region. So far, the r-mode fre-
quency in differentially rotating stars has only been determined in
Newtonian gravity by Karino et al. (2001). For a γ = 2 polytrope
and the j-constant rotation law, their results show that the r mode is
not in corotation for stars with A > 0.6. However, the mode clearly
approaches the corotation band when A → 0.6. Unfortunately, the
numerical code used by Karino et al. (2001) was not accurate for
higher degrees of differential rotation (presumably because the coro-
tation point corresponds to a singularity in the frequency domain
description of the problem). As our numerical framework is based
on time evolving the perturbation equations, our analysis is not af-
fected by this issue and we can determine the r-mode frequency for
lower values of A. This allows us to check if the r mode goes in
corotation for a high degree of differential rotation. To carry out
this exercise, we use the Cowling approximation which is known
to provide accurate results for the r-mode frequency (Karino 2003).
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The canonical energy explodes 
around the corotation point
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Figure 5. Examples of the extracted canonical energy density inside the
neutron star. The vertical white line in each panel denotes the corotation
cylindrical radius ! cor.

The results in Fig. 6 make qualitative sense given our expecta-
tions for the low T/W instability, but we would obviously like to
understand the detailed features better. There are two main aspects
to this. First of all, the maximum ωI is not centred in the middle
of the corotation band, where ! cor = 0.5. Secondly, ωI appears to
reach its largest absolute value in the A = 0.4 model.

If the shear instability depends on an energy exchange between
the bulk motion and the corotating mode, one would expect the
instability time-scale to depend on the energy and degree of dif-
ferential rotation present at the corotation point. Considering the
behaviour of the variables involved, we find that the function,

ψ = −β
∂%

∂!

∣∣∣∣
!cor

, (30)

where the derivative of the star’s angular velocity is calculated
at the corotation radius, has a maximum at the same point as ωI

along the stellar sequence. Actually, we find that ψ increases from
A = 0.1 to 0.5 and then decreases. Hence, the function ψ accounts
reasonably well for the main features observed in our results, e.g.
the faster instability growth of the model with A ∼ 0.4. Moreover,
for each rotating model (with a given A) the function ψ can be
used to determine the position of the shortest growth time inside the
instability region.

It is worth noting that ψ can be re-written in terms of the star’s
parameters and the mode’s pattern speed, using equation (29),

ψ = 2β

A%c

(%c − σ )1/2 σ 3/2 . (31)

Our numerical data suggest that ωI is reasonably well approximated
by the following empirical relation:

χ = a ψ10A , (32)

where a is a constant, and A is the usual differential rotation param-
eter. For the various models considered in this work the function χ

is shown in Fig. 7, while the corresponding (dimensionless) values
of a are given in Table 2. The maximum and the behaviour at small
corotation radii are well captured by χ , there is a slight horizontal
offset for A = 0.2 and 0.6 but they only amount to 1–2 per cent with
respect to the ωI peak. For larger ! cor, the function χ generally as-
sumes slightly larger values than ωI, while for A = 0.1 the opposite
is the case. For the latter model, this behaviour could be due to the
presence of other unstable modes, but we did not manage to resolve
this issue with our simulations.

Considering the explorative approach adopted in our investiga-
tion, it is interesting to note how well the function χ captures the
main properties of the instability growth time and how it iden-
tifies the model with the strongest instability along a sequence.
This provides interesting pointers towards future work. First of all,
one should investigate if our empirical expression remains useful
also for other models, e.g. different polytropic indices and rota-
tional laws. If the suggestion proves robust one should also try to
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Figure 6. Imaginary part of the l = m = 2 mode frequency, ωI = 2π/τ , for several sequences of differentially rotating stars with A = 0.1–0.6. The left- and
right-hand panels show the dependence of ωI, respectively, on the rotational parameter β and the cylindrical corotation radius ! cor. The quantities on the
horizontal and vertical axes are given in dimensionless units.
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Figure 1. The l = m = 2 f mode frequency (left-hand panel) and the pattern speed (right-hand panel) with respect to the star’s rotation β = T/|W| for four
sequences of differentially rotating stars with, respectively, A = 0.1, 0.2, 0.32 and 1. The mode frequency and pattern speed are given in dimensionless units.
The horizontal dotted line in each panel denotes the neutral line of the secular instability, βs, where an initially retrograde mode (according to an inertial
observer) becomes prograde as a result of star’s rotation. The critical value βd (indicated in the right-hand panel) denotes the points in the β–σ plane where
the two branches of l = m = 2 f mode merge and, consequently, the dynamical bar-mode instability is expected to develop.

or the backreaction on the star, for which a non-linear analysis is
essential.

Seminal work on non-axisymmetric instabilities in rotating bod-
ies (Friedman & Schutz 1975, 1978a,b) identified key quantities
which can be used to monitor the development of an instability; the
canonical energy and angular momentum. In an inviscid system a
dynamical instability can develop only if these canonical quantities
both vanish. This guarantees that an unstable mode does not violate
the energy and angular momentum conservation laws. At first, one
might think that it ought to be straightforward to use our results to
confirm this expectation. Unfortunately, this is not the case. First of
all, it is not clear that our extraction of the eigenfunctions, which are
required for the evaluation of the canonical quantities, is accurate
enough due to the growth of the perturbation variables during the
evolution. Not only are the eigenfunctions contaminated by numer-
ical noise, there may also be traces of other oscillation modes that
are present during the evolution. Secondly, the instability criterion
strictly holds only for inviscid systems. In our case, it is not clear
what effect the numerical viscosity has on the analysis. In principle,
one could argue that a numerical simulation provides the ‘exact’
(inviscid) result as long as the code is convergent. One may, for
example, try to extrapolate towards infinite resolution from a set
of results with different numerical resolution. Unfortunately, our
method is not good enough for us to be able to test this strategy. The
same is true for the Jordan chain argument from Schutz (1980a,b),
which indicates the degeneracy associated with the merger of two
linear perturbation modes (as for example in the case of the classic
bar-mode instability at βd, see Fig. 1).

Nevertheless, the canonical energy and angular momentum pro-
vide important measures. In terms of the enthalpy, the canonical
energy is given by (Friedman & Schutz 1978a)

Ec = 1
2

∫
dr

[
ρ|∂tξi |2 − ρ|vj∇j ξi |2 + ρ ξ iξ j∗∇i∇j (h + %)

+ ∂h

∂ρ
|δρ|2 − 1

4πG
|∇iδ%|2

]
, (25)

while the canonical angular momentum follows from (Friedman &
Schutz 1978a)

Jc = −Re

∫
drρ ∂φξ i∗ (

∂tξi + vj∇j ξi

)
, (26)

where the integrals are calculated over the star’s volume and Re
denotes the real part. Note that these expressions are given in a
coordinate basis, not the orthonormal basis used elsewhere in the
paper. Building on the work of Saijo & Yoshida (2006) we will use
the integrands from equations (25) and (26) to identify the region
in the star where the instability develops.

3.1 The f mode

As we have already mentioned, the current understanding is that the
low T/W instability sets in when the f mode enters the corotation
region. In order to support this notion, it is natural to determine
the mode frequencies along a differential rotation sequence and at
the same time keep track of the corotation region. The latter task
is straightforward since it only requires the background configura-
tions. The determination of the oscillation frequencies for a set of
stars along a given sequence is more time consuming. We obtain the
required results by first evolving in time the linearized dynamical
equations (11)–(13), and then calculating the mode frequencies by
performing a fast Fourier transformation on the time evolution data.
In order to test the reliability of the method we have confirmed
that the results agree with data available in the literature (Karino,
Yoshida & Eriguchi 2001; Karino 2003).

Fig. 1 shows the l = m = 2 f-mode frequencies, measured in
the inertial reference frame, for four sequences of models with a
different degree of differential rotation. The stars with the lowest
level of differential rotation are parametrized by A = 1, while the
highest differential rotation models have A = 0.1. For small values
of A the fastest spinning stellar models assume a ‘toroidal-like
configuration’ with a small axis ratio and a mass density whose
maximum is not at the rotation axis. For instance, for A = 0.1 the
fastest model studied in this work has β = 0.064 and Rp/Req = 0.067.
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(Friedman & Schutz 1978)



The r-mode enters in corotation 
only marginally for highly 
differentially rotating stars

Low T/W instability of r-mode?
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Conclusions Part 1

Low T/W instability

The association with corotation points appears now evident

We found a fenomenological relation to describe the growth time 

Can this relation be extended to other models?



Magnetar QPOs and effects of nuclear pasta 
A. Passamonti & J. Pons 2016,  MNRAS in press



Quasi-Periodic Oscillations
- Observed in 

 three giant flares: 
SGR 0526-66 (1979), SGR 1900+14 (1998), 
SGR 1806-20 (2004), with frequency 
18-1800 Hz. (Israel et al., 2005; Strohmayer & 
Watts, 2005; Watts & Strohmayer, 2006)

 An intermediate flare:
    (SGR J1550-5418 ) with frequency 93, 
    127 Hz and maybe 260 Hz (Huppenkothen et
     al., 2014)

SGR 1806-20

- Possible origin

The giant flare tail is generated by radiation coming from a hot fireball trapped into 
the magnetosphere close to the surface

QPOs might originate from seismic vibrations which modulate the fireball radiation



Magnetar Model

Superfluidity                            
(strong entrainment in the crust)
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Two classes of oscillations
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Two classes of oscillations
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Two classes of magneto-elastic modes
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Effects of nuclear pasta

No drastic change
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Conclusions of Part 2

QPOs in superfluid magnetars

Coexistence of core confined and global magneto-elastic waves

Nuclear pasta in the inner crust does not change drastically the QPO 
spectrum


