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Strongly coupled systems and dualities

Relativistic hydrodynamics: reliable description of strongly coupled systems,
describing a slow evolution w.r.t. some microscopic scale

I real life: strongly coupled quark-gluon plasma seen in particle accelerators

I To determine the kinetic parameters of hydrodynamic equations (e.g. shear
viscosity): study the associated microscopic theory

Associated microscopic description can can be a QFT, such as strongly
coupled N = 4 Super Yang-Mills (SYM)

I N →∞, gauge/gravity duality: determine hydrodynamic parameters, time
dependent processes of the SYM plasma [Policastro et al,’01 - ’04][Nastase,’05]
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Strongly coupled systems and dualities

Interesting kinematic regime: expanding plasma in the so-called central rapidity
region, where one can assume longitudinal boost invariance (Bjorken flow
[Bjorken,’83])

I dynamics much simpler, but preserves complexity of the original problem

Analyse the time-dependent expansion of a boost invariant plasma system.

From AdS/CFT duality

I regularity of the dual geometry predicts almost perfect fluid hydrodynamic
expansion [Janik, Peschanski,’05]

I leading dissipative corrections come from shear viscosity [Janik,’06]
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Energy-momentum tensor

In hydrodynamic theories the energy-momentum tensor is given by

Tµν = E uµuν + P(E)(ηµν + uµuν) + Πµν

I E is energy density

I Πµν is the shear stress tensor: dissipative effects

I P(E) = E/3 is pressure in d = 4 conformal theories

I u is flow velocity - timelike eigenvector of the E-M tensor

Symmetries: conformal invariance, transversely homogeneous, invariance under
longitudinal Lorentz boosts
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Energy-momentum tensor

Tµν = E uµuν + P(E)(ηµν + uµuν) + Πµν

E-M conservation ∂µT
µν = 0 and traceless Tµ

µ = 0

I dependence on single function: energy density in the local rest frame E
I Boost invariance: E (τ) only depends on proper time

I Conformal invariance: energy density and temperature related by power law

E =
3π2N2

8
T 4 for N = 4 SYM

Strongly coupled SYM boost invariant plasma: all physics encoded in E(τ).

Obtaining this function is in general too difficult:
perform a large proper time expansion
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Late-time behaviour

I Starting from highly non-equilibrium initial conditions, the microscopic
theory will reveal the transition to hydrodynamic behaviour at late times

I Conformal theories: late-time behaviour of temperature/energy density
highly constrained

T (τ) =
Λ

(Λτ)1/3

(
1 +

+∞∑

k=1

tk

(Λτ)2k/3

)
, τ � 1,

I Λ is a dimensionful parameter dependent on initial non-eq. conditions

I Leading behaviour in T (τ) predicted by boost-invariant perfect fluid

I subleading terms: dissipative hydrodynamic effects
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AdS/CFT description of expanding plasma

I Goal: use dual geometry to analyse the expansion of boost invariant SYM
plasma

I All possible behaviours of the spacetime expectation value of 〈Tµν〉
I dependence only on single function E (τ)

I Dual geometry given by 5D metric [Hare et at,’00] [Skenderis,’02] [Fefferman,Graham,’85]

ds2 =
1

z2

(
Gµνdx

µdxν + dz2
)
,

I z-”fifth coordinate”; µ = 0, · · · , 3
I Gµν (xα, z)

I Solve Einstein equations with negative cosmological constant (asymptotic
behaviour of geometry is AdS)

Rµν −
1

2
GµνR − 6Gµν = 0
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AdS/CFT description of expanding plasma

Rµν −
1

2
GµνR − 6Gµν = 0

I Boundary condition at z = 0

Gµν = ηµν + z4g (4)
µν + · · ·

I Holographic renormalisation [Hare et at,’00]

〈Tµν〉 =
N2

2π2
g (4)
µν

I Boost invariant plasma general metric:

ds2 =
1

z2

(
dz2 − e−Adτ 2 + τ 2eBdy2 + eCdx2

⊥
)

I A,B,C functions of z , τ

I Energy density E (τ) = − lim
z→0

A (z , τ)

z4
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AdS/CFT description of expanding plasma

I Equilibrium states of the microscopic theory (CFT) are represented by
black hole solutions [Witten,’98]

flat space: planar horizons → black branes

I Simplest non-equilibrium phenomena to study: dynamics of linearised
perturbations on top of the black brane

I perturbations of strongly coupled plasmas on top of equilibrium solution:
black branes’ Quasinormal modes (QNMs)
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AdS dual geometry calculation

Use Eddington-Finkelstein coordinates:

ds2 = −h r2dτ 2 + 2dτ dr + (rτ + 1)2
ebdy2 + r2e−

1
2 (b+d)dx2

⊥

I 0 ≤ r ≤ ∞ holographic radial co-ord.; conformal boundary at r →∞
I τ, y , dx2

⊥: reduce to proper time, rapidity and transverse co-ords

I Define scaled variable s = 1
r
τ−1/3

I Minkowski metric at boundary s = 0

lim
s→0

h (s, τ) = 1 , lim
s→0

b (s, τ) = lim
s→0

d (s, τ) = 0

I Horizon fixed at s = 1 to all orders

h (s = 1, τ) = 0

I regular solutions in the bulk 0 < s < 1
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AdS dual geometry calculation

ds2 = −h r2dτ 2 + 2dτ dr + (rτ + 1)2
ebdy2 + r2e−

1
2 (b+d)dx2

⊥

I Hydro expansion + transient modes: Transseries ansatz for f = h, b, d

f
(
s, u ≡ τ 2/3,σ

)
=
∑

n∈N∞
0

σne−n·A uΦn (u)

with power series expansions Φn (u) = u−αn
∑

k≥0

f
(n)
k (s) u−k

I Determine large τ expansions of functions h, b, d requiring

I Equilibrium given by black brane: h
(0)
0 = 1− s4; b

(0)
0 = d

(0)
0 = 0

I Flatness at boundary s = 0

I Horizon at s = 1

I Regularity in the bulk 0 < s < 1

I QMN frequencies: ωk = − 2i
3

ek · A, n = ek = (0, · · · , 0, 1, 0, · · · )

Retrieve the transseries expansion for the energy density E(τ)
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Next

The energy density as a transseries
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Energy density transseries for u ≡ τ 2/3 � 1

E (u,σ) =
∑

n∈N∞
0

σn e−n·A u Φn (u) , Φn (u) = u−βn

+∞∑

k=0

ε
(n)
k u−k

I infinite dimensional vector space n = (n1, n1̄, n2, n2̄, · · · ) ∈ N∞0
I unit vectors ek , ēk

e1 ≡ (1, 0, · · · ), ē1 ≡ (0, 1, 0, · · · ), · · ·
I Vector of ”instanton” actions

A =
(
A1, Ā1,A2, Ā2, · · ·

)

I Transseries parameters

σ =
(
σA1 , σĀ1

, σA2 , σĀ2
, · · ·

)

such that σn = σn1

A1
σ
n1̄

Ā1
σn2

A2
σ
n2̄

Ā2
· · ·

Φn (u) are asymptotic!
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Energy density transseries

E (u,σ) =
∑

n∈N∞
0

σn e−n·A u Φn (u) , Φn (u) = u−βn

+∞∑

k=0

ε
(n)
k u−k

I Normalisations ε
(0)
0 = π−4 ; ε

(ek )
0 = 1, k ∈ N

I Hydrodynamic series

Φ0 (u) = u−β0

+∞∑
k=0

ε
(0)
k u−k , β0 = 2

I Fundamental sectors: Φn with n = ek , ek

I Associated to QNM of the black brane

I Mixed sectors: Φn with n a linear combination of different unit vectors

I Associated to coupling of QNMs
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Fundamental sectors

E (u,σ) =
∑

n∈N∞
0

σn e−n·A u Φn (u) , Φn (u) = u−βn

+∞∑

k=0

ε
(n)
k u−k

I Fundamental sector of lowest QNM ω1 = 3.1195 · · · − i 2.7467 · · ·

Φe1 (u) = u−βe1

+∞∑
k=0

ε
(e1)
k u−k ; Φē1 (u) = Φe1 (u)

where βe1 = −A1

6 + 3 and A1 = i 3
2 ω1;

I Fundamental sector of QNM ω2 = 5.16952 · · · − i 4.76357 · · · :

Φe2 (u) = u−βe2

+∞∑
k=0

ε
(e2)
k u−k ; Φē2 (u) = Φe2 (u)

where βe2 = − A1

6 + 3 and A2 = i 3
2 ω2
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Mixed sectors

E (u,σ) =
∑

n∈N∞
0

σn e−n·A u Φn (u) , Φn (u) = u−βn

+∞∑

k=0

ε
(n)
k u−k

I Mixed sector associated to exponential weight 2A1

Φ2e1 (u) = u−β2e1

+∞∑
k=0

ε
(2e1)
k u−k

with β2e1 = 2βe1 − 2

I Mixed sector associated to exponential weight A1 + A1

Φe1+e1 (u) = u−βe1+e1

+∞∑
k=0

ε
(e1+e1)
k u−k

with βe1+e1 = βe1 + βe1 − 2
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Next

All our sectors are asymptotic...
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Aside: Asymptotic series

F (g) '
∑

n≥0

fn g
n

I Divergent! No matter how small g is: fn g
n →∞

I Truncate at some optimal n = N: very good approximation

I Take g � 1 fixed: define truncation fN(g) =
∑N

n=0 fn g
n

ASIDE: ASYMPTOTIC SERIES

f(g) '
1X

n=0

fn gn

N = 1 ! f0 + f1g

N = 2 ! f0 + f1g + f2g
2

N(optimal)
N

-10

-20
-A/g

log(f � fN )

Optimal error :

for some value A

(f � fN )(g) ⇠ e�A/g

• Assume    

• Define  fN (g) =

NX

n=0

fn gn

g fixed and small

N(optimal) ⇡ A/g

Non-perturbative effect: g → 0 invisible in perturbation theory!
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Aside: Borel Transform & Resummation

Asymptotic series: F (g) '
∑

n≥0

fn g
n+1 , with Fn ∼ n!

I Borel transform: B[F ](s) =
∞∑

n=0

fn
n!

sn

Rule: B
[
gα+1

]
(s) = sα/Γ(α + 1)

I finite radius of convergence - find function B[F ](s)

I In general B[F ](s) will have singularities

I Borel resummation of F is the Laplace transform

SF (g) =

ˆ ∞
0

ds B[F ](s)e−s/g
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Resurgence analysis and transseries [Écalle’81]

A transseries (z ∼ ∞)

F (z , σ) =
∑
n≥0

σnF (n) , F (n)(z) ' e−nAz
∑
k≥0

F
(n)
k z−k

defines a resurgent function if it relates the asymptotics of multi- instanton

contributions F
(`)
n in terms of F

(`′)
n where `′ is close to `

How does it work?
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Resurgence at play[IA,Basar,Schiappa’18]

-A A 2 A 3 A 4 A 5 A ...

Perturbative series:

Instanton series:

Multi-instanton asymptotic series

FHnLHzL = e-n A z â
g=1

¥

Fg
HnL z-g

FH0LHzL = â
g=0

¥

Fg
H0L z-g-1

FH1L
FH2L FH3L FH4L

FH5LFH-1L

FHzL = â
n=0

¥

Σn FHnLHzL
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Resurgence at play[IA,Basar,Schiappa’18]

...

Large-order behaviour - Perturbative series for large g

FH1L
FH2L FH3L FH4L FH5L

Fg
H0L ~ S1 â

n>0

anHgL Fn
H1L + 2-g S1

2 â
n>0

bnHgL Fn
H2L + ...

Fg
H0L

S1 Fn
H1L S1

2

2g
Fn

H2L S1
3

3g
Fn

H3L S1
4

4g
Fn

H4L
S1

k

kg
Fn

HkL...

All multi-instanton sectors 

contribute to the large-order

behavior of coefficients Fg
0
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Resurgence at play[IA,Basar,Schiappa’18]

...

Equivalently: Perturbative series for large g ENCODES all other sectors

FH1L
FH2L FH3L FH4L FH5L

Fg
H0L ~ S1 F1

H1L
+

A

g - 1
F2

H1L
+ ... + OH2-gL

Fg
H0L

S1 F1
H1L

+ ...

From the leading

large g behaviour of Fg
H0L :

determine F1
H1L

, F2
H1L

, ...
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Borel Analysis of the hydrodynamic series

Borel transform for the hydrodynamic expansion Φ0

QNMs:

A1; 2A1; 3A1

A2;

A3;

Ai

●

●

●

●

●

●

◆

◆

◆
◆

◆
◆

× ×

×

×

×

×

×

×

� � �� ��
-��

-��

-�

�

�

��

��

A1 = 3/2 (2.746676 + 3.119452i);

A2 = 3/2 (4.763570 + 5.169521i);

A3 = 3/2 (6.769565 + 7.187931i);

How much information is encoded in the hydro series?
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Resurgence predictions

I Complex-conjugate singularities in the Borel plane ξ = A1,A1, · · ·
I Factorial growths Γ (k + β) for k � 1, β = β0 − βe1 ∈ C

I Expected large-order behaviour:

ε(0)
n ' − S0→e1

2πi

Γ (n + β)

An+β
1

(
ε

(e1)
0 +

A1

n
ε

(e1)
1 + · · ·

)
+
S0→e1

2πi

Γ
(
n + β

)
A

n+β
1

(
ε

(e1)
0 +

A1

n
ε

(e1)
1 + · · ·

)
+O

(
|A2|−n)

I Difficult to test with usual methods:

I the (unknown) Borel residue mixes with β and A1

I oscillatory behaviour, convergence less obvious

Analyse asymptotic behaviour at the level of Borel singularities
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Large order behaviour in the Borel plane

ε(0)
n ' − S0→e1

2πi

Γ (n + β)

An+β
1

(
ε

(e1)
0 +

A1

n
ε

(e1)
1 + · · ·

)
+
S0→e1

2πi

Γ
(
n + β

)
A

n+β
1

(
ε

(e1)
0 +

A1

n
ε

(e1)
1 + · · ·

)
+O

(
|A2|−n)

I Growth associated to Borel singularity ξ = A1: ε
(0)
n ' Γ (n + β0 − βe1 )

I Multiply Φ0 by u−α s.t. Borel transform removes the exact factorial growth

I Behaviour at singular point is then (α = βe1 )

B
[
uβe1 Φ0

]
(ξ) ∼ S0→e1 B

[
uβe1 Φe1

]
(ξ − A1)

log(ξ − A1)

2πi
+ · · ·

Analysing each branch cut of the Borel plane separately, we can
recover the coefficients of the sector associated to that branch cut
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Large order behaviour in the Borel plane

B
[
uβe1 Φ0

]
(ξ) ∼ S0→e1 B

[
uβe1 Φe1

]
(ξ − A1)

log(ξ − A1)

2πi
+ · · ·

I Transform the logarithmic behaviour into a square root branch cut:

B
[
uβe1

−1/2 Φ0

]
(ξ)
∣∣∣
ξ=A1

=
S0→e1

2
B
[
uβe1

−1/2 Φe1

]
(ξ − A1) + · · ·

=
S0→e1

2
√
ξ − A1

(
ε

(e1)
0

Γ(1/2)
+ ε

(e1)
1

(ξ − A1)

Γ(3/2)
+ ε

(e1)
2

(ξ − A1)2

Γ(5/2)
+ · · ·

)

I Last step: transform it into a simple pole by defining ξ = A1 − (ζ − A1)2

B
[
uβe1

−1/2 Φ0

]
(ζ)
∣∣∣
ζ=A1

=
S0→e1

2i (ζ − A1)

(
ε

(e1)
0

Γ(1/2)
− ε(e1)

1

(ζ − A1)2

Γ(3/2)
+ · · ·

)
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Predictions of the leading fundamental sector

B
[
uβe1

−1/2 Φ0

]
(ζ)
∣∣∣
ζ=A1

=
S0→e1

2i (ζ − A1)

(
ε

(e1)
0

Γ(1/2)
− ε(e1)

1

(ζ − A1)2

Γ(3/2)
+ · · ·

)

I Residue at ζ = A1: determine S0→e1 (ε
(e1)
0 = 1)

I Subtract the leading contribution:

B
[
uβe1

−1/2 Φ0

]
(ζ)
∣∣∣
ζ=A1

− S0→e1

2i (ζ − A1)

ε
(e1)
0

Γ(1/2)
= −ε(e1)

1

S0→e1

2i Γ(3/2)
(ζ − A1) + · · ·

I Multiply by (ζ − A1)−2 and take residue: prediction of ε
(e1)
1

Iterative process to obtain the coefficients of the leading
fundamental sector Φe1
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Subleading singularities of perturbative series

I We analysed the properties of the leading branch cut (closest to the origin)

I Now analyse the behaviour at the second Borel singularity ξ = A2

I How? Subtract the leading large-order behaviour at ξ = A1 from the
perturbative coefficients

δ1ε
(0)
n = ε(0)

n −
S0→e1

2πi

Γ (n + β)

An+β
1

χ0→e1 (n)− c.c ' O
(
|A2|−n)

I Contributions χ0→e1 (n) are asymptotic series in n−1

χ0→e1 (n) '
(
ε

(e1)
0 +

A1

n
ε

(e1)
1 + · · ·

)
I Resum contribution for each value of n: Borel→Padé approx.→summation

I Define new series and analyse its Borel transform

δ1Φ0 (u) = u−β0
∑
k

δ1ε
(0)
k u−k
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Subleading singularities for hydro series

Borel transform for the subtracted hydrodynamic expansion

QNMs:

A1; 2A1; 3A1

A2;

A3;

Ai

●

●

●
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●

◆

◆

◆
◆

◆
◆
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×
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A1 = 3/2 (2.746676 + 3.119452i);

A2 = 3/2 (4.763570 + 5.169521i);

A3 = 3/2 (6.769565 + 7.187931i);

The leading singularities were effectively subtracted!
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Predictions

With the procedures just described we can:

I Analyse the leading singularities of the hydro series and predict the
coefficients associated to the fundamental sector Φe1

I Subtract the contribution of the leading sectors and analyse the subleading
singularities: predict the coefficients of the fundamental sector Φe2

I This iterative procedure can be taken to reach extra subleading singularities

I Apply the procedure to fundamental sectors such as Φe1 : analyse its
singularity structure, in particular contributions from the mixed sectors
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Next

Compare resurgence predictions and
gravity calculations
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Resurgence predictions

I Predictions from the large order of hydro series Φ0

I Predicted coefficients of fundamental sectors Φe1 and Φe2

I Predictions from the large order of fundamental sector Φe1

I Predicted coefficients of mixed sectors Φ2e1 and Φe1+e1

I Determined respective Borel residues Sn→m

I Compared results to gravity calculations:

∆nε
(m)
k ≡

ε
(m)
k |n−predicted − ε

(m)
k |numerical

ε
(m)
k |numerical

, k ≥ 1

I ε
(m)
k |numerical: coeffs of Φm determined from gravity

I ε
(m)
k |n−predicted: coeffs of Φm predicted from the large order of sector Φn
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Fundamental sector Φe1 from hydro series

Φ0 (u) = u−β0

+∞∑

k=0

ε
(0)
k u−k , β0 = 2, (370 terms)

Singularities of B [Φ0]

●
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×
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-�

�

�
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��

Convergence of ε
(0)
k to

first coefficients of Φe1 sector

Borel residue: S0→e1 = −0.01113168212 + 0.0305013486i
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Fundamental sector Φe2 from hydro series

δ1Φ0 (u) = u−β0

+∞∑

k=1

δ1ε
(0)
k u−k , β0 = 2, (200 terms)

Singularities of B [δ1Φ0]
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Convergence of ε
(0)
k to

first coefficients of Φe2 sector
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Borel residue: S0→e2 = 0.170024383607 + 0.0974608479999i
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Fundamental sector Φe2 from sector Φe1

Φe1 (u) = u−βe1

+∞∑

k=0

ε
(e1)
k u−k , (270 terms)

Singularities of B [Φe1 ]
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Convergence of ε
(e1)
k to

first coefficients of Φe2 sector
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Borel residue: Se1→e2 = 2.6127578014− 10.6770578911i
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Mixed sectors Φ2e1 and Φe1+e1 from sector Φe1

δ1Φe1 (u) = u−βe1

+∞∑

k=1

δ1ε
(e1)
k u−k , (200 terms)

I Prediction of first coefficients of Φ2e1 and Φe1+e1 sectors from coefficients

ε
(e1)
k
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Summary & Future directions

Resurgent structure associated to SYM plasma undergoing Bjorken flow

I Calculation of a transseries for the energy density:

I from the bulk dual geometry, using AdS/CFT duality

I Exponentially suppressed sectors, associated to QNMs of a black brane

I Predictions from resurgence via residues of Borel transforms

I Very accurate predictions, showing how all non-perturbative information is
encoded in the hydro series

I Method bypasses the intricate oscillatory behaviour of the large-order
relations

I Iterative process to obtain exponentially suppressed sectors from
perturbative data
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Summary & Future directions

I Coupling between QNMs

I Appearance of mixed sectors, interpreted as non-trivial coupling between
QNMs

I Expected from resurgence but surprising from gravity as QNMs appear as
solutions of linearised Einstein eqs

I Future directions:

I Resummation and properties of the solution at early times, connection with
attractor

I Role of the residual initial conditions in transseries
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Thank you!

(31 October 2018) Resurgence and Asymptotics 39 / 39


	Hydrodynamics of N=4 SYM plasma
	A transseries for the energy density
	The resurgent structure of the energy density 
	Checks of resurgence: predictions vs numerical calculations
	Summary/Future Directions

