A resurgent transseries

for $\mathcal{N}=4$ supersymmetric Yang-Mills plasma

Inês Aniceto
(University of Southampton)

(Based on arXiv:1810.07130 with J. Jankowski, B. Meiring, M. Spaliński)

Southampton, October 31, 2018

Outline

(1) Hydrodynamics of $\mathcal{N}=4$ SYM plasma
(2) A transseries for the energy density
(3) The resurgent structure of the energy density
(4) Checks of resurgence: predictions vs numerical calculations
(5) Summary/Future Directions

Strongly coupled systems and dualities

Relativistic hydrodynamics: reliable description of strongly coupled systems, describing a slow evolution w.r.t. some microscopic scale

- real life: strongly coupled quark-gluon plasma seen in particle accelerators
- To determine the kinetic parameters of hydrodynamic equations (e.g. shear viscosity): study the associated microscopic theory

Associated microscopic description can can be a QFT, such as strongly coupled $\mathcal{N}=4$ Super Yang-Mills (SYM)

- $N \rightarrow \infty$, gauge/gravity duality: determine hydrodynamic parameters, time dependent processes of the SYM plasma [Policastro et al,'01 - '04][Nastase,'05]

Strongly coupled systems and dualities

Interesting kinematic regime: expanding plasma in the so-called central rapidity region, where one can assume longitudinal boost invariance (Bjorken flow [Bjorken,'83])

- dynamics much simpler, but preserves complexity of the original problem

Analyse the time-dependent expansion of a boost invariant plasma system.

From AdS/CFT duality

- regularity of the dual geometry predicts almost perfect fluid hydrodynamic expansion [Janik, Peschanski, ${ }^{\prime} 05$]
- leading dissipative corrections come from shear viscosity [Janik,'06]

Energy-momentum tensor

In hydrodynamic theories the energy-momentum tensor is given by

$$
T^{\mu \nu}=\mathcal{E} u^{\mu} u^{\nu}+\mathcal{P}(\mathcal{E})\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right)+\Pi^{\mu \nu}
$$

- \mathcal{E} is energy density
- $\Pi^{\mu \nu}$ is the shear stress tensor: dissipative effects
- $\mathcal{P}(\mathcal{E})=\mathcal{E} / 3$ is pressure in $d=4$ conformal theories
- u is flow velocity - timelike eigenvector of the E-M tensor

Symmetries: conformal invariance, transversely homogeneous, invariance under longitudinal Lorentz boosts

Energy-momentum tensor

$$
T^{\mu \nu}=\mathcal{E} u^{\mu} u^{\nu}+\mathcal{P}(\mathcal{E})\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right)+\Pi^{\mu \nu}
$$

E-M conservation $\partial_{\mu} T^{\mu \nu}=0$ and traceless $T_{\mu}^{\mu}=0$

- dependence on single function: energy density in the local rest frame \mathcal{E}
- Boost invariance: $\mathcal{E}(\tau)$ only depends on proper time
- Conformal invariance: energy density and temperature related by power law

$$
\mathcal{E}=\frac{3 \pi^{2} N^{2}}{8} T^{4} \text { for } \mathcal{N}=4 \mathrm{SYM}
$$

Strongly coupled SYM boost invariant plasma: all physics encoded in $\mathcal{E}(\tau)$.
Obtaining this function is in general too difficult: perform a large proper time expansion

Late-time behaviour

- Starting from highly non-equilibrium initial conditions, the microscopic theory will reveal the transition to hydrodynamic behaviour at late times
- Conformal theories: late-time behaviour of temperature/energy density highly constrained

$$
T(\tau)=\frac{\Lambda}{(\Lambda \tau)^{1 / 3}}\left(1+\sum_{k=1}^{+\infty} \frac{t_{k}}{(\Lambda \tau)^{2 k / 3}}\right), \tau \gg 1,
$$

- Λ is a dimensionful parameter dependent on initial non-eq. conditions
- Leading behaviour in $T(\tau)$ predicted by boost-invariant perfect fluid
- subleading terms: dissipative hydrodynamic effects

AdS/CFT description of expanding plasma

- Goal: use dual geometry to analyse the expansion of boost invariant SYM plasma
- All possible behaviours of the spacetime expectation value of $\left\langle T_{\mu \nu}\right\rangle$
- dependence only on single function $\mathcal{E}(\tau)$
- Dual geometry given by 5D metric [Hare et at,'00] [Skenderis,'02] [Fefferman,Graham,'85]

$$
d s^{2}=\frac{1}{z^{2}}\left(G_{\mu \nu} d x^{\mu} d x^{\nu}+d z^{2}\right),
$$

- z-"fifth coordinate"; $\mu=0, \cdots, 3$
- $G_{\mu \nu}\left(x^{\alpha}, z\right)$
- Solve Einstein equations with negative cosmological constant (asymptotic behaviour of geometry is AdS)

$$
R_{\mu \nu}-\frac{1}{2} G_{\mu \nu} R-6 G_{\mu \nu}=0
$$

AdS/CFT description of expanding plasma

$$
R_{\mu \nu}-\frac{1}{2} G_{\mu \nu} R-6 G_{\mu \nu}=0
$$

- Boundary condition at $z=0$

$$
G_{\mu \nu}=\eta_{\mu \nu}+z^{4} g_{\mu \nu}^{(4)}+\cdots
$$

- Holographic renormalisation [Hare et at,'00]

$$
\left\langle T_{\mu \nu}\right\rangle=\frac{N^{2}}{2 \pi^{2}} g_{\mu \nu}^{(4)}
$$

- Boost invariant plasma general metric:

$$
d s^{2}=\frac{1}{z^{2}}\left(d z^{2}-\mathrm{e}^{-A} d \tau^{2}+\tau^{2} \mathrm{e}^{B} d y^{2}+\mathrm{e}^{C} d \mathbf{x}_{\perp}^{2}\right)
$$

- A, B, C functions of z, τ
- Energy density

$$
\mathcal{E}(\tau)=-\lim _{z \rightarrow 0} \frac{A(z, \tau)}{z^{4}}
$$

AdS/CFT description of expanding plasma

- Equilibrium states of the microscopic theory (CFT) are represented by black hole solutions [Witten,'98]
flat space: planar horizons \rightarrow black branes
- Simplest non-equilibrium phenomena to study: dynamics of linearised perturbations on top of the black brane
- perturbations of strongly coupled plasmas on top of equilibrium solution: black branes' Quasinormal modes (QNMs)

AdS dual geometry calculation

Use Eddington-Finkelstein coordinates:

$$
d s^{2}=-h r^{2} d \tau^{2}+2 d \tau d r+(r \tau+1)^{2} \mathrm{e}^{b} d y^{2}+r^{2} \mathrm{e}^{-\frac{1}{2}(b+d)} d \mathbf{x}_{\perp}^{2}
$$

- $0 \leq r \leq \infty$ holographic radial co-ord.; conformal boundary at $r \rightarrow \infty$
- $\tau, y, d \mathbf{x}_{\perp}^{2}$: reduce to proper time, rapidity and transverse co-ords
- Define scaled variable $s=\frac{1}{r} \tau^{-1 / 3}$
- Minkowski metric at boundary $s=0$

$$
\lim _{s \rightarrow 0} h(s, \tau)=1, \quad \lim _{s \rightarrow 0} b(s, \tau)=\lim _{s \rightarrow 0} d(s, \tau)=0
$$

- Horizon fixed at $s=1$ to all orders

$$
h(s=1, \tau)=0
$$

- regular solutions in the bulk $0<s<1$

AdS dual geometry calculation

$$
d s^{2}=-h r^{2} d \tau^{2}+2 d \tau d r+(r \tau+1)^{2} \mathrm{e}^{b} d y^{2}+r^{2} \mathrm{e}^{-\frac{1}{2}(b+d)} d \mathrm{x}_{\perp}^{2}
$$

- Hydro expansion + transient modes: Transseries ansatz for $f=h, b, d$

$$
f\left(s, u \equiv \tau^{2 / 3}, \sigma\right)=\sum_{\mathbf{n} \in \mathbb{N}_{0}^{\infty}} \sigma^{\mathbf{n}} \mathrm{e}^{-\mathbf{n} \cdot \mathbf{A} u} \Phi_{\mathbf{n}}(u)
$$

with power series expansions

$$
\Phi_{\mathbf{n}}(u)=u^{-\alpha_{\mathbf{n}}} \sum_{k \geq 0} f_{k}^{(\mathbf{n})}(s) u^{-k}
$$

- Determine large τ expansions of functions h, b, d requiring
- Equilibrium given by black brane: $h_{0}^{(0)}=1-s^{4} ; b_{0}^{(0)}=d_{0}^{(0)}=0$
- Flatness at boundary $s=0$
- Horizon at $s=1$
- Regularity in the bulk $0<s<1$
- QMN frequencies: $\omega_{k}=-\frac{2 i}{3} \mathbf{e}_{k} \cdot \mathbf{A}, \mathbf{n}=\mathbf{e}_{k}=(0, \cdots, 0,1,0, \cdots)$

Retrieve the transseries expansion for the energy density $\mathcal{E}(\tau)$

Next

The energy density as a transseries

Energy density transseries for $u \equiv \tau^{2 / 3} \gg 1$

$$
\mathcal{E}(u, \boldsymbol{\sigma})=\sum_{\mathbf{n} \in \mathbb{N}_{0}^{\infty}} \boldsymbol{\sigma}^{\mathbf{n}} \mathrm{e}^{-\mathbf{n} \cdot \mathbf{A} u} \Phi_{\mathbf{n}}(u), \quad \Phi_{\mathbf{n}}(u)=u^{-\beta_{\mathbf{n}}} \sum_{k=0}^{+\infty} \varepsilon_{k}^{(\mathbf{n})} u^{-k}
$$

$>$ infinite dimensional vector space $\mathbf{n}=\left(n_{1}, n_{\overline{1}}, n_{2}, n_{\overline{2}}, \cdots\right) \in \mathbb{N}_{0}^{\infty}$
\Rightarrow unit vectors $\mathbf{e}_{k}, \overline{\mathbf{e}_{k}}$

$$
\mathbf{e}_{1} \equiv(1,0, \cdots), \overline{\mathbf{e}}_{1} \equiv(0,1,0, \cdots), \cdots
$$

- Vector of 'instanton" actions

$$
\mathbf{A}=\left(A_{1}, \bar{A}_{1}, A_{2}, \bar{A}_{2}, \cdots\right)
$$

- Transseries parameters

$$
\boldsymbol{\sigma}=\left(\sigma_{A_{1}}, \sigma_{\bar{A}_{1}}, \sigma_{A_{2}}, \sigma_{\bar{A}_{2}}, \cdots\right)
$$

such that $\sigma^{\mathbf{n}}=\sigma_{A_{1}}^{n_{1}} \sigma_{\bar{A}_{1}}^{n_{\overline{1}}} \sigma_{A_{2}}^{n_{2}} \sigma_{\bar{A}_{2}}^{n_{\overline{-}}} \cdots$
$\Phi_{\mathrm{n}}(u)$ are asymptotic!

Energy density transseries

$$
\mathcal{E}(u, \boldsymbol{\sigma})=\sum_{\mathbf{n} \in \mathbb{N}_{0}^{\infty}} \boldsymbol{\sigma}^{\mathbf{n}} \mathrm{e}^{-\mathbf{n} \cdot \mathbf{A} u} \Phi_{\mathbf{n}}(u), \quad \Phi_{\mathbf{n}}(u)=u^{-\beta_{\mathbf{n}}} \sum_{k=0}^{+\infty} \varepsilon_{k}^{(\mathbf{n})} u^{-k}
$$

- Normalisations $\varepsilon_{0}^{(0)}=\pi^{-4} ; \varepsilon_{0}^{\left(\mathbf{e}_{k}\right)}=1, k \in \mathbb{N}$
- Hydrodynamic series

$$
\Phi_{0}(u)=u^{-\beta_{0}} \sum_{k=0}^{+\infty} \varepsilon_{k}^{(0)} u^{-k}, \beta_{0}=2
$$

- Fundamental sectors: $\Phi_{\mathbf{n}}$ with $\mathbf{n}=\mathbf{e}_{k}, \overline{\mathbf{e}}_{k}$
- Associated to QNM of the black brane
- Mixed sectors: $\Phi_{\mathbf{n}}$ with \mathbf{n} a linear combination of different unit vectors
- Associated to coupling of QNMs

Fundamental sectors

$$
\mathcal{E}(u, \boldsymbol{\sigma})=\sum_{\mathbf{n} \in \mathbb{N}_{0}^{\infty}} \boldsymbol{\sigma}^{\mathbf{n}} \mathrm{e}^{-\mathbf{n} \cdot \mathbf{A} u} \Phi_{\mathbf{n}}(u), \quad \Phi_{\mathbf{n}}(u)=u^{-\beta_{\mathbf{n}}} \sum_{k=0}^{+\infty} \varepsilon_{k}^{(\mathbf{n})} u^{-k}
$$

- Fundamental sector of lowest QNM $\omega_{1}=3.1195 \cdots-$ i $2.7467 \cdots$

$$
\Phi_{\mathbf{e}_{1}}(u)=u^{-\beta_{\mathbf{e}_{1}}} \sum_{k=0}^{+\infty} \varepsilon_{k}^{\left(\mathbf{e}_{1}\right)} u^{-k} ; \Phi_{\overline{\mathbf{e}}_{1}}(u)=\overline{\Phi_{\mathbf{e}_{1}}(u)}
$$

where $\beta_{\mathbf{e}_{1}}=-\frac{A_{1}}{6}+3$ and $A_{1}=\mathrm{i} \frac{3}{2} \omega_{1}$;

- Fundamental sector of QNM $\omega_{2}=5.16952 \cdots-\mathrm{i} 4.76357 \cdots$:

$$
\Phi_{\mathbf{e}_{2}}(u)=u^{-\beta_{\mathbf{e}_{2}}} \sum_{k=0}^{+\infty} \varepsilon_{k}^{\left(\mathbf{e}_{2}\right)} u^{-k} ; \Phi_{\overline{\mathbf{e}}_{2}}(u)=\overline{\Phi_{\mathrm{e}_{2}}(u)}
$$

where $\beta_{\mathbf{e}_{2}}=-\frac{A_{1}}{6}+3$ and $A_{2}=\mathrm{i} \frac{3}{2} \omega_{2}$

Mixed sectors

$$
\mathcal{E}(u, \boldsymbol{\sigma})=\sum_{\mathbf{n} \in \mathbb{N}_{0}^{\infty}} \boldsymbol{\sigma}^{\mathbf{n}} \mathrm{e}^{-\mathbf{n} \cdot \mathbf{A} u} \Phi_{\mathbf{n}}(u), \quad \Phi_{\mathbf{n}}(u)=u^{-\beta_{\mathbf{n}}} \sum_{k=0}^{+\infty} \varepsilon_{k}^{(\mathbf{n})} u^{-k}
$$

- Mixed sector associated to exponential weight $2 A_{1}$

$$
\Phi_{2 \mathbf{e}_{1}}(u)=u^{-\beta_{2 \mathbf{e}_{1}}} \sum_{k=0}^{+\infty} \varepsilon_{k}^{\left(2 \mathbf{e}_{1}\right)} u^{-k}
$$

with $\beta_{2 \mathbf{e}_{1}}=2 \beta_{\mathbf{e}_{1}}-2$

- Mixed sector associated to exponential weight $A_{1}+\overline{A_{1}}$

$$
\Phi_{\mathbf{e}_{1}+\overline{\mathrm{e}}_{1}}(u)=u^{-\beta_{\mathbf{e}_{1}+\overline{\mathrm{e}}_{1}}} \sum_{k=0}^{+\infty} \varepsilon_{k}^{\left(\mathbf{e}_{\mathbf{1}}+\overline{\mathrm{e}}_{1}\right)} u^{-k}
$$

with $\beta_{\mathbf{e}_{1}+\overline{\mathbf{e}}_{1}}=\beta_{\mathbf{e}_{1}}+\beta_{\overline{\mathbf{e}}_{1}}-2$

Next

All our sectors are asymptotic...

Aside: Asymptotic series

$$
F(g) \simeq \sum_{n \geq 0} f_{n} g^{n}
$$

- Divergent! No matter how small g is: $f_{n} g^{n} \rightarrow \infty$
- Truncate at some optimal $n=N$: very good approximation
- Take $g \ll 1$ fixed: define truncation $f_{N}(g)=\sum_{n=0}^{N} f_{n} g^{n}$

Non-perturbative effect: $g \rightarrow 0$ invisible in perturbation theory!

Aside: Borel Transform \& Resummation

Asymptotic series:

$$
F(g) \simeq \sum_{n \geq 0} f_{n} g^{n+1}, \quad \text { with } \quad F_{n} \sim n!
$$

- Borel transform:

$$
\mathcal{B}[F](s)=\sum_{n=0}^{\infty} \frac{f_{n}}{n!} s^{n}
$$

Rule: $\mathcal{B}\left[g^{\alpha+1}\right](s)=s^{\alpha} / \Gamma(\alpha+1)$

- finite radius of convergence - find function $\mathcal{B}[F](s)$
- In general $\mathcal{B}[F](s)$ will have singularities
- Borel resummation of F is the Laplace transform

$$
\mathcal{S F}(g)=\int_{0}^{\infty} d s \mathcal{B}[F](s) \mathrm{e}^{-s / g}
$$

Resurgence analysis and transseries [Eanlé8]]

A transseries $(z \sim \infty)$

$$
F(z, \sigma)=\sum_{n \geq 0} \sigma^{n} F^{(n)}, \quad F^{(n)}(z) \simeq \mathrm{e}^{-n A z} \sum_{k \geq 0} F_{k}^{(n)} z^{-k}
$$

defines a resurgent function if it relates the asymptotics of multi- instanton contributions $F_{n}^{(\ell)}$ in terms of $F_{n}^{\left(\ell^{\prime}\right)}$ where ℓ^{\prime} is close to ℓ

How does it work?

Resurgence at play [AA, Basar.schimpopa ' 18$]$

Multi-instanton asymptotic series
$F(z)=\sum_{n=0}^{\infty} \sigma^{n} F^{(n)}(z)$

		$F^{(3)}$	$F^{(4)}$	
	-	-	-	-
$\begin{array}{lllll}A & 2 A & 3 A & 4 A & 5 A\end{array}$				
Perturbative series: $\quad F^{(0)}(z)=\sum_{g=0}^{\infty} F_{g}^{(0)} z^{-g}$				
Instanton series:			$F^{(n)}(z)=e^{-n A z} \sum_{g=1}^{\infty} F_{g}^{(n)} z^{-g}$	

Resurgence at play [AA, Basar.schimpopa ' 18$]$

Large-order behaviour - Perturbative series for large g

Resurgence at play [AA, Basar.schimpopa '18]

Equivalently: Perturbative series for large g ENCODES all other sectors

Borel Analysis of the hydrodynamic series

Borel transform for the hydrodynamic expansion Φ_{0}

QNMs:
$A_{1} ; 2 A_{1} ; 3 A_{1}$
$A_{2} ;$
A_{3};
\bar{A}_{i}

$$
\begin{aligned}
& A_{1}=3 / 2(2.746676+3.119452 \mathrm{i}) \\
& A_{2}=3 / 2(4.763570+5.169521 \mathrm{i}) \\
& A_{3}=3 / 2(6.769565+7.187931 \mathrm{i})
\end{aligned}
$$

How much information is encoded in the hydro series?

Resurgence predictions

- Complex-conjugate singularities in the Borel plane $\xi=A_{1}, \overline{A_{1}}, \cdots$
- Factorial growths $\Gamma(k+\beta)$ for $k \gg 1, \beta=\beta_{0}-\beta_{\mathbf{e}_{1}} \in \mathbb{C}$
- Expected large-order behaviour:

$$
\begin{aligned}
\varepsilon_{n}^{(0)} \simeq- & \frac{S_{0 \rightarrow \mathrm{e}_{1}}}{2 \pi \mathrm{i}} \frac{\Gamma(n+\beta)}{A_{1}^{n+\beta}}\left(\varepsilon_{0}^{\left(\mathrm{e}_{1}\right)}+\frac{A_{1}}{n} \varepsilon_{1}^{\left(\mathrm{e}_{1}\right)}+\cdots\right) \\
& +\frac{\overline{S_{0 \rightarrow+\mathrm{e}}}}{2 \pi \mathrm{i}} \frac{\Gamma(n+\bar{\beta})}{\bar{A}_{1}^{n+\bar{\beta}}}\left(\varepsilon_{0}^{\left(\overline{\mathrm{e}}_{1}\right)}+\frac{\bar{A}_{1}}{n} \varepsilon_{1}^{\left(\overline{\mathrm{e}}_{1}\right)}+\cdots\right)+\mathcal{O}\left(\left|A_{2}\right|^{-n}\right)
\end{aligned}
$$

- Difficult to test with usual methods:
- the (unknown) Borel residue mixes with β and A_{1}
- oscillatory behaviour, convergence less obvious

Analyse asymptotic behaviour at the level of Borel singularities

Large order behaviour in the Borel plane

$$
\begin{aligned}
\varepsilon_{n}^{(0)} \simeq- & \frac{S_{0 \rightarrow \mathbf{e}_{1}}}{2 \pi \mathrm{i}} \frac{\Gamma(n+\beta)}{A_{1}^{n+\beta}}\left(\varepsilon_{0}^{\left(\mathbf{e}_{1}\right)}+\frac{A_{1}}{n} \varepsilon_{1}^{\left(\mathbf{e}_{1}\right)}+\cdots\right) \\
& +\frac{\overline{S_{0 \rightarrow \mathbf{e}_{1}}}}{2 \pi \mathrm{i}} \frac{\Gamma(n+\bar{\beta})}{\bar{A}_{1}^{n+\bar{\beta}}}\left(\varepsilon_{0}^{\left(\overline{\mathrm{e}}_{1}\right)}+\frac{\bar{A}_{1}}{n} \varepsilon_{1}^{\left(\overline{\mathrm{e}}_{1}\right)}+\cdots\right)+\mathcal{O}\left(\left|A_{2}\right|^{-n}\right)
\end{aligned}
$$

- Growth associated to Borel singularity $\xi=A_{1}: \varepsilon_{n}^{(0)} \simeq \Gamma\left(n+\beta_{0}-\beta_{\mathbf{e}_{1}}\right)$
- Multiply Φ_{0} by $u^{-\alpha}$ s.t. Borel transform removes the exact factorial growth
- Behaviour at singular point is then $\left(\alpha=\beta_{\mathbf{e}_{1}}\right)$

$$
\mathcal{B}\left[u^{\beta_{e_{1}}} \Phi_{0}\right](\xi) \sim S_{0 \rightarrow \mathbf{e}_{1}} \mathcal{B}\left[u^{\beta_{e_{1}}} \Phi_{\mathbf{e}_{1}}\right]\left(\xi-A_{1}\right) \frac{\log \left(\xi-A_{1}\right)}{2 \pi \mathrm{i}}+\cdots
$$

Analysing each branch cut of the Borel plane separately, we can recover the coefficients of the sector associated to that branch cut

Large order behaviour in the Borel plane

$$
\mathcal{B}\left[u^{\beta_{e_{1}}} \Phi_{0}\right](\xi) \sim S_{0 \rightarrow \mathbf{e}_{1}} \mathcal{B}\left[u^{\beta_{e_{1}}} \Phi_{\mathbf{e}_{1}}\right]\left(\xi-A_{1}\right) \frac{\log \left(\xi-A_{1}\right)}{2 \pi \mathrm{i}}+\cdots
$$

- Transform the logarithmic behaviour into a square root branch cut:

$$
\begin{aligned}
\left.\mathcal{B}\left[u^{\beta_{e_{1}}-1 / 2} \Phi_{0}\right](\xi)\right|_{\xi=A_{1}} & =\frac{S_{0 \rightarrow e_{1}}}{2} \mathcal{B}\left[u^{\beta_{e_{1}}-1 / 2} \Phi_{\mathbf{e}_{1}}\right]\left(\xi-A_{1}\right)+\cdots \\
& =\frac{S_{0 \rightarrow e_{1}}}{2 \sqrt{\xi-A_{1}}}\left(\frac{\varepsilon_{0}^{\left(e_{1}\right)}}{\Gamma(1 / 2)}+\varepsilon_{1}^{\left(e_{1}\right)} \frac{\left(\xi-A_{1}\right)}{\Gamma(3 / 2)}+\varepsilon_{2}^{\left(e_{1}\right)} \frac{\left(\xi-A_{1}\right)^{2}}{\Gamma(5 / 2)}+\cdots\right)
\end{aligned}
$$

- Last step: transform it into a simple pole by defining $\xi=A_{1}-\left(\zeta-A_{1}\right)^{2}$

$$
\left.\mathcal{B}\left[u^{\beta_{e_{1}}-1 / 2} \Phi_{0}\right](\zeta)\right|_{\zeta=A_{1}}=\frac{S_{0 \rightarrow e_{1}}}{2 \mathrm{i}\left(\zeta-A_{1}\right)}\left(\frac{\varepsilon_{0}^{\left(\mathbf{e}_{1}\right)}}{\Gamma(1 / 2)}-\varepsilon_{1}^{\left(\mathbf{e}_{1}\right)} \frac{\left(\zeta-A_{1}\right)^{2}}{\Gamma(3 / 2)}+\cdots\right)
$$

Predictions of the leading fundamental sector

$$
\left.\mathcal{B}\left[u^{\beta \mathrm{e}_{1}-1 / 2} \Phi_{0}\right](\zeta)\right|_{\zeta=A_{1}}=\frac{\mathrm{S}_{0 \rightarrow \mathrm{e}_{1}}}{2 \mathrm{i}\left(\zeta-A_{1}\right)}\left(\frac{\varepsilon_{0}^{\left(\mathrm{e}_{1}\right)}}{\Gamma(1 / 2)}-\varepsilon_{1}^{\left(\mathbf{e}_{1}\right)} \frac{\left(\zeta-A_{1}\right)^{2}}{\Gamma(3 / 2)}+\cdots\right)
$$

- Residue at $\zeta=A_{1}$: determine $\mathrm{S}_{0 \rightarrow \mathbf{e}_{1}}\left(\varepsilon_{0}^{\left(\mathbf{e}_{1}\right)}=1\right)$
- Subtract the leading contribution:

$$
\left.\mathcal{B}\left[u^{\beta_{\boldsymbol{e}_{1}}-1 / 2} \Phi_{0}\right](\zeta)\right|_{\zeta=A_{1}}-\frac{\mathrm{S}_{0 \rightarrow \boldsymbol{e}_{1}}}{2 \mathrm{i}\left(\zeta-A_{1}\right)} \frac{\varepsilon_{0}^{\left(\mathbf{e}_{1}\right)}}{\Gamma(1 / 2)}=-\varepsilon_{1}^{\left(\mathbf{e}_{1}\right)} \frac{\mathrm{S}_{0 \rightarrow \mathbf{e}_{1}}}{2 \mathrm{i} \Gamma(3 / 2)}\left(\zeta-A_{1}\right)+\cdots
$$

- Multiply by $\left(\zeta-A_{1}\right)^{-2}$ and take residue: prediction of $\varepsilon_{1}^{\left(e_{1}\right)}$

Iterative process to obtain the coefficients of the leading fundamental sector $\Phi_{\mathbf{e}_{1}}$

Subleading singularities of perturbative series

- We analysed the properties of the leading branch cut (closest to the origin)
- Now analyse the behaviour at the second Borel singularity $\xi=A_{2}$
- How? Subtract the leading large-order behaviour at $\xi=A_{1}$ from the perturbative coefficients

$$
\delta_{1} \varepsilon_{n}^{(\mathbf{0})}=\varepsilon_{n}^{(0)}-\frac{S_{0 \rightarrow \mathbf{e}_{1}}}{2 \pi \mathrm{i}} \frac{\Gamma(n+\beta)}{A_{1}^{n+\beta}} \chi_{0 \rightarrow \mathbf{e}_{1}}(n)-\text { c.c } \simeq \mathcal{O}\left(\left|A_{2}\right|^{-n}\right)
$$

- Contributions $\chi_{0 \rightarrow \mathbf{e}_{1}}(n)$ are asymptotic series in n^{-1}

$$
\chi_{0 \rightarrow \mathrm{e}_{1}}(n) \simeq\left(\varepsilon_{0}^{\left(\mathrm{e}_{1}\right)}+\frac{A_{1}}{n} \varepsilon_{1}^{\left(\mathrm{e}_{1}\right)}+\cdots\right)
$$

- Resum contribution for each value of n : Borel \rightarrow Padé approx. \rightarrow summation
- Define new series and analyse its Borel transform

$$
\delta_{1} \Phi_{0}(u)=u^{-\beta_{0}} \sum_{k} \delta_{1} \varepsilon_{k}^{(0)} u^{-k}
$$

Subleading singularities for hydro series

Borel transform for the subtracted hydrodynamic expansion

QNMs:
$A_{1} ; 2 A_{1} ; 3 A_{1}$
$A_{2} ;$
$A_{3} ;$
\bar{A}_{i}

$$
\begin{aligned}
& A_{1}=3 / 2(2.746676+3.119452 \mathrm{i}) \\
& A_{2}=3 / 2(4.763570+5.169521 \mathrm{i}) \\
& A_{3}=3 / 2(6.769565+7.187931 \mathrm{i})
\end{aligned}
$$

The leading singularities were effectively subtracted!

Predictions

With the procedures just described we can:

- Analyse the leading singularities of the hydro series and predict the coefficients associated to the fundamental sector $\Phi_{\mathrm{e}_{1}}$
- Subtract the contribution of the leading sectors and analyse the subleading singularities: predict the coefficients of the fundamental sector $\Phi_{\mathbf{e}_{2}}$
- This iterative procedure can be taken to reach extra subleading singularities
- Apply the procedure to fundamental sectors such as $\Phi_{\mathrm{e}_{1}}$: analyse its singularity structure, in particular contributions from the mixed sectors

Next

Compare resurgence predictions and gravity calculations

Resurgence predictions

- Predictions from the large order of hydro series Φ_{0}
- Predicted coefficients of fundamental sectors $\Phi_{\mathrm{e}_{1}}$ and $\Phi_{\mathrm{e}_{2}}$
- Predictions from the large order of fundamental sector $\Phi_{\mathrm{e}_{1}}$
- Predicted coefficients of mixed sectors $\Phi_{2 e_{1}}$ and $\Phi_{e_{1}+\bar{e}_{1}}$
- Determined respective Borel residues $\mathrm{S}_{\mathrm{n} \rightarrow \boldsymbol{m}}$
- Compared results to gravity calculations:

$$
\Delta_{\mathbf{n}} \varepsilon_{k}^{(\mathbf{m})} \equiv \frac{\left.\varepsilon_{k}^{(\mathbf{m})}\right|_{\mathbf{n} \text {-predicted }}-\left.\varepsilon_{k}^{(\mathbf{m})}\right|_{\text {numerical }}}{\left.\varepsilon_{k}^{(\mathbf{m})}\right|_{\text {numerical }}}, k \geq 1
$$

- $\left.\varepsilon_{k}^{(\mathbf{m})}\right|_{\text {numerical }}$: coeffs of $\Phi_{\mathbf{m}}$ determined from gravity
$-\left.\varepsilon_{k}^{(\mathbf{m})}\right|_{\mathbf{n}-\text { predicted }}$: coeffs of $\Phi_{\mathbf{m}}$ predicted from the large order of sector $\Phi_{\mathbf{n}}$

Fundamental sector $\Phi_{\mathbf{e}_{1}}$ from hydro series

$$
\Phi_{0}(u)=u^{-\beta_{0}} \sum_{k=0}^{+\infty} \varepsilon_{k}^{(0)} u^{-k}, \beta_{0}=2,(370 \text { terms })
$$

Singularities of $\mathcal{B}\left[\Phi_{0}\right]$

Convergence of $\varepsilon_{k}^{(0)}$ to first coefficients of $\Phi_{\mathbf{e}_{1}}$ sector

Fundamental sector $\Phi_{\mathrm{e}_{2}}$ from hydro series

$$
\delta_{1} \Phi_{0}(u)=u^{-\beta_{0}} \sum_{k=1}^{+\infty} \delta_{1} \varepsilon_{k}^{(0)} u^{-k}, \beta_{0}=2,(200 \text { terms })
$$

Singularities of $\mathcal{B}\left[\delta_{1} \Phi_{0}\right]$
Convergence of $\varepsilon_{k}^{(0)}$ to
first coefficients of $\Phi_{\mathrm{e}_{2}}$ sector

$$
\text { Borel residue: } \quad S_{0 \rightarrow \mathbf{e}_{2}}=0.170024383607+0.0974608479999 \mathrm{i}
$$

Fundamental sector $\Phi_{\mathrm{e}_{2}}$ from sector $\Phi_{\mathrm{e}_{1}}$

$$
\Phi_{\mathbf{e}_{1}}(u)=u^{-\beta_{\mathbf{e}_{1}}} \sum_{k=0}^{+\infty} \varepsilon_{k}^{\left(\mathbf{e}_{1}\right)} u^{-k},(270 \text { terms })
$$

Singularities of $\mathcal{B}\left[\Phi_{\mathrm{e}_{1}}\right]$
Convergence of $\varepsilon_{k}^{\left(\mathbf{e}_{1}\right)}$ to
first coefficients of $\Phi_{\mathrm{e}_{2}}$ sector

Borel residue:

$$
S_{\mathrm{e}_{1} \rightarrow \mathrm{e}_{2}}=2.6127578014-10.6770578911 \mathrm{i}
$$

Mixed sectors $\Phi_{2 \mathbf{e}_{1}}$ and $\Phi_{\mathbf{e}_{1}+\bar{e}_{1}}$ from sector $\Phi_{\mathbf{e}_{1}}$

$$
\delta_{1} \Phi_{\mathbf{e}_{1}}(u)=u^{-\beta_{\mathbf{e}_{1}}} \sum_{k=1}^{+\infty} \delta_{1} \varepsilon_{k}^{\left(\mathbf{e}_{1}\right)} u^{-k},(200 \text { terms })
$$

- Prediction of first coefficients of $\Phi_{2 \mathbf{e}_{1}}$ and $\Phi_{\mathbf{e}_{1}+\overline{\mathbf{e}}_{1}}$ sectors from coefficients $\varepsilon_{k}^{\left(\mathbf{e}_{1}\right)}$

Summary \& Future directions

Resurgent structure associated to SYM plasma undergoing Bjorken flow

- Calculation of a transseries for the energy density:
- from the bulk dual geometry, using AdS/CFT duality
- Exponentially suppressed sectors, associated to QNMs of a black brane
- Predictions from resurgence via residues of Borel transforms
- Very accurate predictions, showing how all non-perturbative information is encoded in the hydro series
- Method bypasses the intricate oscillatory behaviour of the large-order relations
- Iterative process to obtain exponentially suppressed sectors from perturbative data

Summary \& Future directions

- Coupling between QNMs
- Appearance of mixed sectors, interpreted as non-trivial coupling between QNMs
- Expected from resurgence but surprising from gravity as QNMs appear as solutions of linearised Einstein eqs
- Future directions:
- Resummation and properties of the solution at early times, connection with attractor
- Role of the residual initial conditions in transseries

Thank you!

