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Strongly coupled systems and dualities

Relativistic hydrodynamics: reliable description of strongly coupled systems,
describing a slow evolution w.r.t. some microscopic scale

» real life: strongly coupled quark-gluon plasma seen in particle accelerators

> To determine the kinetic parameters of hydrodynamic equations (e.g. shear
viscosity): study the associated microscopic theory

Associated microscopic description can can be a QFT, such as strongly

coupled N = 4 Super Yang-Mills (SYM)

» N — oo, gauge/gravity duality: determine hydrodynamic parameters, time
dependent processes of the SYM plasma [Policastro et a/,'01 - '04][Nastase,'05]



Strongly coupled systems and dualities

Interesting kinematic regime: expanding plasma in the so-called central rapidity
region, where one can assume longitudinal boost invariance (Bjorken flow
[Bjorken, 83])

» dynamics much simpler, but preserves complexity of the original problem

Analyse the time-dependent expansion of a boost invariant plasma system.

From AdS/CFT duality

> regularity of the dual geometry predicts almost perfect fluid hydrodynamic
expansion [Janik, Peschanski,’05]

» leading dissipative corrections come from shear viscosity [Janik,'06]



Energy-momentum tensor

In hydrodynamic theories the energy-momentum tensor is given by

T =&u"u” + PEY(" + v u”)+NH

> £ is energy density

» T1#¥ is the shear stress tensor: dissipative effects
> P(E)=E/3 is pressure in d = 4 conformal theories
» u is flow velocity - timelike eigenvector of the E-M tensor

Symmetries: conformal invariance, transversely homogeneous, invariance under
longitudinal Lorentz boosts



Energy-momentum tensor

T = Eu"u” + P(E)(n™ + u'u”) + ™

E-M conservation 0, T# = 0 and traceless T/' =0
» dependence on single function: energy density in the local rest frame £
» Boost invariance: £ (7) only depends on proper time

» Conformal invariance: energy density and temperature related by power law

_3mN?
8

£ T* for N = 4 SYM

Strongly coupled SYM boost invariant plasma: all physics encoded in &(7).

Obtaining this function is in general too difficult:
perform a large proper time expansion



Late-time behaviour

» Starting from highly non-equilibrium initial conditions, the microscopic
theory will reveal the transition to hydrodynamic behaviour at late times

» Conformal theories: late-time behaviour of temperature/energy density
highly constrained

. A = ti -
T(r) = = (1 +y° (A7)2k/3> L T> 1,

k=1

» A is a dimensionful parameter dependent on initial non-eq. conditions
» Leading behaviour in T (7) predicted by boost-invariant perfect fluid

> subleading terms: dissipative hydrodynamic effects



AdS/CFT description of expanding plasma

» Goal: use dual geometry to analyse the expansion of boost invariant SYM
plasma

» All possible behaviours of the spacetime expectation value of (T,,)

» dependence only on single function & (7)

» Dual geometry given by 5D metric [Hare et at,'00] [Skenderis,'02] [Fefferman,Graham,'85]
d5? = = (G dxdx” + dz?
s° = ;( waxtax” 4+ dz ),

> z-"fifth coordinate”; u =0,---,3
> G (x%,2)

» Solve Einstein equations with negative cosmological constant (asymptotic
behaviour of geometry is AdS)

1
Ruw = 5 GuR = 66y = 0



AdS/CFT description of expanding plasma

1
Ry — EG’“’R —6G,, =0
» Boundary condition at z=10
G/W = Nuv +z4g/S4V) + ..

» Holographic renormalisation [Hare et at,'00]

2
N° @

<Tp,1/> = ﬁgﬂu

» Boost invariant plasma general metric:

1

ds® = = (dz? — e Adr? + 72eBdy? + e“dx?)
z

> A B, C functions of z, 7

> Energy density E(r) = — lim A(z,7)
z—0 z4



AdS/CFT description of expanding plasma

> Equilibrium states of the microscopic theory (CFT) are represented by
black hole solutions [witten, 98]

flat space: planar horizons — black branes

» Simplest non-equilibrium phenomena to study: dynamics of linearised
perturbations on top of the black brane

> perturbations of strongly coupled plasmas on top of equilibrium solution:
black branes’ Quasinormal modes (QNMs)
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AdS dual geometry calculation
Use Eddington-Finkelstein coordinates:
ds®> = —hr?dr? 4+ 2d7 dr + (rr + 1)? ePdy? + r2e*%(b+d)dxi

» 0 < r < oo holographic radial co-ord.; conformal boundary at r — oo

> 7.y, dx?: reduce to proper time, rapidity and transverse co-ords

> Define scaled variable s = 771/3

» Minkowski metric at boundary s =0

limh(s,7) =1, limb(s,7)=limd(s,7)=0

s—0 s—0 s—0
» Horizon fixed at s = 1 to all orders
h(s=1,7)=0

» regular solutions in the bulk 0 < s <1



AdS dual geometry calculation

ds® = —hr2dr? + 2d7 dr + (rr 4 1) ePdy? + r2e~ 20+ gy
» Hydro expansion + transient modes: Transseries ansatz for f = h, b, d
f (s, u= 72/3,0') = Z o"e AU, (v)
neNg®

with power series expansions  ®p (u) = v~ Z fk(")(s) uk
k>0
» Determine large 7 expansions of functions h, b, d requiring
> Equilibrium given by black brane: Al =1 —s* b” = d{” =0

Flatness at boundary s =0

Regularity in the bulk 0 <s <1

>

> Horizon at s =1

>

> QMN frequencies: wx = —3ex-A, n=e,=(0,---,0,1,0,---)

Retrieve the transseries expansion for the energy density £(7)






Energy density transseries for u = 72/3 > 1

—+o0
E(u,o) = Z o"e " AYD (u), by (u)=uFr Zsf(") uk
k=0

neNg®
» infinite dimensional vector space n = (ny, n7, na, nz, -+ - ) € N§°
» unit vectors ey, €

e; =(1,0,---),e; =(0,1,0,---), - -~
» Vector of "instanton” actions
A= (AL AL AL A, )
» Transseries parameters
o = (JAI,UAI,O'ANO';%,'”)

n_ _m " _n N3
such that o = o 03 o 07

®, (u) are asymptotic!



Energy density transseries

o) = Z o"e " Ao, (u), bn(u)=u" Ze(")

neNge

> Normalisations ) = 7=4; &l®) =1, ke N

» Hydrodynamic series
“+o0o
W= S o2
k=0

» Fundamental sectors: ®,, with n = ey, €
» Associated to QNM of the black brane

» Mixed sectors: ®, with n a linear combination of different unit vectors
> Associated to coupling of QNMs



Fundamental sectors

400
= Z a"e "R, (u), Pn(u)=uPm Zai"
k=0

neNge

» Fundamental sector of lowest QNM w; = 3.1195--- —12.7467 - - -

+oo
ey (u) = u Y uTh 0 (u) = @, ()
k=0
where (e, = —% +3and A :i%wl;

» Fundamental sector of QNM wy = 5.16952--- —14.76357 - - - :
e, (u) = %Ze@” T g, (u) = O, (u)

where662:—%+3and AQZi%WQ

)u—k



Mixed sectors

+o00o
€(u,0) = Z Unein.Auq)n (u) , ®n(u)= Ufﬂ"zgin) uk
neNge o

» Mixed sector associated to exponential weight 24;
+oo
Boe, (1) = u~ P Zefel) uk
k=0

with Bae, = 26, — 2

» Mixed sector associated to exponential weight A; + Ay
+o0 B
De, v, (U) = uPerte ZEE<EI+GI) uk
k=0

with Se, s = Be; + e — 2






Aside: Asymptotic series

Flg) ~ > fg"

n>0
» Divergent! No matter how small g is: f,g" — oo
» Truncate at some optimal n = N: very good approximation
> Take g < 1 fixed: define truncation fy(g) = ZLO fhg"

N=1—= fo+ fig

N — (- 2 /,

N=2 fo+ fig+ fag [ Neoptimay = A/g
log(f — f~) )
Noptimal) / N

op! (f = fw)(g) ~ eV

Optimal error:

-20 [ for some value A
-Alg -

Non-perturbative effect: g — 0 invisible in perturbation theory!
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Aside: Borel Transform & Resummation

Asymptotic series: F(g) ~ Z f,g"™,  with F,~n!
n>0
e} fn .
> Borel transform: B[F](s) = Z e
n=0 '

Rule: B [g®*!] (s) = s*/T(a+ 1)

> finite radius of convergence - find function B[F](s)

» In general B[F](s) will have singularities

» Borel resummation of F is the Laplace transform

SF(g) = /0 " ds BF](s)e—/



Resurgence analysis and transseries ies

A transseries (z ~ 00)

F(z,0) = ZU"F("), F(")(z) ~ eanZZF,E")sz

n>0 k>0

defines a resurgent function if it relates the asymptotics of multi- instanton

contributions F,se) in terms of F,Se) where ¢ is close to ¢

How does it work?



Multi-instanton asymptotic series

F@ =) 0c"F"@

n=0

FD F®? E® E@ F©®

'Y 'y Y
e

A 2A 3A 4A 5A

Perturbative seriess  FO(2) = ZFS’) 791
g=0

)

Instanton series: FO(z) = g "AZ ZFg‘) 79

o1



Large-order behaviour - Perturbative seriesfor large ¢

)
\‘\ k
S FO Sl_z,:(z) Sl_a,:(eo 31_4,:(4) ™ Sl—Fﬁk)
ENSANI U
|:('1) F:Z) |:'(3) F;l) F:5) .

FP~S ) a@FY + 2987 ) i@ FPY + ..

n>0 n>0

All multi-instanton sectors
contribute to the large-order

behavior of coefficients F



Equivaently: Perturbative series for large g ENCODES all other sectors

FE,O) From the leading
large g behaviour of F{:
SFY .. determineF\", FY, ...
o ° ° ° ° °
F® F® =) =) £®

A
Fg)>~sl(|:(11> to1 F o+ ) +0(29




Borel Analysis of the hydrodynamic series

Borel transform for the hydrodynamic expansion ®g

QNMs:
A1; 2A1; 3A; w
As; -
As;
A
Ay
Az
As

How much information is encoded in the hydro series?

&, sector

o 0 °

 XTL

3/2(2.746676 + 3.119452i);
3/2(4.763570 + 5.169521i);
3/2(6.769565 + 7.187931i);



Resurgence predictions

» Complex-conjugate singularities in the Borel plane £ = A, Ay, - - -

» Factorial growths ' (k+ ) for k > 1, =g — Be, € C
» Expected large-order behaviour:

© _ Soal(+08) () A_e),

&’ i Af*ﬁ €+ P +

50%5:1 r (n + B)

@, A e, —n
27 ZTE <€° + n€1 + >+O(|A2‘ )

» Difficult to test with usual methods:

» the (unknown) Borel residue mixes with 3 and A;

> oscillatory behaviour, convergence less obvious

Analyse asymptotic behaviour at the level of Borel singularities



Large order behaviour in the Borel plane

© _ Nz l(+8) (@) Ae),
i A;’*ﬁ €+ nel +

Some, F(n+8 = Al s .
T (0 A o
27i AP n
1
> Growth associated to Borel singularity £ = Aj: D nr (n+ Bo — Be,)
> Multiply ®¢ by v~ s.t. Borel transform removes the exact factorial growth

» Behaviour at singular point is then (o = fe,)

B [Uﬁel q)O] (§) ~ So—e, B [“ﬁel d)eJ (€ — A1) W *

Analysing each branch cut of the Borel plane separately, we can
recover the coefficients of the sector associated to that branch cut



Large order behaviour in the Borel plane

log(§ — Ar) "

B [UB‘” ®o] (€) ~ Sove, B [u10¢, ] (€ — A1) 2mi

» Transform the logarithmic behaviour into a square root branch cut:
Bey —1/2 _ Soser o[, B 172 _
Bl e (o), = TR B o] (e A+

__Sooe e @) (E=A) | () (E—A)
2/E—A <F(1/2) e r@/2) ez WWLW

> Last step: transform it into a simple pole by defining £ = A; — (¢ — A1)2

o172 __ Sose 6 o) =AY
B[”ﬂ ! %] (C)L:Al - 2i(g07A1) (I‘(l/2) -a” r@ee)



Predictions of the leading fundamental sector

e, —1/2 Soves e& e (€= Ar)?
B[“ﬂ : ""’] (C)L:Alz 21((07;\1) (r(1/2) e r@ee)

> Residue at ( = A;: determine Sg_,e, (1) = 1)

» Subtract the leading contribution:

Eéel)

Bey —1/2 _ ﬂ _ _(er) SO—>e1 _
Bl @, 2 A) ) - air) AT

> Multiply by (¢ — A;)~2 and take residue: prediction of {*)

Iterative process to obtain the coefficients of the leading
fundamental sector ®g,



Subleading singularities of perturbative series

» \We analysed the properties of the leading branch cut (closest to the origin)
Now analyse the behaviour at the second Borel singularity £ = A,

» How? Subtract the leading large-order behaviour at £ = Ay from the
perturbative coefficients

© _ 0 Soel(n+h)

d1€n i AT Xo—ey (1) — c.c = O (|A2| ")

» Contributions xo_se, (n) are asymptotic series in n~!

A
X0—se; (1) (sgel) + el o )

n

» Resum contribution for each value of n: Borel—Padé approx.—summation
» Define new series and analyse its Borel transform

51®g (u) = u "0 25155(0) u ¥
K



Subleading singularities for hydro series

Borel transform for the subtracted hydrodynamic expansion

QNMs:
A1; 2A1; 3A; w
As; -
As;
A
Ay
Az
As

The leading singularities were effectively subtracted!

15

10

5

e

.
S, 00 ®

Re &

3/2(2.746676 + 3.119452i);
3/2(4.763570 + 5.169521i);
3/2(6.769565 + 7.187931i);



Predictions

With the procedures just described we can:

> Analyse the leading singularities of the hydro series and predict the
coefficients associated to the fundamental sector ®g,

> Subtract the contribution of the leading sectors and analyse the subleading
singularities: predict the coefficients of the fundamental sector ®e,

» This iterative procedure can be taken to reach extra subleading singularities

> Apply the procedure to fundamental sectors such as ®,,: analyse its
singularity structure, in particular contributions from the mixed sectors






Resurgence predictions

» Predictions from the large order of hydro series ®q

> Predicted coefficients of fundamental sectors ®¢, and P,

> Predictions from the large order of fundamental sector ®g,

» Predicted coefficients of mixed sectors @z, and ®e, 15,
» Determined respective Borel residues Sp_sm
» Compared results to gravity calculations:

(m) oy

AnEE(m) = €k ‘nfprezirir::)ted - numerical  k>1
€k |numerical
> sim) |numerica1: coeffs of ®,, determined from gravity
> 55('") |n7pmdictcd: coeffs of @y, predicted from the large order of sector P,



Im &

Fundamental sector ®¢, from hydro series

Singularities of B [®o]

“+o0o
b (u) = u P Zeio) u=k, By =2, (370 terms)
k=0

Convergence of 55(0) to

first coefficients of ®,, sector

» 10
-
10 o e
e 107#
/ *
5
2. 107
Ig
0 — [0
- .
< 105
-5 \
cee, 10-5¢
- -n.
* 1076
0 5 10 15 0 2 4 6 8

Borel residue:

So—e, = —0.01113168212 + 0.0305013486i



Im &

Fundamental sector ®¢, from hydro series

“+o0o
5109 (u) = u= 7o 261520) u=k, By =2, (200 terms)
k=1

Singularities of B [01®o]

Convergence of £ to

k
first coefficients of ®,, sector
15 —
0.100
10 o .
e 0.001
5 .
3. 107
-5 ° 10
b T
~10 . M 10
1 *
0 5 10 15 0 2 4 6 8
Re ¢

Borel residue: So—e, = 0.170024383607 + 0.0974608479999i
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Im (£+ Ay)

Fundamental sector ®, from sector @,

+oo
®e, (1) = uPa Zs&fl) u~k, (270 terms)
k=0

Singularities of B [®g,] Convergence of 85(9.1) to

first coefficients of ®,, sector

rY 100
.
B
10 " Al
- 10-1
5 o _
Sg 1010
o - w10
~. s
‘. q 24
. .
—sf ., Y . 10
.
-10 . 102
_15
) 5 10 15 0 2 4 6 8 10
Re (£+ A)) m

Borel residue: Se;—re, = 2.6127578014 — 10.6770578911i
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+o0
510, (u) = u™P= 26155(81) u~k, (200 terms)
k=1

» Prediction of first coefficients of ®ge, and Pe, 15, sectors from coefficients

clen)
k
1021 . * 102 i
. .
. 10 .
—_ 107t . "E .
Sz + 10 o
W . <& .
g 10 -
< g 10 .
.
- 10-10L *
108
M -
10-12 .
-10
1o 2 4 6 8 2 4 6 8 10
m m



Summary & Future directions

Resurgent structure associated to SYM plasma undergoing Bjorken flow

» Calculation of a transseries for the energy density:

» from the bulk dual geometry, using AdS/CFT duality

> Exponentially suppressed sectors, associated to QNMs of a black brane

> Predictions from resurgence via residues of Borel transforms

> Very accurate predictions, showing how all non-perturbative information is
encoded in the hydro series

»> Method bypasses the intricate oscillatory behaviour of the large-order
relations

> lterative process to obtain exponentially suppressed sectors from
perturbative data



Summary & Future directions

» Coupling between QNMs

> Appearance of mixed sectors, interpreted as non-trivial coupling between
QNMs

> Expected from resurgence but surprising from gravity as QNMs appear as

solutions of linearised Einstein eqs

» Future directions:

> Resummation and properties of the solution at early times, connection with
attractor

» Role of the residual initial conditions in transseries



Thank youl!
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