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Introduction 

The development of numerical modelling methods, such as the finite element method or the dynamic stiffness matrix method, allows 

the efficient and flexible calculation of the dynamic behaviour of loudspeaker cones. Physical insight into the dynamic behaviour 

can, however, best be gained from a consideration of the types of wave that can propagate along the cone. The wave finite element 

method is a numerical method of investigating wave motion in waveguides and expressing the dynamics of the waveguide in terms of 

wavenumbers and wave modes[1]. The wave finite element analysis is used here to predict the wavenumbers and wave modes as a 

function of position, for a cone typical of those used in loudspeakers, and the overall results from the finite element analysis is 

decomposed and interpreted in terms of wave components [2]. 

Fig.1. Side view of the conical cone in global coordinates. 

The dynamic behaviour at a given position along 

the cone depends on whether the excitation is 

above or below the ring frequency at this location, 

which is given by [3] fR=c/2πR, and can be seen in 

Fig. 2, where c is the speed of longitudinal waves 

and R is the distance between the cone and cone 

axis measured perpendicular to the cone meridian. 

Below the ring frequency the dynamics are 

dominated by the membrane stiffness, resulting in 

mostly in-plane motion. Above the ring frequency 

the dynamics are dominated by the bending 

stiffness, resulting in flexural motion. 

Waves in the Loudspeaker Cone 

Fig.2. The ring frequency as a function of position along 

the cone axis indicating the transition between mostly in-

plane (///) and mostly bending (\\\) behaviour. 

[1] Mace, B.R., Duhamel, D., Brennan, M.J., et al. Finite element prediction of wave motion in structural waveguides, The Journal of 

the Acoustical Society of America, 117 (5), 2835-2843, (2005). 

[2] Duhamel, D., Mace, B.R., and Brennan, M.J. Finite element analysis of the vibrations of waveguides and periodic structures, 

Journal of Sound and Vibration, 294 (1-2), 205-220, (2006). 

[3] Kaizer, A.J.M. Theory and Numerical Calculation of the Vibration and Sound Radiation of Non-rigid Loudspeaker Cones, in 62nd 

Convention  of the Audio Engineering Society 1979, AES: Brussels, Belgium. 

References 

Fig.4. Wavenumber distribution along the cone axis at 3000 Hz using the 

WFE, with only wavenumbers corresponding to forward going waves 

plotted, and solid lines being the real component of the wavenumber k, and 

dashed lines being the imaginary component. 

The wave finite element method provides a method of studying the waves that travel in the loudspeaker cone and, more 

importantly, decomposing the response of the full finite element model into the components due to each of these waves, in order to 

explore how they interact. In this way the insight provided by the wave approach can be brought to bear on the numerical results 

from more detailed finite element models. 

Conclusions 

In Fig.3, the cone moves almost as a rigid body at low frequency, 100 Hz for example, since the frequency is in region I. At higher 

frequencies, 2 kHz and 3 kHz when the excitation frequency is in region II, cone “break-up” occurs, in which the cone no longer 

vibrates as a rigid body, but some sections of the cone still move in phase. In this frequency range, a bending wave cannot propagate 

in the region close to the apical edge of the cone, due to the high stiffness, but can propagate on the outer part of the cone and then 

build up into a standing wave. The position, the “transition point”, where bending wave starts to cut-on, moves towards the apical 

edge as driving frequency increases. At 10 kHz the excitation frequency is in region III and the whole cone moves with a bending 

motion.  

Fig.5. Decomposition of the overall axial displacement calculated 

from the full finite element model into components due to 

forward going waves in Figure 4, calculated from the wave finite 

element model. 
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The wavenumber can be obtained directly from solving the 

eigenvalue problem for the transfer matrix T(n) [1]. Figure 4 

shows the distribution of the wavenumber along the cone axis at 

3000 Hz calculated using the wave finite element method. The 

cone can be split into 2 regions along the cone axis, region A 

includes apex to about 0.06 m corresponding to the transition 

point at 3000 Hz shown in Figure 2 and region B corresponds to 

from 0.06 m to the base of the cone. Wave 1 propagates with a 

gradually decreasing speed and decays less than the other two 

waves, since  wave 1 has a small non-zero imaginary part of 

wavenumber. This shows that in the region A, the longitudinal 

motion dominates the vibration pattern of the cone. Beyond the 

position 0.06 m, wave 2 starts to propagate towards the base. The 

wave 1 becomes an evanescent wave beyond the position 0.06 m. 

Wave 3 has a large non-zero imaginary part of wavenumber along 

the whole range of the cone, which indicates that this wave does 

not play a significant role in cone vibration. 

The contribution of wave 3 decays away on either side of this peak, and the amplitude is too small to significantly affect the overall 

response. It can be concluded that, inside region A the wavelength is long due to the predominance of longitudinal motion, and 

inside region B the wavelength is much shorter due to the predominance of bending motion. The energy is converted from 

longitudinal motion to bending motion at the transition point.  

Fig.3. Forced responses of the cone at (a) 100 Hz, (b) 2000 Hz, (c) 3000 Hz and (d) 

10000 Hz, the displacements are plotted in the global coordinates denoted by solid 

lines and the un-deformed middle surface of the cone is represented by dashed lines. 

In Fig. 5, the contribution of wave 1 is seen to be in reasonable 

agreement with the overall result from the full finite element 

method for positions apical to the peak response at this 

frequency, at about 0.06 m along the cone axis. The 

contribution of wave 1 is significantly less than the overall 

result of the full finite element for positions beyond the peak 

response, region B, however, where the contribution of wave 2 

dominates the overall response. There is also a negative going 

component of wave 2 in this region, due to the reflection from 

the free basal end of the cone and the interference between this 

and the positive going wave 2 gives rise to the interference 

pattern seen in the full finite element results. 
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