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Motivation

Rαβ −
1
2

gαβ R+Λgαβ = Tαβ , Λ < 0

Anti-de Sitter (AdS) space: the maximally symmetric solution for the vacuum
case; may be important due to AdS/CFT correspondence

Conjecture (Bizoń-R. 2011)
AdSd+1 (for d ≥ 3) is unstable under arbitrarily small perturbations (against
collapse)

Conjecture (Maliborski-R. 2013)
Negative cosmological constant allows for the existence of stable, globally
regular, asymptotically AdS, time-periodic solutions of Einstein equations,
immune to this instability

Evidence based on the study of a model case: Einstein equations sourced by
massless, spherically symmetric scalar field (the same evidence for other
matter fields at spherical symmetry; in vacuum case: only cohomogeneity-two
biaxial Bianchi IX)
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Urgent question: what happens outside spherical symmetry?

one possible way: to build perturbation expansion
(only to the 3rd order to check for instability with the resonant system (hard),
in principle to arbitrarily high orders to construct time-periodic solutions
(relatively easy and the 3rd order is probably crucial)).

1 Ó.J.C. Dias, G.T. Horowitz and J.E. Santos, Gravitational Turbulent
Instability of Anti-de Sitter Space Class. Quant. Grav. 29, 194002 (2012),
[arXiv:1109.1825]

2 Ó.J.C. Dias and J.E. Santos, AdS nonlinear instability: moving beyond
spherical symmetry, Class. Quantum Grav. 33 23LT01 (2016)
[arXiv:1602.03890]

but details of these works not given explicitly
3 R., Higher order perturbations of Anti-de Sitter space and time-periodic

solutions of vacuum Einstein equations, [arXiv:1701.07804]
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General approach to gravitational perturbations

The studies of gravitational perturbations of AdS led to a systematic and
robust scheme for nonlinear gravitational perturbations in vacuum:

1 There are only two polarization states in gravitational waves: at each
order of perturbation expansion there should exist two (for each
gravitational mode) masters scalar variables satisfying an
inhomogeneous linear wave equation with a uniquely defined potential
(cf. [Regge&Wheeler, 57], [Zerilli, 70], [Nollert, 99])

2 At each order gauge invariant part of metric perturbations (like
Regge-Wheeler gauge invariant variables) are uniquely given in terms of
master scalar variables and their derivatives (and some source functions
at nonlinear orders) (cf. [Mukohyama, 00], [Brizuela et al., 09])

3 These relations can be inverted for scalar master variables to be given in
terms of RW type gauge invariant variables to provide the initial data and
the form of scalar sources for the scalar wave equations for master scalar
variables (cf. [Moncrief, 74], [Garat&Price, 00], [Brizuela et al., 09])
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A few general remarks

1 Identities for the sources - crucial for the consistency of higher orders of
perturbation expansion

2 Gauge issues can become a nuisance - we find fully gauge invariant
approach to higher orders of perturbation expansion (cf. [Garat&Price, 00],
[Brizuela et al., 09]) neither necessary nor useful

3 We use multipole expansion. At nonlinear orders of perturbation
expansion the `= 0,1 (monopole and dipole) parts need special
treatment

4 We limit ourselves to axial symmetry (stepping beyond axial symmetry is
a technical, not a conceptual issue). Then we can limit ourselves to polar
perturbations only (including axial perturbations to the scheme is
straightforward)

5 We illustrate our approach on concrete examples in given coordinate
systems

6 Including matter - postponed to the future work
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Perturbations in vacuum - general setup
Consider Rµν −κ

d
l 2 gµν = 0 with κ = 0,+1,−1 and Λ = κ

d(d−1)
2l 2 .

Let gµν = ḡµν +δgµν (in matrix notation g = ḡ+δg), then

gαβ =
(

ḡ−1− ḡ−1
δgḡ−1 + ḡ−1

δgḡ−1
δgḡ−1− . . .

)αβ

= ḡαβ +δgαβ ,

Γ
α
µν = Γ̄

α
µν +

1
2

(
ḡ−1− ḡ−1

δgḡ−1 + ḡ−1
δgḡ−1

δgḡ−1− . . .
)αλ

(∇̄µ δgλν + ∇̄ν δgλ µ − ∇̄λ δgµν ) = Γ̄
α
µν +δΓ

α
µν ,

Rµν = R̄µν + ∇̄α δΓ
α
µν − ∇̄ν δΓ

α
αµ +δΓ

α

αλ
δΓ

λ
µν −δΓ

λ
µα δΓ

α

λν
= R̄µν +δRµν .

Now in Einstein equations δRµν −κ
d
l 2 δgµν = 0 expand δgµν = ∑i ε ih(i)µν

itself and get the hierarchy of perturbative Einstein equations:

E(i)
µν ≡ ∆Lh(i)µν−S(i)µν= 0 ,

∆Lhµν =
1
2

(
−∇̄

α
∇̄α hµν − ∇̄µ ∇̄ν h−2R̄µανβ hαβ + ∇̄µ ∇̄

α hνα + ∇̄ν ∇̄
α hµα

)
, h = ḡαβ hαβ , hαβ = ḡαµ ḡβν hµν

S(i)µν =
[
ε

i
]{
−(1/2)∇̄α

[(
−ḡ−1

δgḡ−1 + ḡ−1
δgḡ−1

δgḡ−1− . . .
)αλ (

∇̄µ δgλν + ∇̄ν δgλ µ − ∇̄λ δgµν

)]
+(1/2)∇̄ν

[(
−ḡ−1

δgḡ−1 + ḡ−1
δgḡ−1

δgḡ−1− . . .
)αλ (

∇̄µ δgλα + ∇̄α δgλ µ − ∇̄λ δgµα

)]
−δΓ

α

αλ
δΓ

λ
µν +δΓ

λ
µα δΓ

α

λν

}
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Spherical symmetry & Regge-Wheeler decomposition
transformation of tensor components under rotations
rotations -transformation of angular variables preserving (γab) =

(
1 0
0 sin2 θ

)
, (εab) = sinθ

(
0 −1
1 0

)
)

Tαβ =



S S V

S S V

V V T



S`m = Y`m(θ ,φ), parity (−1)` (polar(or scalar or even) perturbation)(
1
V`m

)
a

= (S`m);a , parity (−1)` (polar(or scalar or even) perturbation)(
2
V`m

)
a

= εabγ
bc (S`m);c , parity (−1)`+1 (axial(or vector or odd) perturbation)(

1
T`m

)
ab

= (S`m);a;b , parity (−1)` (polar(or scalar or even) perturbation)(
2
T`m

)
ab

= γabS`m , parity (−1)` (polar(or scalar or even) perturbation)(
3
T`m

)
ab

= ε(acγ
cd (S`m);d;b) , parity (−1)`+1 (axial(or vector or odd) perturbation)
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Polar perturbations at axial symmetry (on concrete example)
Schwarzschild in static coordinates: ds2 =−A(r)dt2 +

1
A(r)

dr2 + r2dΩ
2
2 , A = 1−κr2/l 2−2M/r , r2A′′−2A+2 = 0

h(i)
αβ

=


h(i)00 h(i)01 h(i)02 0

h(i)01 h(i)11 h(i)12 0

h(i)02 h(i)12 h(i)22 0

0 0 0 h(i)33



the sources S(i)µν and

perturbation Einstein equations E(i)
µν

are decomposed accordingly

h(i)00 =∑
`

h(i)` 00(t,r)P`(cosθ) , h(i)` 00(t,r) =
(

f (i)` 00 +2∂tζ
(i)
` 0 −AA′ ζ (i)

` 1

)
h(i)11 =∑

`

h(i)` 11(t,r)P`(cosθ) , h(i)` 11(t,r) =
(

f (i)` 11 +2∂rζ
(i)
` 1 +

A′

A
ζ
(i)
` 1

)

h(i)01 =∑
`

h(i)` 01(t,r)P`(cosθ) , h(i)` 01(t,r) =
(

f (i)` 01 +∂rζ
(i)
` 0 +∂tζ

(i)
` 1 −

A′

A
ζ
(i)
` 0

)
h(i)02 =∑

`

h(i)` 02(t,r)∂θ P`(cosθ) , h(i)` 02(t,r) =
(

ζ
(i)
` 0 +∂tζ

(i)
` 2

)
h(i)12 =∑

`

h(i)` 12(t,r)∂θ P`(cosθ) , h(i)` 12(t,r) =
(

ζ
(i)
` 1 −

2
r

ζ
(i)
` 2 +∂rζ

(i)
` 2

)
1
2

h(i)22 +
h(i)33

sin2θ

=∑
`

h(i)`+(t,r)P`(cosθ) , h(i)`+(t,r) =
(

r2f (i)`++2rAζ
(i)
` 1 − `(`+1)ζ (i)

` 2

)
,

1
2

h(i)22 −
h(i)33

sin2θ

=∑
`

h(i)`−(t,r)(−`(`+1)P`(cosθ)−2cotθ ∂θ P`(cosθ)) , h(i)`−(t,r) = ζ
(i)
` 2

f (i)` 00(t,r), f (i)` 11(t,r), f (i)` 01(t,r), f (i)`+(t,r) are Regge-Wheeler (gauge invariant) variables

ζ
(j)
` 0 (t,r), ζ

(j)
` 1 (t,r), ζ

(j)
` 2 (t,r) define the j-th order polar gauge vector ζ

(j)
α = ∑`

(
ζ
(j)
` 0 P`(cosθ), ζ

(j)
` 1 P`(cosθ), ζ

(j)
` 2 ∂θ P`(cosθ), 0

)
and the corresponding gauge transformation xµ −→ xµ + ε jζ (j)µ

∑
1≤i

ε
i h(i)µν → ∑

1≤i
ε

i h(i)µν + ε
jL

ζ (j)
ḡµν +O

(
ε

j+1
)
.

CAUTION: Regge-Wheeler gauge ζ
(i)
` µ

= 0 is not asymptotically AdS (nor asymptotically flat in corresponding flat case)!
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General approach to gravitational perturbations (2)

E(i)
µν ≡ ∆Lh(i)µν−S(i)µν= 0

The Lorentzian Lichnerowicz operator ∆Lh(i)µν contains only RW gauge

invariant variables f (i)` 00, f (i)` 11, f (i)` 01, f (i)`+ and their derivatives

The sources S(i)µν depend on gauge choices made at lower orders,

i.e. ζ
(j)
α , j < i

Nevertheless E(i)
µν are still a mess!

However at each order there should exist only one scalar gravitational
degree of freedom - a master scalar variable (for polar/axial perturbations,
and for a given multipole `), satisfying some (in)homogeneous linear wave
equation, to rule all E(i)

µν

There are only two polarization in gravitational wave after all!
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Problems to be fixed

to identify/find the correct definition of master scalar variables at higher
orders

to find the source terms for the (inhomogeneous) wave equations for
these scalar variables from the sources S(i)µν

to switch between the metric perturbations and scalar variables easily

to deal with the special cases `= 0 and `= 1 (these are pure gauges at
linear order)

to set the metric perturbations to asymptotically desired form with a
suitable gauge transformation
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General approach to gravitational perturbations (3)
1 At each order there is only one scalar gravitational degree of freedom

(for polar/axial perturbations, and for a given multipole `) satisfying
(in)homogeneous linear wave equation with a potential (to be determined)

�̃`Φ
(i)
P `(t,r) := r

(
−�̄+V`

)Φ
(i)
P `(t,r)

r
= S̃(i)P ` (1)

2 RW variables f (i)`+, f (i)` 11, f (i)` 01, f (i)` 00 are given as linear combinations of Φ
(i)
P `

and its derivatives (+ source functions at nonlinear orders):

f (i)`+ = BΦ
(i)
P `+C∂tΦ

(i)
P `+D∂rΦ

(i)
P `+E∂trΦ

(i)
P `+F∂rrΦ

(i)
P `+α

(i)
` (t,r) , (2)

f (i)` 11 = · · ·+β
(i)
` (t,r) , f (i)` 01 = · · ·+ γ

(i)
` (t,r)

3 Satisfying (perturbative) Einstein equations fixes the potential V` and the
coefficient functions in the equations above uniquely (!)

4 The relations (2) can be inverted for Φ
(i)
P `. There is a unique (!) way

compatible with the ADM initial problem formulation. This also gives the
source S̃(i)P ` in (1) uniquely (!)
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Trivial technicalities

In fact

E(i)
`− =

1
4

(
A−1f (i)` 00−Af (i)` 11

)
−S(i)`−

and

0 =
1
2

(
AE(i)

` 11−A−1E(i)
` 00

)
+A−1

∂tE
(i)
` 02−A∂rE

(i)
` 12−

2A+ rA′

r
E(i)
` 12

+
(`−1)(`+2)

r2 E(i)
`−

sets an identity for the sources
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Identities for the sources S(i)µν - crucial for the consistency of
higher orders of perturbation expansion

Taking the background divergence of perturbation Einstein equations

∇̄
µE(i)

µν ≡ 0

gives identities for the sources S(i)µν (!)

1
2

(
1
A

∂tS
(i)
` 00 +A∂tS

(i)
` 11

)
+

1
r2 ∂tS

(i)
`+−A∂rS(i)` 01−

2A+ r A′

r
S(i)` 01 +

`(`+1)
r2 S(i)` 02 ≡0 ,

1
2

(
1
A

∂rS(i)` 00 +A∂rS(i)` 11

)
− 1

r2 ∂rS(i)`+−
1
A

∂tS
(i)
` 01 +

2A+ r A′

r
S(i)` 11−

`(`+1)
r2 S(i)` 12 ≡0 ,

1
2

(
1
A

S(i)` 00−AS(i)` 11

)
− 1

A
∂tS

(i)
` 02 +A∂rS(i)` 12 +

2A+ r A′

r
S(i)` 12−

(`−1)(`+2)
r2 S(i)`− ≡0 .
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Perturbations of spherically symmetric spaces,
A = 1+κr2/l 2−2M/r (an easy way to the Zerilli equation)
master wave equation:

�̃`Φ
(i)
P ` :=

1
A

∂ttΦ
(i)
P `−A∂rrΦ

(i)
P `−A′ ∂rΦ

(i)
P `+

(
A′

r
+V`

)
Φ

(i)
P ` = S̃(i)P `

potential (the celebrated Zerilli potential in the Schwarzschild case):

V` =
`(`+1)

r2 − A′

r
+
(
2A− rA′−2

)︸ ︷︷ ︸
−6M/r

2A(rA′−2)− (rA′)2 + `2(`+1)2

r2 (2A− rA′− `(`+1))2

and RW variables in terms of the master scalar variable (and source functions
at nonlinear orders):

f (i)`+ = A∂rΦ
(i)
P `+

1
r

(
`(`+1)

2
− 2A− rA′−2

2A− rA′− `(`+1)
A
)

∂tΦ
(i)
P `+α

(i)
` (t,r)

f (i)` 11 = · · ·+β
(i)
` (t,r)

f (i)` 01 = · · ·+ γ
(i)
` (t,r)
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Perturbations of spherically symmetric spaces,
A = 1+κr2/l 2−2M/r

�̃`Φ
(i)
P ` :=

1
A

∂ttΦ
(i)
P `−A∂rrΦ

(i)
P `−A′ ∂rΦ

(i)
P `+

(
A′

r
+V`

)
Φ

(i)
P ` = S̃(i)P `

The master variable in terms of RW potentials - the unique form compatible
with the ADM initial problem formulation:

Φ
(i)
P ` =

2r
`(`+1)

(
f (i)` Y +2A

Af (i)` 11− r∂rf
(i)
` Y

`(`+1)−2A+ rA′

)
its source at higher orders can be read off accordingly

S̃(i)P ` =
4r2

(`−1)`(`+1)(`+2)

(
A
r

(
A (i)S` 11−

1
A

(i)S` 00

)
+

(`−1)(`+2)−2(3A−2)
r3

(i)S`+−2A∂r

(
(i)S`+

/
r2
)

− 2`(`+1)
r2 A (i)S` 12 +

(`−1)`(`+1)(`+2)
r3

(i)S`−

− 2A− rA′−2
2A− rA′− `(`+1)

(
A
r

(
A(i)S` 11−

1
A
(i)S` 00

)
− A(`−1)(`+2)

r (2A− rA′− `(`+1))

(
A(i)S` 11 +

1
A
(i)S` 00

)

−2
3A
(
2A− rA′−2

)
− `(`+1)

(
2A− rA′− `(`+1)

)
−2(`−1)(`+1)A

r3 (2A− rA′− `(`+1))
(i)S`+−2A∂r

(
(i)S`+

/
r2
)
− 2`(`+1)

r2 A(i)S` 12

))
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To fix the source functions α
(i)
` , β

(i)
` and γ

(i)
` we write them down as linear

combinations of the sources S(i)` µν
and their first derivatives. Fixing

3×7×3 = 63 function coefficients of these linear combinations is a technical
task. It turns out that 54 functions (out of 63) are fixed in terms of 9 free
functions. Moreover, in the resulting expressions, coefficients of these 9 free
functions are identically zero due to the identities for the sources, thus the final
expressions are uniquely defined:

α
(i)
` =−

2A
(

r2
(

A−1S(i)` 00−AS(i)` 11

)
+2S(i)`+

)
`(`+1)(`(`+1)−2A+ rA′)

β
(i)
` =

1
A

(
r∂rα

(i)
` −

`(`+1)−2A+ rA′

2A
α
(i)
`

)

γ
(i)
` =−

2r
(

r2
(

A−1∂tS
(i)
` 00 +A∂tS

(i)
` 11

)
+2∂tS

(i)
`+− r (`(`+1)−2A+ rA′)S(i)` 01

)
`(`+1)(`(`+1)−2A+ rA′)
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Back to AdS - gauge issues
gµν = ḡµν +δgµν is asymptotically AdS iff the Killing equation is satisfied in
asymptotic sense:

Lξ gµν = O
(
δgµν

)
This puts the following falloff conditions [Bantilan, Pretorius & Gubser, 2012]:
δgµν ∼O (1/rγµν ), with γrr = 5, γrν = 4 and γµν = 1 (in 3+1 dimensions).

For 1
A ∂ttΦ

(i)
` −A∂rrΦ

(i)
P `−A′ ∂rΦ

(i)
P `+

`(`+1)
r2 Φ

(i)
P ` = 0 we have

Φ
(i)
P ` ∼ α`+

β`

r
+O

(
1
r2

)
;

for polar perturbations the necessary condition reads β` = 0 [Dias, Horowitz &
Santos, 2011]. Still RW gauge is not asymptotically AdS and suitable gauge
transformation is needed

ζ
(i)
` 1 =

1
4

(
l 2A−1

∂ttΦ
(i)
P `−4r∂rΦ

(i)
P `− r2

∂rrΦ
(i)
P `

)
,

ζ
(i)
` 0 =−r∂tζ

(i)
` 1 +

r
3A

∂t

(
l 2

∂ttΦ
(i)
P `+Φ

(i)
P `

)
,

ζ
(i)
` 2 =

r
3

ζ
(i)
` 1 .
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`= 0 special case
the only nontrivial equations are

0 = E(i)
0 + = E(i)

0 01 = E(i)
0 1±0 :=

(
AE(i)

0 11±A−1E(i)
0 00

)
. In fact

E(i)
0 1−0−

1
r

∂rE(i)
0 ++

r
2

∂rE(i)
0 1+0− rA−1

∂tE
(i)
0 01 +A−1

(
1+2

r2

l 2

)
E(i)

0 1+0 ≡ 0,

∂t

(
E(i)

0 ++
r2

2
E(i)

0 1+0

)
−2r

(
1+2

r2

l 2

)
E(i)

0 0,1− r2A∂rE(i)
0 0,1 ≡ 0

and f (i)0 01 , f (i)0 Y become gauge degrees of freedom. Thus we are left with two equations
0 = E(i)

0 0,1 = E(i)
0 1+0 for two unknown functions f (i)0 00 and f (i)0 11, where f (i)0 01 and

f (i)0 Y can be freely specified and we put them to zero. This system can be easily
integrated to yield

f (i)0 11 = f (i)res 0 + rA−1
∫

S(i)0 01 dt

f (i)0 00 = A2f (i)0 11−A
∫

r
(

S(i)0 11 +A−2S(i)0 00

)
dr ,

with the residual degree of freedom f (i)res 0 ≡ f (i)res 0(r) that is not set by the

equations 0 = E(i)
0 0,1 = E(i)

0 1+0. It is however uniquely determined as the solution of the first order ordinary differential

equation set by (the time independent part of) the equation E(i)
0 + = 0.
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Application: aAdS, regular, time-periodic solutions of vacuum Einstein equations (geons)

�ΦP ` := A−1∂ttΦP `−A∂rrΦP `−A′ ∂rΦP `+
`(`+1)

r2 ΦP ` = 0 and boundary conditions: regularity at r = 0 and ΦP ` ∼ 1+O
(

1/r2
)

give

ΦP `(t,r) = ∑j A`,je`,j(r) cos
(
ω`,j t/l +B`,j

)
with ω`,j = 1+ `+2j and e`,j(r) =

l r`+1(
1+r2/l 2

) `+1
2

2F1

(
−j,1+ `+ j; 1

2 ; 1
1+r2/l 2

)

Ó.J.C. Dias and J.E. Santos, AdS nonlinear instability:
moving beyond spherical symmetry, Class. Quantum
Grav. 33 23LT01 (2016) [arXiv:1602.03890]

Normal mode # # Removable Secular
{`,m,p, ω̄} modes modes resonance resonances

at O (ε) O
(

ε2
)

O
(

ε3
) (

−Lω(2)
)

{`,m,p,ω}

{2,0,0, 3
L }s 6s 8s {2,0,0, 3

L }s None

0v 0v
(

3663
8960

)
(Geon ?)

{2,0,1, 5
L }s 6s 8s {2,0,1, 5

L }s {4,0,0, 5
L }s

0v 0v
(

34397
5376

)
{4,0,0, 5

L }s 10s 14s {4,0,0, 5
L }s {2,0,1, 5

L }s
0v 0v

(
52311625
21446656

)
This is a purely technical obstruction due to the degeneracy of the spectrum! There is a geon bifurcating from each linear eigenfrequency. Take

ΦP (t,r,θ) = ε Φ
(1)
P (t,r,θ)+ ε

2
Φ
(2)
P (t,r,θ)+ ε

3
Φ
(3)
P (t,r,θ)+O

(
ε

4
)

with a linear combination of two eigenmodes with ω = 5 as the seed:

Φ
(1)
P (t,r,θ) =

(
η e2,1(r)P2(cosθ)+(1−η)e4,0(r)P4(cosθ)

)
cos
(
(5+ ε

2
ω2)t/l

)
.

the resonances can be removed iff

−651980329η
3 +673396185η

2−358711575η +22494375 = 49201152η ω2

16847182891η
3−38330631185η

2 +31825994625η−10200766875 = 4182097920(1−η)ω2 .
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Secular terms

third order: �`Φ
(3)
` = S̃(3)` ; projection on the basis {e`,j} gives an infinite set of

decoupled forced harmonic oscillations for the generalized Fourier coefficients
c`,j(t) := (e`,j, Φ`):

c̈`,j +ω
2
`,jc`,j = F̃(3)

`,j := (e`,j,AS̃(3)` ) .

Then, in general, secular terms arise:

g̈(t)+ω
2
0 g(t) = acos(ωt) ,

g(t) =
ġ(0)
ω0

sin(ω0t)+g(0)cos(ω0t)+


a(cos(ωt)− cos(ω0t))

ω2
0 −ω2

, ω0 6= ω ,

a
2ω0

t sin(ω0t) , ω0 = ω .
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Closing remarks in the AdS context

The first step outside spherical symmetry for AdS (in)stability problem has
been done, and perturbation scheme for vacuum AdS has been
constructed (stepping outside axial symmetry is more technical then
conceptual issue).

Each linearized eigenfrequency of AdS gives rise to aAdS, regular,
time-periodic solutions of Einstein equations (geon), that are expected to
be stable.

One possible way to provide the evidence for the (dynamical) instability of
AdS itself is to construct and analyze resonant approximation, the bases
for this has been laid.
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Final conclusions

In fact the concepts gained from the study of nonlinear gravitational
perturbations of AdS turned out to be robust and can be used in a broad
context of gravitational perturbation problems (nonlinear gravitational
waves, nonlinear quasinormal modes couplinings for Schwarzschild BH,
and aftter including matter to the scheme also self-force, cosmological
perturbations, etc.).

The hard part of perturbative Einstein equations (PDEs) can be
reduced to only one scalar wave equation (for each polarization
mode) and some linear algebra (!)

I am very grateful to CERN TH department for providing six quiet months
(as scientific associate) to study gravitational perturbations of AdS.
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