Charge Algebra in Al(A)dS Spacetimes The A-BMS Group and the Flat Limit

Romain Ruzziconi

TU Vienna Institute for Theoretical Physics

18th February 2021

References Plan Motivations for Leaky Boundary Conditions

References

- Main references :
 - Charge Algebra in Al(A)dS_n Spacetimes Adrien Fiorucci, Romain Ruzziconi arXiv:2011.02002
 - The Λ-BMS₄ charge algebra Geoffrey Compère, Adrien Fiorucci, Romain Ruzziconi Journal of High Energy Physics (2020) arXiv:2004.10769
- More references :
 - Weyl Charges in Asymptotically Locally AdS₃ Spacetimes Francesco Alessio, Glenn Barnich, Luca Ciambelli, Romain Ruzziconi *Physical Review D (2021)* arXiv:2010.15452
 - The Λ-BMS₄ group of dS₄ and new boundary conditions for AdS₄ *Classical and Quantum Gravity (2019)* arXiv:1905.00971

Introduction

Charge Algebra in Al(A)dS_{d+1} Spacetimes /-BMS Group in (A)dS Conclusion References Plan Motivations for Leaky Boundary Conditions

Plan

- 2 Charge Algebra in $AI(A)dS_{d+1}$ Spacetimes
- 3 Λ-BMS Group in (A)dS

4 Conclusion

References Plan Motivations for Leaky Boundary Conditions

Asymptotically Flat Spacetimes

- Leaky boundary conditions = Boundary conditions that yield some flux through the conformal boundary
 - \implies The charges are not conserved
 - \implies The variational principle is not stationary on solutions
 - \implies This describes open gravitational systems
- Leaky boundary conditions are essential in asymptotically flat spacetimes at null infinity to consider radiative spacetimes.

[Bondi-van der Burg-Metzner '62] [Sachs '62]

• Non-conservation of the charges : "Bondi mass loss formula".

References Plan Motivations for Leaky Boundary Conditions

Asymptotically de Sitter Spacetimes

 In asymptotically de Sitter (dS) spacetimes, essential to consider leaky boundary conditions

 \implies Otherwise, that would highly constrain the Cauchy problem

[Anninos-Ng-Strominger '12] [Ashtekar-Bonga-Kesavan '15]

References Plan Motivations for Leaky Boundary Conditions

Asymptotically Anti-de Sitter Spacetimes

 In asymptotically anti-de Sitter (AdS) spacetimes: previous analyses considered "conservative" or "reflective" boundary conditions

 \Longrightarrow Conserved charges, well-defined variational principle, closed system

```
(SEE e.g. [Hawking '83] [Ashtekar-Magnon '84] [Henneaux-Teitelboim '85]
[Papadimitriou-Skenderis '05])
```

- However, considering leaky boundary conditions in AdS is appealing :
 - \implies Quest for the "most general" boundary conditions

(SEE *e.g.* [Grumiller-Riegler '16] [Grumiller-Sheikh-Jabbari-Zwikel '20] [Freidel-Geiller-Pranzetti '20])

 \implies BMS symmetries in AdS requires flux at infinity

[Compère-Fiorucci-Ruzziconi '19]

 \implies Black hole evaporation requires external system

[Almheiri-Mahajan-Maldacena '19]

⇒ Brane-world interacting with higher-dimensional spacetimes [Randall-Sundrum '99]

Al(A)dS Spacetimes Renormalized Phase Space Infinitesimal Charges Charge Algebra

Asymptotically Locally $(A)dS_{d+1}$ Spacetimes

- Study of leaky boundary conditions in (A)dS_{d+1} spacetimes
- Start from the most general $Al(A)dS_{d+1}$ spacetime (d > 1)
- Starobinsky/Fefferman-Graham gauge in d + 1 dimensions [Starobinsky '83] [Fefferman-Graham '85]

$$ds^2 = \eta \frac{\ell^2}{\rho^2} d\rho^2 + \gamma_{ab}(\rho, x^c) dx^a dx^b$$

with $\gamma_{ab} = \mathcal{O}(\rho^{-2})$ (conformal compactification)

- Coordinates : $x^{\mu}=(
 ho,x^{a})$, $a=1,\ldots,d$
- Boundary at ho= 0 and ho> 0 into the bulk

• Valid for both
$$\Lambda > 0$$
 (dS), $\Lambda < 0$ (AdS)
($\Lambda = -\eta \frac{d(d-1)}{2\ell^2}$, $\eta = -\text{sgn}(\Lambda)$)

Al(A)dS Spacetimes Renormalized Phase Space Infinitesimal Charges Charge Algebra

Solution Space

• Solutions of
$${\it G}_{\mu
u}+\Lambda g_{\mu
u}=0$$
 :

$$\gamma_{ab} = \rho^{-2} g_{ab}^{(0)} + g_{ab}^{(2)} + \dots + \rho^{d-2} g_{ab}^{(d)} + \rho^{d-2} \ln \rho^2 \tilde{g}_{ab}^{[d]} + \mathcal{O}(\rho^{d-1})$$

where the logarithmic term appears only for even d

- This expansion is completely determined by specifying $g_{ab}^{(0)}$ and $g_{ab}^{(d)}$
- Holographic stress energy tensor

[Balasubramanian-Kraus '99][de Haro-Skenderis-Solodukhin '00] 🕺

$$T_{ab}^{[d]} = \frac{d}{16\pi G} \frac{\eta}{\ell} \left(g_{ab}^{(d)} + X_{ab}^{[d]}[g^{(0)}] \right)$$

Einstein equations also imply

$$D^{a}T^{[d]}_{ab} = 0, \qquad g^{ab}_{(0)}T^{[2k+1]}_{ab} = 0$$

but $g^{ab}_{(0)}T^{[2k]}_{ab} \neq 0 \Rightarrow$ Weyl anomalies in the dual theory [Henningson-Skenderis [98]

Al(A)dS Spacetimes Renormalized Phase Space Infinitesimal Charges Charge Algebra

Residual Gauge Diffeomorphisms

 Diffeomorphisms preserving the Starobinsky/Fefferman-Graham gauge are generated by vector fields ξ = ξ^ρ∂_ρ + ξ^a∂_a satisfying

$$\mathcal{L}_{\xi}g_{
ho
ho}=0, \qquad \mathcal{L}_{\xi}g_{
ho a}=0$$

Solution :

$$\xi^{\rho} = \sigma(x^{a})\rho, \qquad \xi^{a} = \bar{\xi}^{a}(x^{b}) - \eta\ell^{2}\partial_{b}\sigma \int_{0}^{\rho} \frac{d\rho'}{\rho'}\gamma^{ab}(\rho', x^{c})$$

where $\sigma(x^a)$ and $\bar{\xi}^a(x^b)$ are arbitrary functions

 Using modified Lie bracket that takes into account the field-dependence of the vector fields [Barnich-Troessaet '10]

$$[\xi_1,\xi_2]_{\star} = [\xi_1,\xi_2] - \delta_{\xi_1}\xi_2 + \delta_{\xi_2}\xi_1$$

we obtain

$$\begin{split} &[\xi(\sigma_1,\bar{\xi}^a_1),\xi(\sigma_2,\bar{\xi}^a_2)]_\star=\xi(\hat{\sigma},\hat{\xi}^a),\\ &\text{with } \begin{cases} \hat{\sigma}=\bar{\xi}^a_1\partial_a\sigma_2-\delta_{\xi_1}\sigma_2-(1\leftrightarrow 2),\\ \hat{\xi}^a=\bar{\xi}^b_1\partial_b\bar{\xi}^a_2-\delta_{\xi_1}\bar{\xi}^a_2-(1\leftrightarrow 2). \end{cases} \end{split}$$

⇒ Field-dependent structure constants for generic cases ⇒ For $\delta\sigma = 0 = \delta \bar{\xi}^a$, we have Diff(\mathscr{I})×Wey

Al(A)dS Spacetimes Renormalized Phase Space Infinitesimal Charges Charge Algebra

Variation of the Solution Space

- The solution space is parametrized by $(g_{ab}^{(0)}, T_{ab}^{[d]})$.
- Variation of the solution space under infinitesimal gauge diffeomorphisms :

$$\begin{split} \delta_{\xi} g_{ab}^{(0)} &= \mathcal{L}_{\bar{\xi}} g_{ab}^{(0)} - 2\sigma g_{ab}^{(0)} \\ \delta_{\xi} T_{ab}^{[d]} &= \mathcal{L}_{\bar{\xi}} T_{ab}^{[d]} + (d-2)\sigma T_{ab}^{[d]} + A_{ab}^{[d]}[\sigma] \end{split}$$

where $A_{ab}^{[d]}[\sigma]$ is the inhomogeneous part of the transformation related to Weyl anomalies, $A_{ab}^{[2k+1]}[\sigma] = 0$ but $A_{ab}^{[2k]}[\sigma] \neq 0$

• These variations satisfy

$$[\delta_{\xi_1}, \delta_{\xi_2}](g_{ab}^{(0)}, T_{ab}^{[d]}) = -\delta_{[\xi_1, \xi_2]_{\star}}(g_{ab}^{(0)}, T_{ab}^{[d]})$$

where $[\delta_{\xi_1}, \delta_{\xi_2}] = \delta_{\xi_1} \delta_{\xi_2} - \delta_{\xi_2} \delta_{\xi_1}$

• Lie algebroid structure (Base space = solution space $(g_{ab}^{(0)}, T_{ab}^{[d]})$, algebra at each point = { $\xi(\sigma, \bar{\xi}^a)$ } with [.,.]_{*})

Charge Algebra in Al(A)dS_{d+1} Spacetimes A-BMS Group in (A)dS Conclusion Charge Algebra in Al(A)dS Spacetimes A-BMS Group in (A)dS Conclusion Charge Algebra

Phase Space

Holographic renormalization in (A)dS [de Haro-Solodukhin-Skenderis '01] :

$$S_{ren} = \int_{\mathscr{M}} \mathcal{L}_{EH} + \int_{\mathscr{I}} \mathcal{L}_{GHY} + \int_{\mathscr{I}} \mathcal{L}_{ct} + \int_{\mathscr{I}} \mathcal{L}_{\circ}$$

- \implies This action is finite on-shell, $S_{ren}=\mathcal{O}(
 ho^0)$
- \Longrightarrow The term $\textbf{\textit{L}}_{\circ}$ is the freedom to add a finite term to the action
- This process removes the divergences from the sympectic structure [Papadimitriou-Skenderis '05] [Compère-Marolf '08] :

$$\begin{split} \mathbf{\Theta}_{ren}[g;\delta g]\Big|_{\mathscr{I}} &= \mathbf{\Theta}_{EH} - \delta \mathbf{L}_{GHY} - \delta \mathbf{L}_{ct} - \delta \mathbf{L}_{\circ} + d\mathbf{\Theta}_{ct} + d\mathbf{\Theta}_{\circ}\Big|_{\mathscr{I}} \\ &= -\frac{1}{2}\sqrt{|g^{(0)}|} T^{ab}_{[d]} \delta g^{(0)}_{ab} (d^d x) \end{split}$$

where $\boldsymbol{\Theta}_i$ is the presymplectic potential defined through

$$\delta \boldsymbol{L}_{i} = \frac{\delta \boldsymbol{L}_{i}}{\delta g} \delta g + d\boldsymbol{\Theta}_{i}[g; \delta g]$$

• Variational principle : $\delta S_{ren} = -\int_{\mathscr{I}} \Theta_{ren}[g; \delta g] \Big|_{\mathscr{I}}$

 \implies Well-defined for Dirichlet boundary conditions ($\delta g_{ab}^{(0)} = 0$)

Al(A)dS Spacetimes Renormalized Phase Space Infinitesimal Charges Charge Algebra

Conservative vs Leaky Boundary Conditions

• The presymplectic current is obtained through $\omega_{ren}[g; \delta g, \delta g] = \delta \Theta_{ren}[g; \delta g]$. Explicitly,

$$\boldsymbol{\omega}_{ren}[\boldsymbol{g};\delta\boldsymbol{g},\delta\boldsymbol{g}]\Big|_{\mathscr{I}} = -\frac{1}{2}\delta\left(\sqrt{|\boldsymbol{g}^{(0)}|}T^{ab}_{[d]}\right)\wedge\delta\boldsymbol{g}^{(0)}_{ab}\left(\boldsymbol{d}^{d}\boldsymbol{x}\right)$$

- Encodes the "flux of charges" going through the spacetime boundary
- Conservative boundary conditions would require $\omega_{ren}|_{\mathscr{I}}=0$
 - \implies Conserved charges
 - \implies Action principle with S_{ren} can be made well-defined
- Here, we consider leaky boundary conditions : we allow $\omega_{ren}|_{\mathscr{I}} \neq 0$
 - \implies Non-conserved charges
 - $\implies S_{ren}$ is not stationary on solutions
 - \implies Open system with external sources encoded in $\delta g_{ab}^{(0)}$
 - \implies Natural in dS, non-standard in AdS (non-globally

hyperbolic spacetime) [Ishibashi-Wald '04]

Al(A)dS Spacetimes Renormalized Phase Space Infinitesimal Charges Charge Algebra

Infinitesimal Charges in $Al(A)dS_{d+1}$ Spacetimes

• The infinitesimal charges are obtained from the renormalized symplectic structure [lyer-Wald '94] [Barnich-Brandt '02]

$$\delta H_{\xi}[g;\delta g] = \int_{\Sigma} \boldsymbol{\omega}_{ren}[g;\delta_{\xi}g,\delta g] = \int_{S_{\infty}} \boldsymbol{k}_{\xi,ren}[g;\delta g]$$

where $S_{\infty} = \partial \Sigma$ and $d\mathbf{k}_{\xi,ren}[g; \delta g] = \omega_{ren}[g; \delta_{\xi}g, \delta g]$

• The explicit expression is given by

$$\delta H_{\xi}[g; \delta g] = \int_{\mathcal{S}_{\infty}} (d^{d-1} \mathbf{x}) \Big[\underbrace{\delta \left(\sqrt{|g^{(\mathbf{0})}|} g^{tc}_{(\mathbf{0})} T^{[d]}_{bc} \right) \bar{\xi}^{b} - \frac{1}{2} \sqrt{|g^{(\mathbf{0})}|} \bar{\xi}^{t} T^{bc}_{[d]} \delta g^{(\mathbf{0})}_{bc}}_{bc} + \underbrace{W^{[d]t}_{\sigma}[g; \delta g]}_{\mathsf{Weyl charge}} \Big] \Big]$$
Boundary diffeomorphism charge

• Observations :

 The charges are not conserved, *dk*_{ξ,ren}[g; δg]| 𝒢 = ω_{ren}[g; δξg, δg]|𝒢 ≠ 0

 The charges are non-integrable, *δH*_ξ[g] ≠ δ(...) ⇒ Typical features of an open dissipative system
 Charge Algebra in Al(A)dS_{d+1} Spacetimes A-BMS Group in (A)dS Conclusion Charge Algebra

Weyl Charges

- Weyl charges : $W^{[2k+1]t}_{\sigma}[g;\delta g] = 0$, but $W^{[2k]t}_{\sigma}[g;\delta g] \neq 0$
- Explicit expressions :

$$\begin{split} W_{\sigma}^{[d=2]t}[g;\delta g] &= -\frac{\ell}{16\pi G} D_b \sigma \left[\sqrt{|g^{(0)}|} \delta g_{(0)}^{tb} + 2\delta \sqrt{|g^{(0)}|} g_{(0)}^{tb} \right] - \ell \sigma \Theta_{EH}^t[g^{(0)};\delta g^{(0)}], \\ W_{\sigma}^{[d=4]t}[g;\delta g] &= \frac{\eta \, \ell^3}{16\pi G} \left[\frac{1}{6} \sqrt{|g^{(0)}|} R^{(0)} D_b \sigma \delta g_{(0)}^{tb} + \frac{1}{3} R^{(0)} D^t \sigma \delta \sqrt{|g^{(0)}|} \right. \\ &\left. - \frac{1}{2} R_{(0)}^{tc} D_c \sigma \delta \sqrt{|g^{(0)}|} + \frac{1}{4} \sqrt{|g^{(0)}|} R_{cb}^{(0)} D^t \sigma \delta g_{(0)}^{bc} - \frac{1}{2} \sqrt{|g^{(0)}|} R_c^{(0)t} D_b \sigma \delta g_{(0)}^{bc} \right] \\ &- \eta \, \frac{\ell^3}{4} \sigma \left[\Theta_{QCG(1)}^t[g^{(0)}; \delta g^{(0)}] - \frac{1}{3} \Theta_{QCG(2)}^t[g^{(0)}; \delta g^{(0)}] \right] \end{split}$$

where $\Theta_{EH}^t,~\Theta_{QCG(1)}^t$ and $\Theta_{QCG(2)}^t$ are the presymplectic potentials of EH and quadratic curvature gravity

- Non-zero Weyl charges due to the presence of Weyl anomalies in the dual theory (not free to choose the conformal compactification factor)
- Weyl charges only visible if $\delta g_{ab}^{(0)} \neq 0$
- For more physics related to Weyl charges in d = 2,

```
SEE [Alessio-Barnich-Ciambelli-Ruzziconi '20]
```

 \Longrightarrow Non-conservation interpreted as an anomalous Ward–Takahashi identity of the boundary theory

Introduction Al(A)dS pacetimes Charge Algebra in Al(A)dS_{d+1} Spacetimes Renormalized Phase Space A-BMS Group in (A)dS Conclusion Charge Algebra

Charge Algebra in $Al(A)dS_{d+1}$ Spacetimes

• When charges are integrable, *i.e.* $\delta H_{\xi}[g] = \delta H_{\xi}[g]$, then we have the representation theorem [Barnich-Compère '07]

$$\{H_{\xi_1}, H_{\xi_2}\} \equiv \delta_{\xi_2} H_{\xi_1}[g] \implies \{H_{\xi_1}, H_{\xi_2}\} = H_{[\xi_1, \xi_2]_*}[g] + K_{\xi_1, \xi_2}$$

where $K_{\xi_1,\xi_2} = -K_{\xi_2,\xi_1}$ is a central extension satisfying the 2-cocycle condition

$$K_{[\xi_1,\xi_2]_{\star},\xi_3} + \operatorname{cyclic}(1,2,3) = 0$$

• What does this representation theorem become for non-integrable charges?

 $\implies Use the modified Barnich-Troessart bracket [Barnich-Troessart '11]$ $<math display="block">\implies Works in many different contexts, including asymptotically flat$ spacetimes (see*e.g.*[Barnich-Troessart '11][Compère-Fiorucd-Ruzziconi '18]), or at theBH horizon (see*e.g.*[Donnay-Giribet-González, Pino '16])

 \implies We used it in the present context of Al(A)dS_{d+1} spacetimes

Introduction	Al(A)dS Spacetimes
Charge Algebra in Al(A)dS _{d+1} Spacetimes	Renormalized Phase Space
∧-BMS Group in (A)dS	Infinitesimal Charges
Conclusion	Charge Algebra

Total charge in Al(A)dS_{d+1} : δH_ξ[g; δg] = δH_ξ[g] + Ξ_ξ[g; δg] where

$$\begin{aligned} H_{\xi}[g] &= \int_{S_{\infty}} (d^{d-1}x) \left[\sqrt{|g^{(0)}|} g^{tc}_{(0)} T^{[d]}_{bc} \bar{\xi}^{b} \right] \\ \Xi_{\xi}[g; \delta g] &= \int_{S_{\infty}} (d^{d-1}x) \left[-\frac{1}{2} \sqrt{|g^{(0)}|} \bar{\xi}^{t} T^{bc}_{[d]} \delta g^{(0)}_{bc} + W^{[d]t}_{\sigma}[g; \delta g] \right] - H_{\delta\xi}[g] \end{aligned}$$

(the split between integrable and non-integrable parts is ambiguous)

With the Barnich-Troessart bracket,

 $\{H_{\xi_1}, H_{\xi_2}\}_{\star} \equiv \delta_{\xi_2} H_{\xi_1}[g] + \Xi_{\xi_2}[g; \delta_{\xi_1}g] \implies \{H_{\xi_1}, H_{\xi_2}\}_{\star} = H_{[\xi_1, \xi_2]_{\star}}[g] + K_{\xi_1, \xi_2}^{[d]}[g]$ where $K_{\xi_1, \xi_2}^{[d]}[g] = -K_{\xi_2, \xi_1}^{[d]}[g]$ is a field-dependent 2-cocycle satisfying the generalized condition :

$$\mathcal{K}^{[d]}_{[\xi_1,\xi_2]_{\star},\xi_3}[g] + \delta_{\xi_3} \mathcal{K}^{[d]}_{\xi_1,\xi_2}[g] + \mathsf{cyclic}(1,2,3) = 0$$

(the form of the charge algebra is unambiguous)

• Physically, the algebra contains the information on the flux-balance laws at \mathscr{I} $(\xi_2 \equiv \partial_t, \, \xi_1 \equiv \xi)$:

$$\frac{d}{dt}H_{\xi}[\phi] = -\Xi_{\partial_{t}}[\delta_{\xi}\phi;\phi] + K_{\xi,\partial_{t}}^{[d]}[g]$$

Introduction	Al(A)dS Spacetimes
Charge Algebra in Al(A)dS _{d+1} Spacetimes	Renormalized Phase Space
∧-BMS Group in (A)dS	Infinitesimal Charges
Conclusion	Charge Algebra

•
$$\mathcal{K}_{\xi_{1},\xi_{2}}^{[2K+1]}[g] = 0$$
 $(k \in \mathbb{N}_{0})$. For even d , we have explicitly
 $\mathcal{K}_{\xi_{1},\xi_{2}}^{[d=2]}[g] = \frac{\ell}{16\pi G} \int_{S_{\infty}} (d^{d-1}x)\sqrt{|g^{(0)}|} \Big[2 (\sigma_{1}D^{t}\sigma_{2} - \sigma_{2}D^{t}\sigma_{1}) + \mathcal{R}^{(0)} (\sigma_{1}\bar{\xi}_{2}^{t} - \sigma_{2}\bar{\xi}_{1}^{t}) \Big],$
 $\mathcal{K}_{\xi_{1},\xi_{2}}^{[d=4]}[g] = \frac{\eta\ell^{3}}{16\pi G} \int_{S_{\infty}} (d^{d-1}x)\sqrt{|g^{(0)}|} \Big[\Big(\mathcal{R}_{(0)}^{tb} - \frac{1}{2}\mathcal{R}^{(0)}g^{tb}_{(0)} \Big) (\sigma_{1}D_{b}\sigma_{2} - \sigma_{2}D_{b}\sigma_{1}),$
 $+ \frac{1}{4} \left(\mathcal{R}_{(0)}^{bc}\mathcal{R}_{bc}^{(0)} - \frac{1}{3}\mathcal{R}_{(0)}^{2} \right) (\sigma_{1}\bar{\xi}_{2}^{t} - \sigma_{2}\bar{\xi}_{1}^{t}) \Big]$

• We checked explicitly the generalized 2-cocycle condition

[0/ 1]

• For d = 2, if we impose Dirichlet boundary conditions $(\delta g_{ab}^{(0)} = 0)$, the field-dependent 2-cocycle reduces to the Brown-Henneaux central extension [Brown-Henneaux '86] $i\{L_m^{\pm}, L_n^{\pm}\} = (m - n)L_{m+n}^{\pm} - \frac{c_{12}^{\pm}}{2m}m(m^2 - 1)\delta_{m+n}^0, \{L_m^{\pm}, L_n^{\pm}\} = 0$ where $c^{\pm} = \frac{3\ell}{2G}$

BMS Group Questions Leaky Boundary Conditions and A-BMS_{d+1}

BMS Group in 4d Asymptotically Flat Spacetimes

- Consider radiative 4d asymptotically flat spacetimes at null infinity
- What you may naively expect as asymptotic symmetry group :

Poincaré = $SO(3, 1) \ltimes \text{Translations}$

 What a careful analysis gives as asymptotic symmetry group

[Bondi-van der Burg-Metzner '62] [Sachs '62]

 $BMS = SO(3, 1) \ltimes Supertranslations$

 \implies The supetranslations are necessary to include radiation

 \implies Boundary conditions yield some flux through the spacetime boundary

BMS Group Questions Leaky Boundary Conditions and A-BMS_{d+1}

BMS and the Infrared Triangle

 Infrared sector of gauge theories described by a web of connections : [Strominger 17]

⇔ Soft graviton theorem

BMS Group Questions Leaky Boundary Conditions and A-BMS_{d+1}

Extensions of BMS

- Recently, two extensions of the global BMS₄ have been proposed :
 - **(**) Extended $BMS_4 = (Diff(S^1) \times Diff(S^1)) \ltimes Supertranslations^*$

[Barnich-Troessaert 10]

 \Rightarrow Not globally well-defined on the celestial sphere (poles)

- 3 Generalized $BMS_4 = Diff(S^2) \ltimes Supertranslations$ [Campiglia-Laddha '14]
- These extensions have important consequences :
 - Physical processes (breaking of a cosmic string via black hole pair creation [Strominger-Zhiboedov '16])
 - O Superrotations ⇔ Spin/refraction/velocity kick memory effects ⇔ Subleading soft graviton theorem [strominger 17] [Compère-Fiorucci-Ruzziconi 18]
 - Celestial holography [Donnay-Puhm-Strominger '18]
 - Edge mode symmetries [Donnelly-Freidel '16]
 - Image: 1 million (1998)

BMS Group Questions Leaky Boundary Conditions and A-BMS_{d+1}

Questions

Natural questions arise :

- Is it possible to define the analogue of the BMS group in (A)dS (Λ ≠ 0)?
 ⇒ We call it the Λ-BMS group(oid)
- Is there a concept of flat limit? ($\Lambda \rightarrow 0$ limit) \implies We want Λ -BMS \rightarrow BMS in flat space when $\Lambda \rightarrow 0$

BMS Group Questions Leaky Boundary Conditions and A-BMS_{d+1}

Leaky Boundary Conditions and Λ -BMS_{d+1}

• We consider partial Dirichlet boundary conditions in (A)dS :

$$g_{tt}^{(0)} = -rac{\eta}{\ell^2}, \qquad g_{tA}^{(0)} = 0, \qquad \sqrt{|g^{(0)}|} = rac{1}{\ell}\sqrt{\mathring{q}}$$

where $x^a = (t/\ell, x^A)$, $A = 2, \dots, d$

- Fluctuations of $g^{(0)}_{AB}$ allowed $(\delta g^{(0)}_{AB}
 eq 0)$
- Always reachable using the residual gauge diffeomorphisms (d + 1 parameters ξ^a and σ for d + 1 conditions)
 ⇒ Does not constrain the Cauchy problem in dS (valid for both signs of Λ)
- Writing $\bar{\xi}^a \partial_a = \bar{\xi}^t \partial_t + \bar{\xi}^A \partial_A$, the residual gauge diffeomorphisms preserving the boundary conditions have to satisfy

$$\partial_t \bar{\xi}^t = \frac{1}{(d-1)} D_A \bar{\xi}^A, \qquad \partial_t \bar{\xi}^A = \frac{\eta}{\ell^2} g^{AB}_{(0)} D_B \bar{\xi}^t, \qquad \sigma = \frac{1}{(d-1)} D_A \bar{\xi}^A$$

Charge Algebra in Al(A)dS_{d+1} Spacetimes A-BMS Group in (A)dS Conclusion Leaky Boundary Conditions and A-BMS_{d+1}

• The generators satisfy the commutation relations

$$[\xi(\bar{\xi}_1^t, \bar{\xi}_1^A), \xi(\bar{\xi}_2^t, \bar{\xi}_2^A)]_{\star} = \xi(\hat{\xi}_1^t, \hat{\xi}_1^A)$$

where

$$\hat{\xi}^{t} = \bar{\xi}_{1}^{A} D_{A} \bar{\xi}_{2}^{t} + \frac{1}{(d-1)} \bar{\xi}_{1}^{t} D_{A} \bar{\xi}_{2}^{A} - \delta_{\xi_{1}} \bar{\xi}_{2}^{t} - (1 \leftrightarrow 2),$$

$$\hat{\xi}^{A} = \bar{\xi}_{1}^{B} D_{B} \bar{\xi}_{2}^{A} + \frac{\eta}{\ell^{2}} \bar{\xi}_{1}^{t} g^{AB}_{(0)} D_{B} \bar{\xi}_{2}^{t} - \delta_{\xi_{1}} \bar{\xi}_{2}^{A} - (1 \leftrightarrow 2)$$

 $\implies \mathsf{Field}\text{-dependent structure constants} \\ \implies \Lambda\text{-}\mathsf{BMS}_{d+1} \text{ Lie algebroid}$

• In the flat limit $\ell \to \infty$, we obtain

$$\begin{split} \hat{\xi}^t &= \bar{\xi}_1^A D_A \bar{\xi}_2^t + \frac{1}{(d-1)} \bar{\xi}_1^t D_A \bar{\xi}_2^A - (1 \leftrightarrow 2), \\ \hat{\xi}^A &= \bar{\xi}_1^B D_B \bar{\xi}_2^A - (1 \leftrightarrow 2) \end{split}$$

 \implies This corresponds to the Generalized BMS_{d+1} algebra (Diff(S^2) \ltimes Supertranslations) of asymptotically flat spacetimes!

BMS Group Questions Leaky Boundary Conditions and A-BMS_{d+1}

The Phase Space of Λ -BMS and its Flat Limit

Symplectic structure :

$$\omega_{ren}[g;\delta g,\delta g]\Big|_{\mathscr{I}} = -rac{\sqrt{\ddot{q}}}{\ell}\delta T^{AB}_{TF}\wedge\delta g^{(0)}_{AB}(d^dx)
eq 0$$

 \implies Necessary to have some flux in dS

 \implies A-BMS charges are not conserved, non-integrable

- The Fefferman-Graham gauge does not have a well-defined flat limit $(g_{\rho\rho} \to \infty$ when $\ell \to \infty)$
- Instead, one has to work in the Bondi gauge which admits a well-defined flat limit and exists for both $\Lambda \neq 0$ and $\Lambda = 0$ \implies Construct a diffeomorphisms from Fefferman-Graham to Bondi and translate all the results [Poole-Skenderie-Taylor '19] [Compère-Fiorucci-Ruzziconi '19] \implies From now on, the discussion is valid only for d = 3
- When taking the flat limit of the solution space with our asymptotically (A)dS boundary conditions, one recovers the solution space of asymptotically flat spacetimes

Charge Algebra in Al(A)dS_{d+1} Spacetimes A-BMS Group in (A)dS Conclusion Leaky Boundary Conditions and A-BMS_{d+1}

- Flat limit works at the level of the symmetries and the solution space. What about the phase space?
- When translated in Bondi gauge, one can show that

$$oldsymbol{\omega}_{\mathit{ren}}[{f g};\delta{f g},\delta{f g}]|_{\mathscr{I}}\sim\mathcal{O}(\mathsf{\Lambda}^{-1})$$

 \implies One cannot readily take $\Lambda \rightarrow 0$!

• The problem is solved by adding some corner terms in the holographically renormalized variational principle :

$$S_{ren} = \int_{\mathscr{M}} \mathbf{L}_{EH} + \int_{\mathscr{I}} \mathbf{L}_{GHY} + \int_{\mathscr{I}} \mathbf{L}_{ct} + \int_{\mathscr{I}} \mathbf{L}_{\circ}$$

with

$$\int_{\mathscr{I}} \mathbf{L}_{\circ} = \int_{(\partial \mathscr{I})_{+}} \mathbf{L}_{C} - \int_{(\partial \mathscr{I})_{-}} \mathbf{L}_{C}$$

- $\bullet~$ After this renormalization in $\Lambda,$ one can safely take $\Lambda \to 0$
- We find the important result

$$\boldsymbol{\omega}_{\mathit{ren}(\rho,\Lambda)}[g;\delta g,\delta g]|_{\mathscr{I}} \to \boldsymbol{\omega}_{\mathit{flat}}[g;\delta g,\delta g]|_{\mathscr{I}} \quad \text{when} \quad \Lambda \to 0$$

where $\omega_{\text{flat}}[g; \delta g, \delta g]|_{\mathscr{I}}$ contains the Bondi mass loss in asymptotically flat spacetimes [Bondi-van der Burg-Metzner '62] [Sachs '62]

$$d\mathbf{k}_{\xi, \textit{flat}}[g; \delta g]|_{\mathscr{I}} = \boldsymbol{\omega}_{\textit{flat}}[g; \delta_{\xi}g, \delta g]|_{\mathscr{I}}$$

 \Longrightarrow Striking argument in favour of the existence of gravitational waves at the non-linear level of the theory

Summary

- Leaky boundary conditions in $AI(A)dS_{d+1}$ spacetimes
- Boundary diffeomorphism charges + Weyl charges
 ⇒ Weyl charges ≠ 0 in even d
 ⇒ Sign of Weyl anomaly in the dual theory
- Charge algebra in Al(A)dS_{d+1} spacetimes
 - \implies Using the modified Barnich-Troessaert bracket
 - \implies Exhibits a non-trivial field-dependent 2-coycle in even d
 - \implies For d = 2, the latter reduces to the Brown-Henneaux central

charge when imposing Dirichlet boundary conditions

- BMS-like symmetries in (A)dS
 - \implies The Λ -BMS group(oid)
 - \implies Flat limit to recover Generalized BMS

Perspectives

- Meaning of leaky boundary conditions in holography?
 - \implies Holography with "open" systems?
 - \implies Access to flat space holography through a flat limit process?
 - \implies Works for the Fluid/Gravity correspondence

[Ciambelli-Marteau-Petropoulos-Ruzziconi 20]

- Implication of fluctuating boundary structure in (A)dS on the edge mode program? [Donnelly-Freidel '16]
 Interacting to have the maximum amount of symmetries
 - \Longrightarrow Interesting to have the maximum amount of symmetries
- Infrared triangle in (A)dS?
 ⇒ Can we relate Λ-BMS with soft theorems and memory effects in (A)dS? [Tolish-Wald '16] [Hinterbichler-Hui-Khoury '14]

Thank you!

Appendix : Non-Conservation and Variational Principle

- On-shell variational principle : $\delta S = \int_{\mathscr{I}} \boldsymbol{\Theta}[g; \delta g]|_{\mathscr{I}}$
- Presymplectic current : $\boldsymbol{\omega}[g; \delta g, \delta g] = \delta \boldsymbol{\Theta}[g; \delta g]$
- Flux-balance law controlling the non-conservation at infinity : $dk_{\xi}[g; \delta g]|_{\mathscr{I}} = \omega[g; \delta_{\xi}g, \delta g]|_{\mathscr{I}}$
- Conserved charges : $\omega[g; \delta g, \delta g]|_{\mathscr{I}} = 0$

$$\Rightarrow \boldsymbol{\Theta}[\boldsymbol{g}; \delta \boldsymbol{g}]|_{\mathscr{I}} = \delta \boldsymbol{B}[\boldsymbol{g}]$$

- \implies Add a boundary term to the action $S \rightarrow S' = S \int_{\mathscr{A}} \boldsymbol{B}[g]$
- \implies Well-defined variational principle : $\delta S' = 0$
- Non-conserved charges : $\omega[g; \delta g, \delta g]|_{\mathscr{I}} \neq 0$
 - $\Longrightarrow \boldsymbol{\Theta}[\boldsymbol{g}; \delta \boldsymbol{g}]|_{\mathscr{I}} \neq \delta \boldsymbol{B}[\boldsymbol{g}]$
 - \implies Impossible to add a boundary term such that $\delta S = 0$.

Reduction to Dirichlet Boundary Conditions

 Dirichlet/Brown-Henneaux boundary conditions for AlAdS [Hawking '83] [Ashtekar-Magnon '84] [Brown-Henneaux '86]

$$g^{(0)}_{ab}dx^{a}dx^{b} = -rac{1}{\ell^{2}}dt^{2} + \mathring{q}_{AB}dx^{A}dx^{B}$$

where \mathring{q}_{AB} is the unit (d-1)-sphere metric and $x^a = (t/\ell, x^A)$, $A = 2, \ldots, d$. For d = 2, the metric \mathring{q}_{AB} has only one component that we take $\mathring{q}_{\phi\phi} = 1$.

• These boundary conditions are preserved under residual gauge diffeomorphisms $\xi(\bar{\xi^a},\sigma)$ whose parameters satisfy

$$\mathcal{L}_{\bar{\xi}}g_{ab}^{(0)} = 2\sigma g_{ab}^{(0)}, \quad \sigma = \frac{1}{d} D_c \bar{\xi}^c$$

 \implies Conformal algebra in d dimensions

(Witt \oplus Witt for d = 2 and SO(d, 2) for d > 2)

• Typical example of conservative boundary condition :

$$\boldsymbol{\omega}_{ren}[\boldsymbol{g};\delta\boldsymbol{g},\delta\boldsymbol{g}]\Big|_{\mathscr{I}}=\boldsymbol{0}$$

- Charge algebra :
 - **3** $d > 2 \implies$ No central extension [Henneaux '85] **3** d = 2 [Brown-Henneaux '86] : $i\{L_m^{\pm}, L_n^{\pm}\} = (m-n)L_{m+n}^{\pm} - \frac{c^{\pm}}{12}m(m^2-1)\delta_{m+n}^{0}, \{L_m^{\pm}, L_n^{\pm}\} = 0 \text{ where } c^{\pm} = \frac{3\ell}{2G}$

Summary of Flat Limit

