INVERSE PROBLEMS IN THE ERA OF GRAVITATIONAL WAVE ASTRONOMY

Sebastian H. Völkel

Scuola Internazionale Superiore di Studi Avanzati (SISSA) Institute for Fundamental Physics of the Universe (IFPU) Trieste, Italy

> Gravity Seminar (Online) University of Southampton, United Kingdom 30.04.2020

ERC-2018-COG GRAMS 815673

SEBASTIAN H. VÖLKEL

Since Albert Einstein proposed general relativity (GR) in 1915/16, it took one century until some of its most exciting predictions could be observed.

Since Albert Einstein proposed general relativity (GR) in 1915/16, it took one century until some of its most exciting predictions could be observed.

With the LIGO/Virgo observatories, direct measurements of gravitational waves (GWs) have been successful from 2015 on.

Since Albert Einstein proposed general relativity (GR) in 1915/16, it took one century until some of its most exciting predictions could be observed.

With the LIGO/Virgo observatories, direct measurements of gravitational waves (GWs) have been successful from 2015 on.

GWs have enormous potential and implications:

Since Albert Einstein proposed general relativity (GR) in 1915/16, it took one century until some of its most exciting predictions could be observed.

With the LIGO/Virgo observatories, direct measurements of gravitational waves (GWs) have been successful from 2015 on.

GWs have enormous potential and implications:

- most convincing evidence for existence of black holes
- a new tool to study neutron stars and nuclear matter
- a new window to explore the dark universe

Since Albert Einstein proposed general relativity (GR) in 1915/16, it took one century until some of its most exciting predictions could be observed.

With the LIGO/Virgo observatories, direct measurements of gravitational waves (GWs) have been successful from 2015 on.

GWs have enormous potential and implications:

- most convincing evidence for existence of black holes
- a new tool to study neutron stars and nuclear matter
- a new window to explore the dark universe

Among the many open problems ahead, is the exploration of the GW spectrum of compact relativistic objects.

 $\label{eq:FIGURE 1: B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) Phys. Rev. Lett. 116, 061102, https://doi.org/10.1103/PhysRevLett.116.061102$

SEBASTIAN H. VÖLKEL

1 INTRODUCTION AND MOTIVATION

- 2 PERTURBATION THEORY OF COMPACT OBJECTS
- **3** SOLVING THE DIRECT AND INVERSE PROBLEM
- 4 APPLICATIONS AND DISCUSSION

5 CONCLUSIONS

INTRODUCTION AND MOTIVATION

PRIMER ON COMPACT OBJECTS

SEBASTIAN H. VÖLKEL

Standard compact objects (within general relativity (GR)):

- Kerr black holes
- Neutron stars

Standard compact objects (within general relativity (GR)):

- Kerr black holes
- Neutron stars

Exotic compact objects (within or beyond GR):

- horizonless compact objects
- wormholes
- firewalls
- . . .

Standard compact objects (within general relativity (GR)):

- Clean tests of GR and the no-hair theorem
- Constraining the nuclear equation of state and stellar structure

¹For a recent review: Cardoso and Pani [1]

Standard compact objects (within general relativity (GR)):

- Clean tests of GR and the no-hair theorem
- Constraining the nuclear equation of state and stellar structure

Exotic compact objects¹ (within or beyond GR):

- What are possible smoking gun effects?
- If firewalls are real, could they be observable with GWs?
- Could there be new forms of matter under extreme conditions?

¹For a recent review: Cardoso and Pani [1]

Oscillations of (compact, relativistic) objects have a long history:

- Black Holes
 - Schwarzschild BH: Regge and Wheeler 1957 [2], Zerilli 1970 [3]
 - Kerr BH: Teukolsky 1973 [4]
 - **.**..
- Neutron Stars
 - Thorne and Campolattaro 1967 [5]
 - **.**..

For classical reviews:

- Nollert 1999 [6]
- Kokkotas and Schmidt 1999 [7]
- Berti, Cardoso and Starinets 2009 [8]

EFFECTIVE WAVE EQUATION

For now, and to discuss the inverse problem later, we consider:

- spherical symmetry of $g_{\mu\nu}$
- no matter perturbations (or only axial modes in GR)

EFFECTIVE WAVE EQUATION

For now, and to discuss the inverse problem later, we consider:

- spherical symmetry of $g_{\mu\nu}$
- no matter perturbations (or only axial modes in GR)

QNM problem reduces to

$$\frac{\mathrm{d}^2\Psi}{\mathrm{d}x^2} + \left[\omega_n^2 - V_l(r)\right]\Psi = 0 \tag{1}$$

EFFECTIVE WAVE EQUATION

For now, and to discuss the inverse problem later, we consider:

- spherical symmetry of $g_{\mu\nu}$
- no matter perturbations (or only axial modes in GR)

QNM problem reduces to

$$\frac{\mathrm{d}^2\Psi}{\mathrm{d}x^2} + \left[\omega_n^2 - V_l(r)\right]\Psi = 0 \tag{1}$$

- tortoise coordinate $x \equiv \int \sqrt{g_{11}/g_{00}} dr'$
- effective potential $V_l(r)$ (depends on $g_{\mu\nu}$)
- quasi-normal modes (QNMs) $\omega_n^2 \equiv E_n$ (complex valued)

PERTURBATION POTENTIALS OF COMPACT OBJECTS

x

QNM SPECTRA OF COMPACT OBJECTS

QNM SPECTRA OF COMPACT OBJECTS

SEBASTIAN H. VÖLKEL

QNM SPECTRA OF COMPACT OBJECTS

SEBASTIAN H. VÖLKEL

QNM SPECTRA OF COMPACT OBJECTS

SEBASTIAN H. VÖLKEL

TRAPPED MODES ALIAS ECHOES

Left: Axial perturbations ultra compact stars, V. Ferrari and K. D. Kokkotas, Phys. Rev. D 62, 107504, 2000.

Right: Echoes from the abyss: Tentative evidence for Planck-scale structure at black hole horizons, Abedi, Dykaar and Afshordi, Phys. Rev. D 96, 082004 2017.

SEBASTIAN H. VÖLKEL

SISSA & IFPU

11/35

THE DIRECT PROBLEM

Determine QNM spectrum for a given potential:

$$V(r) \Rightarrow \omega_n \tag{2}$$

- Different types of approaches:
 - Approximate potentials²
 - WKB approximation³
 - phase integral method ⁴
 - Leaver's continued fraction [21]
 - direct integration (root of Wronskian)
 - time evolution (numerical integration before $e^{i\omega t}$)

³Schutz and Will [13], Iyer and Will [14], [15], Kokkotas and Schutz [16], Seidel and Iyer [17], Araujo, Nicholson and Schutz[18], Konoplya [19]

⁴Andersson, Araujo and Schutz[20]

SEBASTIAN H. VÖLKEL

²Chandrasekhar and Detweiler [9], Ferrari and Mashhoon [10; 11], Blome and Masshoon [12]

SOLVING THE DIRECT AND INVERSE PROBLEM

THE INVERSE PROBLEM

Use QNM spectrum to recover potential and source properties:

$$\omega_n \Rightarrow V(r)$$
 (3)

Use QNM spectrum to recover potential and source properties:

$$\omega_n \Rightarrow V(r)$$
 (3)

- Problem has changed significantly:
 - Well posed? Unique V(r)?
- Different types of approaches:
 - Brute force by repeatedly solving the direct problem.
 - Clever analysis of wave equation.

Brute force by repeatedly solving the direct problem:

- propose some ansatz for the potential
- solve direct problem (using known methods)
- repeat until modified ansatz provides same spectrum

Brute force by repeatedly solving the direct problem:

- propose some ansatz for the potential
- solve direct problem (using known methods)
- repeat until modified ansatz provides same spectrum

The good, the bad, and the ugly:

- only uses known methods
- uniqueness unclear
- ansatz unclear

Useful for numerical studies, optimization, parameter estimation

Clever analysis of wave equation:

- literature on inverse problems is long
- the one we use is based on WKB

Clever analysis of wave equation:

- literature on inverse problems is long
- the one we use is based on WKB

The good, the bad, and the ugly (using WKB):

- analytic study of the problem (approximate)
- WKB is only starting point, inversion relations have to be derived
- relies on validity of WKB, depends on type of potential

Matches analytic understanding with direct way of computation.

SOLVING THE DIRECT AND INVERSE PROBLEM

THE INVERSE PROBLEM: ASTEROSEISMOLOGY

Reconstruct neutron star properties from different types of oscillation modes:

FIGURE 2: Taken from Andersson and Kokkotas, MNRAS, 299, 4, 1998, https://doi.org/10.1046/j.1365-8711.1998.01840.x

THE WKB METHOD

An asymptotic series for the wave function⁵

$$\Psi(x) \sim \exp\left(\frac{1}{\delta}\sum_{n=0}^{\infty}\delta^n S_n(x)\right),\tag{4}$$

$$\Psi(x) = c_1 Q^{-1/4}(x) \exp\left(\frac{1}{\varepsilon} \int_a^x \sqrt{Q(x')} dx'\right)$$
(5)

$$+c_2 Q^{-1/4}(x) \exp\left(-\frac{1}{\varepsilon} \int_a^x \sqrt{Q(x')} dx'\right), \ \varepsilon \to 0, \tag{6}$$

⁵Standard reference: Bender and Orszag [22]

SEBASTIAN H. VÖLKEL

THE CLASSICAL BOHR SOMMERFELD RULE

$$\int_{x_0}^{x_1} \sqrt{E_n - V(x)} \mathrm{d}x = \pi \left(n + \frac{1}{2} \right), \tag{7}$$

where (x_0, x_1) are the classical turning points and $n \in \mathbb{N}_0$.

SEBASTIAN H. VÖLKEL

SOLVING THE DIRECT AND INVERSE PROBLEM

GENERALIZED BOHR-SOMMERFELD RULES

Can be extended to other potentials ⁶

$$\int_{x_0}^{x_1} \sqrt{E_n - V(x)} dx = \pi \left(n + \frac{1}{2} \right) - \frac{i}{4} \exp \left(2i \int_{x_1}^{x_2} \sqrt{E_n - V(x)} dx \right)$$
(8)

⁶Popov, Mur and Sergeev, Physics Letters A, 157, 4-5, 1991[23]

SOLVING THE DIRECT AND INVERSE PROBLEM

INVERTING BOHR-SOMMERFELD RULES

- Known for 2 turning point wells ⁷ or barriers⁸
- Extended to quasi-stationary states (3 or 4 turning points) ⁹
- Neutron star potentials with discontinuity (1 turning point)¹⁰

$$\mathcal{L}_1(E) = x_1 - x_0 = 2 \frac{\partial}{\partial E} \int_{E_{\min}}^E \frac{n(E') + 1/2}{\sqrt{E - E'}} dE'$$
(9)

$$\mathcal{L}_{2}(E) = x_{2} - x_{1} = -\frac{1}{\pi} \int_{E}^{E_{\text{max}}} \frac{(\mathbf{d}T(E')/\mathbf{d}E')}{T(E')\sqrt{E'-E}} \mathbf{d}E'$$
(10)

⁷Wheeler, 1976, [24]
⁸WKB Gamow formula: Cole and Good, Phys. Rev. A, 18, 3, 1978, [25]
⁹Völkel and Kokkotas [26]; Völkel [27]; Völkel and Kokkotas [28]
¹⁰Völkel and Kokkotas [29]

SEBASTIAN H. VÖLKEL

APPLICATIONS AND DISCUSSION

INVERTING BOHR-SOMMERFELD RULES

INVERSE PROBLEM FOR NEUTRON STARS

Using the axial QNM spectrum of non-rotating neutron stars¹¹:

¹¹S. H. V. and K. D. Kokkotas, Class. Quantum Grav. 36, 115002, 2019, [29]

SEBASTIAN H. VÖLKEL

INVERSE PROBLEM FOR NEUTRON STARS

Using the axial QNM spectrum of non-rotating neutron stars¹¹:

- $\bullet\,$ used WKB for this type of direct and inverse QNM problem
- applied to constant density and polytropic EOS
- approximate generalized rule (for real part of ω_n^2)

$$\int_{x_{0,1}}^{x_{s}} \sqrt{E_{0,n} - V_{1}(x)} dx = \pi \left(n + \frac{3}{4} \right)$$
(11)

¹¹S. H. V. and K. D. Kokkotas, Class. Quantum Grav. 36, 115002, 2019, [29]

SEBASTIAN H. VÖLKEL

INVERSE PROBLEM FOR NEUTRON STARS

Two approximate educated guesses for the spectrum:

- suggesting fundamental mode $\omega_{\rm f}$ related to potential at R

$$R\omega_{f} \approx \sqrt{\left(1 - \frac{2M}{R}\right)\left(L - \frac{6M}{R}\right)} \approx \sqrt{L} - \left(\frac{3+L}{\sqrt{L}}\right)\frac{M}{R} + \mathcal{O}\left(\left(\frac{M}{R}\right)^{2}\right),$$
(12)

• approximation in the limit of large overtones¹², known empirically

$$\Delta \omega = \frac{\pi}{\mathcal{R}} \tag{13}$$

¹²confirms Zhang and Leung, Phys. Rev. D 83, 2011, [30]

SEBASTIAN H. VÖLKEL

APPLICATIONS AND DISCUSSION

INVERSE PROBLEM FOR NEUTRON STARS

FIGURE 3: S. H. V. and K. D. Kokkotas, Class. Quantum Grav. 36, 115002, 2019, [29]

SEBASTIAN H. VÖLKEL

How general and unique are Schwarzschild QNMs?

How general and unique are Schwarzschild QNMs?

bottom-up:

- use parametrized ansatz for black hole metric
- no gravitational field equations, only test fields
- compare Schwarzschild QNMs with parametrized metric QNMs
- qualitative "general" conclusions, not directly applicable to observations

How general and unique are Schwarzschild QNMs?

bottom-up:

- use parametrized ansatz for black hole metric
- no gravitational field equations, only test fields
- compare Schwarzschild QNMs with parametrized metric QNMs
- qualitative "general" conclusions, not directly applicable to observations

top-down:

- choose alternative theory of gravity
- find exact black hole solutions, study metric perturbations
- compare Schwarzschild QNMs with alternative black hole QNMs
- specific quantitative conclusions, directly applicable to observations

BOTTOM-UP: REZZOLLA-ZHIDENKO METRIC

Parametrization for spherically symmetric black hole metric¹³

$$ds^{2} = -N^{2}(r)dt^{2} + \frac{B^{2}(r)}{N^{2}(r)}dr^{2} + r^{2}d\Omega^{2}, \qquad (14)$$

$$x \equiv 1 - \frac{r_0}{r}, \qquad N^2 = xA(x),$$
 (15)

$$A(x) = 1 - \varepsilon (1 - x) + (a_0 - \varepsilon)(1 - x)^2 + \tilde{A}(x)(1 - x)^3,$$
(16)
$$B(x) = 1 + b (1 - x) + \tilde{B}(x)(1 - x)^2 - (17)$$

$$B(x) = 1 + b_0(1-x) + \tilde{B}(x)(1-x)^2.$$
(17)

Effective potential for scalar test field ($\Box \phi = 0$):

$$V_{l}(r) = \frac{l(l+1)}{r^{2}} N^{2}(r) + \frac{1}{r} \frac{d}{dr^{*}} \frac{N^{2}(r)}{B(r)}.$$
 (18)

¹³Rezzolla and Zhidenko, Phys. Rev. D 90, 084009, 2014, [31]

SEBASTIAN H. VÖLKEL

APPLICATIONS AND DISCUSSION

UNIQUENESS OF BLACK HOLE QNMS

Relative error of combined real and imaginary part of ω_0 with respect to Schwarzschild (M = 1). S. H. V. and K. D. Kokkotas, Phys. Rev. D, 100, 044026, 2019, [32]

SEBASTIAN H. VÖLKEL

APPLICATIONS AND DISCUSSION

UNIQUENESS OF BLACK HOLE QNMS

Effective potential for scalar field in the RZ background space-time. S. H. V. and K. D. Kokkotas, Phys. Rev. D, 100, 044026, 2019, $\left[32\right]$

SEBASTIAN H. VÖLKEL

Ongoing work:

- include multiple modes simultaneously and account for uncertainties
- allow for multiple metric parameters (simultaneously)
- method of choice: Bayesian analysis using MCMC¹⁴
- yields posterior distribution for model parameters

¹⁴Markov-Chain-Monte-Carlo (MCMC)

APPLICATIONS AND DISCUSSION

UNIQUENESS OF BLACK HOLE QNMS

Basic preliminary results:

FIGURE 4: Model with $M = 1, a_0 = 0.01$ and Gaussian noise using (n=0,1; l=2) modes.

SEBASTIAN H. VÖLKEL

- Upcoming GW detections will provide several QNMs.
- Testing the no-hair theorem and neutron star physics is in reach.
- Calls for studying more general inverse spectrum problems.
- Semi-classical methods (like WKB) can provide some understanding.
- They are helpful for computationally expensive problems (MCMC).

BIBLIOGRAPHY I

- V. Cardoso and P. Pani. Testing the nature of dark compact objects: a status report. Living Rev. Rel., 22(1):4, 2019. doi: 10.1007/s41114-019-0020-4.
- [2] T. Regge and J. A. Wheeler. Stability of a Schwarzschild Singularity. *Physical Review*, 108: 1063–1069, November 1957. doi: 10.1103/PhysRev.108.1063.
- [3] F. J. Zerilli. Effective Potential for Even-Parity Regge-Wheeler Gravitational Perturbation Equations. Phys. Rev. Lett., 24:737–738, March 1970. doi: 10.1103/PhysRevLett.24.737.
- [4] S. A. Teukolsky. Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations. *Astrophys. J.*, 185:635–647, 1973. doi: 10.1086/152444.
- [5] K. S. Thorne and A. Campolattaro. Non-Radial Pulsation of General-Relativistic Stellar Models. I. Analytic Analysis for L ≥ 2. ApJ, 149:591, September 1967. doi: 10.1086/149288.
- [6] H.-P. Nollert. Quasinormal modes: the characteristic sound of black holes and neutron stars. *Class. Quantum Grav.*, 16(12):R159–R216, nov 1999. doi: 10.1088/0264-9381/16/12/201.
- [7] K. D. Kokkotas and B. G. Schmidt. Quasi-Normal Modes of Stars and Black Holes. Living Rev. Rel., 2:2, December 1999. doi: 10.12942/ltr-1999-2.
- [8] E. Berti, V. Cardoso, and A. O. Starinets. Quasinormal modes of black holes and black branes. Class. Quantum Grav., 26:163001, 2009. doi: 10.1088/0264-9381/26/16/163001.
- [9] S. Chandrasekhar and S. Detweiler. The quasi-normal modes of the Schwarzschild black hole. Proceedings of the Royal Society of London Series A, 344:441–452, August 1975. doi: 10.1098/rspa.1975.0112.

BIBLIOGRAPHY II

- [10] V. Ferrari and B. Mashhoon. Oscillations of a black hole. Phys. Rev. Lett., 52:1361–1364, April 1984. doi: 10.1103/PhysRevLett.52.1361.
- [11] V. Ferrari and B. Mashhoon. New approach to the quasinormal modes of a black hole. *Phys. Rev. D*, 30:295–304, July 1984. doi: 10.1103/PhysRevD.30.295.
- [12] H.-J. Blome and B. Mashhoon. Quasi-normal oscillations of a schwarzschild black hole. Phys. Lett. A, 100:231–234, January 1984. doi: 10.1016/0375-9601(84)90769-2.
- [13] B. F. Schutz and C. M. Will. Black hole normal modes A semianalytic approach. ApJ, 291: L33–L36, April 1985. doi: 10.1086/184453.
- [14] S. Iyer and C. M. Will. Black-hole normal modes: A WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering. *Phys. Rev. D*, 35: 3621–3631, June 1987. doi: 10.1103/PhysRevD.35.3621.
- [15] S. Iyer. Black-hole normal modes: A wkb approach. ii. schwarzschild black holes. Phys. Rev. D, 35:3632–3636, Jun 1987. doi: 10.1103/PhysRevD.35.3632.
- [16] K. D. Kokkotas and B. F. Schutz. Black-hole normal modes: A wkb approach. iii. the reissner-nordström black hole. *Phys. Rev. D*, 37:3378–3387, Jun 1988. doi: 10.1103/PhysRevD.37.3378.
- [17] E. Seidel and S. Iyer. Black-hole normal modes: A wkb approach. iv. kerr black holes. Phys. Rev. D, 41:374–382, Jan 1990. doi: 10.1103/PhysRevD.41.374.

BIBLIOGRAPHY III

- [18] M E Araujo, D Nicholson, and B F Schutz. On the bohr-sommerfeld formula for black hole normal modes. *Classical and Quantum Gravity*, 10(6):1127–1138, jun 1993. doi: 10.1088/0264-9381/10/6/009. URL https://doi.org/10.1088%2F0264-9381%2F10%2F6%2F009.
- [19] R. A. Konoplya. Quasinormal behavior of the *d*-dimensional schwarzschild black hole and the higher order wkb approach. *Phys. Rev. D*, 68:024018, Jul 2003. doi: 10.1103/PhysRevD.68.024018.
- [20] N Andersson, M E Araujo, and B F Schutz. The phase-integral method and black hole normal modes. *Classical and Quantum Gravity*, 10(4):735–755, apr 1993. doi: 10.1088/0264-9381/10/4/009. URL https://doi.org/10.1088%2F0264-9381%2F10%2F4%2F009.
- [21] E. W. Leaver. An analytic representation for the quasi-normal modes of Kerr black holes. Proceedings of the Royal Society of London Series A, 402:285–298, December 1985. doi: 10.1098/rspa.1985.0119.
- [22] C. M. Bender and S. A. Orszag. Advanced Mathematical Methods for Scientists and Engineers. New York: McGraw-Hill, 1978.
- [23] V. S. Popov, V. D. Mur, and A. V. Sergeev. Quantization rules for quasistationary states. *Phys. Lett. A*, 157:185–191, July 1991. doi: 10.1016/0375-9601(91)90048-D.
- [24] J. A. Wheeler. Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann. Princeton Series in Physics. Princeton University Press, 2015. ISBN 9780608066288.

BIBLIOGRAPHY IV

- [25] M. W. Cole and R. H. Good. Determination of the shape of a potential barrier from the tunneling transmission coefficient. *Phys. Rev. A*, 18:1085–1088, Sep 1978. doi: 10.1103/PhysRevA.18.1085.
- [26] S. H. Völkel and K. D. Kokkotas. Ultra Compact Stars: Reconstructing the Perturbation Potential. *Class. Quantum Grav.*, 34(17):175015, 2017. doi: 10.1088/1361-6382/aa82de.
- [27] S. H. Völkel. Inverse spectrum problem for quasi-stationary states. J. Phys. Commun., 2(2): 025029, 2018. doi: 10.1088/2399-6528/aaaee2.
- [28] S. H. Völkel and K. D. Kokkotas. Wormhole potentials and throats from quasi-normal modes. *Class. Quantum Grav.*, 35(10):105018, May 2018. doi: 10.1088/1361-6382/aabce6.
- [29] S. H. Völkel and K. D. Kokkotas. On the inverse spectrum problem of neutron stars. Class. Quantum Grav., 36(11):115002, Jun 2019. doi: 10.1088/1361-6382/ab186e.
- [30] Y. J. Zhang, J. Wu, and P. T. Leung. High-frequency behavior of w-mode pulsations of compact stars. *Phys. Rev. D*, 83:064012, Mar 2011. doi: 10.1103/PhysRevD.83.064012.
- [31] L. Rezzolla and A. Zhidenko. New parametrization for spherically symmetric black holes in metric theories of gravity. *Phys. Rev. D*, 90:084009, Oct 2014. doi: 10.1103/PhysRevD.90.084009.
- [32] S. H. Völkel and K. D. Kokkotas. Scalar Fields and Parametrized Spherically Symmetric Black Holes: Can one hear the shape of space-time? *Phys. Rev.*, D100(4):044026, 2019. doi: 10.1103/PhysRevD.100.044026.