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Abstract

We introduce a new nonparametric approach for estimating a simple varying coefficient model

with a unit root nonstationarity. Our method is based on a piecewise local least squares principle

and is computationally simple to implement. We establish its asymptotic properties and evaluate its

performance in finite samples. Our working model also allows us to formalise the concept of a long

run functional equilibrium relationship analogous to the well known cointegration concept within a

constant coefficient setting.
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1 Introduction

A vast body of research in the recent time series econometrics literature has concentrated on developing

methods of capturing nonlinear regime specific behaviour in the joint dynamics linking economic and

financial variables. An important complication that arises when moving from simple linear structures

with constant coefficients to such models with nonlinear dynamics has to do with the open ended

nature of the functional forms one may want to adopt for describing the changing nature of the

model parameters and underlying moments. Popular parametric specifications include the well known

threshold models, Markov switching models, models with structural breaks among numerous others.

Although such models can allow researchers to capture rich and economically meaningful nonlinearities

the ad-hoc nature of the functional forms may also be seen as problematic. An alternative to having

to take a stand on a particular functional form is to instead allow the changing coefficients to be

described by some unknown function to be estimated from the data as for instance in y = f(q)x + e.

Such semiparametric specifications are commonly referred to as varying or functional coefficient models

and were introduced in the early work of Cleveland, Grosse and Shyu (1991), Hastie and Tibshirani

(1993), Chen and Tsay (1993), Fan and Zhang (1999) amongst numerous others (see also Fan and Yao

(2003) and references therein). An important motivation underlying this class of models is their ability

to capture rich dynamics in a flexible way while at the same time avoiding the curse of dimensionality

characterising fully nonparametric specifications.

The most common way of estimating the unknown functions of such varying coefficient models is

through kernel smoothing and local polynomial techniques. These typically reduce to a weighted least

squares type of objective function with the weights dictated by some chosen kernel function (see Fan

and Gijbels (1992, 1996)). Our objective in this paper is to propose an alternative estimation approach

based on a piecewise linear least squares principle and to obtain its properties within a nonstandard

context that allows for the presence of a unit root variable as in the recent work of Juhl (2009), Xiao

(2009) and Cai, Li and Park (2009). Our method is different from kernel smoothing based methods,

does not generally require the differentiability of the density of q and is shown to have good finite

sample properties.

Our varying coefficient specification also allows us to define a novel concept which we refer to

as functional cointegration analogous to the well known linear cointegration property that arises in

specifications linking I(1) variables linearly. In this sense our work also falls within the bounds of the

very recent literature on nonlinear cointegration tackled from a purely nonparametric point of view

(Karlsten, Myklebust and Tjostheim (2007), Wang and Phillips (2009), Kasparis and Phillips (2009)

amongst others). Note that the idea of a nonlinear long run equilibrium relationship (attractor) was

also put forward in the early work of Granger and Hallman (1989), Breitung (2001), Saikkonen and

Choi (2004) amongst others.

The plan of the paper is as follows. Section 2 introduces and motivates our model. Section
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3 describes our estimation methodology and derives its asymptotic properties. Section 4 explores its

performance and finite sample properties. Section 5 concludes. All proofs are relegated to the appendix.

2 The Model and Motivations

We consider the following functional coefficient regression model

yt = f0(qt−d) + f1(qt−d)xt + ut (1)

xt = xt−1 + vt (2)

where ut and vt are stationary disturbance terms and f0(qt−d) and f1(qt−d) are unknown functions

of the stationary scalar random variable qt−d while xt is taken as an I(1) process throughout. The

particular choice of d is not essential for our analysis and will be set at d = 1 throughout. The

generality of (1)-(2) can be seen by noting that it can easily be specialised to well known parametric

specifications such as threshold effects as in fi(qt−1) = βi1I(qt−1 ≤ γ)+βi2I(qt−1 > γ) (see Gonzalo and

Pitarakis (2006)) or ESTAR/LSTAR type of variants such as fi(qt−1) = [1 + e−γi(qt−1−ci)]−1 amongst

others.

Before proceeding with our main goal of estimating the unknown functions f0(q) and f1(q) it is

important to motivate our model in (1)-(2) as a long run equilibrium relationship. As it stands (1)

cannot be interpreted as a stationary nonlinear combination of I(1) variables in a traditional sense.

Indeed, it is easy to see that although xt is a standard I(1) process, yt can no longer be viewed as

I(1) as it would have been the case for instance if f0(q) and f1(q) were constants. Differently put, the

concept of integratedness of order 0 or 1 is mainly relevant within a linear framework while not being

very helpful when dealing with nonlinear transformations of variables. In the context of our model

in (1) for instance it is straightforward to see that first differencing yt will not result in a stationary

process because of the time varying nature of the functional coefficients.

To gain further insight into this phenomenon consider a simplified version of (1) which we compactly

write as yt = ftxt + ut and with ft denoting some stationary process. It is now clear that ∆yt =

ft∆xt + xt−1∆ft + ∆ut making it difficult to view ∆yt as a stationary process due to the presence

of the term xt−1∆ft which has a variance that grows with t. Instead, cointegration in the context of

(1) is understood in the sense that although yt and xt have variances that grow with t, the functional

combination given by ut is stationary.

Because of these conceptual difficulties and for the purpose of motivating (1)-(2) we propose to

use the concept of Summability as an alternative to the concept of I(1)’ness and which was proposed

in Gonzalo and Pitarakis (2006) and more recently refined and formalised in Berenguer (2010) and

Berenguer and Gonzalo (2011). A time series yt is said to be summable of order δ, symbolically

represented as Sy(δ), if the sum Sy =
∑T

t=1(yt − dt) is such that Sy/T
1
2
+δ = Op(1) as T → ∞ and
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where dt denotes a deterministic sequence. Note that in the context of this definition, a process that

is I(d) can be referred to as Sy(d) and the functional process introduced in (1) is clearly Sy(1) as

discussed further below. Using this concept of summability of order δ we can now provide a formal

definition of the concept of functional cointegration as follows

Definition (Functional Cointegration) Let yt and xt be Sy(δ1) and Sy(δ2) respectively. They are function-

ally cointegrated if there exists a functional combination (1,−f1(qt−1)) such that zt = yt − f1(qt−1)xt
is Sy(δ0) with δ0 < min(δ1, δ2).

Given the formal definition of functional cointegration presented above it is now clear that within our

specification in (1), yt and xt are functionally cointegrated with δ0 = 0 and δ1 = δ2 = 1. This follows

from the fact that taking ut and qt to be stationary processes ensures that
∑
yt/T

3/2 = Op(1) while

ut is such that
∑
ut/
√
T = Op(1) as clarified further below. It is also worth highlighting the fact that

within our specification in (1) we have zt = f0(qt−1) +ut which is of the same order of magnitude as ut

since under our assumptions we will have
∑
f0(qt−1)/T

p→ E[f0(qt−1)] and
∑
f0(qt−1)/T

3/2 = op(1).

Having provided a rationale for our specification in (1)-(2) we next concentrate on the main goal

of this paper which involves obtaining reliable estimates of the unknown functional coefficients f0(q)

and f1(q) and exploring their asymptotic and finite sample properties. For this purpose we introduce

a piecewise linear estimation approach as developed in Banerjee (1994, 2007) in the context of average

derivative estimation and adapt it to the nonstationary functional coefficient setting given by (1)-(2).

This will also allow us to compare our approach with the more commonly used kernel smoothing

approaches.

3 Piecewise Local Linear Estimation

We now concentrate on the estimation of the unknown functional coefficients linking yt and xt. We

propose to do that through a piecewise local linear procedure recently used in Banerjee (1994, 2007)

in the context of average derivative estimation. With qt−1 denoting the argument of the functions of

interest, we divide its support into k disjoint bins of equal length |Hr| = h, r = 1, . . . , k (note that

qt−1 is not sorted in any particular order). For every qt−1 falling in the rth bin we then fit the least

squares line yt = β0r +β1rxt +ut connecting the {yt, xt} data within the bin. More specifically, letting

x̃t = (1, xt) and Ir(qt−1) ≡ I(qt−1 ∈ Hr) = 1 if qt−1 falls within the rth bin and zero otherwise and

βr = (β0r, β1r)
′ we write

β̂r = S(r)
xx
−1S(r)

xy (3)

where S
(r)
xx =

∑T
t=1 x̃tx̃

′
tIr(qt−1) and S

(r)
xy =

∑T
t=1 x̃tytIr(qt−1). Note that β̂r provides the least squares

estimators of the intercept and slope parameters characterising the linear regression line within each

bin. Interestingly, in a series of recent papers, Senturk and Mueller (2005, 2006) also used an estimation
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technique similar to what we consider below in an unobserved variable setting under iid’ness and in

which observed and unobserved variables are linked through functional coefficients.

Once the β̂r’s have been estimated within each bin, our estimator of the functional coefficients is

then given by

(f̂0(q), f̂1(q)) =

(
k∑
r=1

β̂0rIr(q),
k∑
r=1

β̂1rIr(q)

)
(4)

with Ir(q) = I(q ∈ Hr).

Having introduced the mechanics behind our estimator our main goal is to establish its asymp-

totic properties. We will initially be interested in the consistency properties of β̂r and subsequently

focus on obtaining a convenient expression for its limiting distribution. Since in this nonstationary

setting consistency typically holds under minimally restrictive assumptions that can accomodate serial

correlation and/or endogeneity we proceed and operate under a broad set of high level assumptions

which we will subsequently specialise as we explore distributional properties. The following baseline

assumptions will be maintained throughout the entire paper.

Assumptions A. (i) qt = µq + uqt is such that uqt is a strictly stationary, ergodic and strong mixing

sequence with mixing numbers αm satisfying
∑∞

m=1 α
1
m
− 1

r < ∞ for some r > 2. (ii) The density of

q denoted gq(q) is strictly positive and satisfies supq gq(q) < ∞, (iii) the functional coefficients fi(.)

i = 0, 1 are twice continuously differentiable in q.

Assumptions A(i)-(iii) above impose a standard set of restrictions on our functional coefficients and their

argument qt−1. The differentiability of the fi(qt−1)
′s will allow us to use their local Taylor expansions

at a point q within each bin. Assumption A(i) also requires qt to be stationary while allowing it to

accomodate a very rich set of dynamics such as ARMA specifications. Since our estimation methodology

requires fitting a least squares line within each bin of length |Hr| = h it is also understood throughout

this paper that for estimability purposes there are enough observations within each bin.

We next introduce a set of high-level assumptions that restrict the large sample behaviour of the

innovations driving (1)-(2).

Assumption B. As T → ∞ and
√
Th → ∞ with h → 0 a multivariate invariance principle

holds for (ut, utIrt−1, vt). We write (
∑[Ts]

t=1 ut/
√
T ,
∑[Ts]

t=1 utIrt−1/
√
Th,

∑[Ts]
t=1 vt/

√
T ) ⇒ BM(Ω) ≡

(Bu(s), Bur(s), Bv(s)) a three dimensional Brownian Motion with long run covariance Ω > 0.

Note that our Assumption B does not explictly impose any restrictions on the interactions between

ut, vt and Irt−1 beyond typical existence of moments and memory restriction requirements that ensure

an invariance principle holds. Both ut and vt may be individually serially correlated and also have

nonzero covariances at all leads and lags. Assumption B would hold for instance if wt = (ut, utIrt−1, vt)
′

was taken to be strictly stationary, ergodic and strong mixing with mixing coefficients as in A(i) and

additional existence of moment requirements such as E|wit|2+ρ <∞ for some ρ > 0.
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We are now in a position to state our main result which establishes the consistency of our piecewise

local linear estimator. It is summarised in the following Proposition.

Proposition 1. Under Assumptions A and B, as T → ∞ and if Th → ∞ and Th3/2 → 0 as h → 0

we have (f̂0(q)− f0(q)) = Op(1/
√
Th) and (f̂1(q)− f1(q)) = Op(1/T

√
h).

The above proposition focused on the consistency of our proposed estimator under a setting that

allows a great degree of generality in the dynamics linking (1) and (2). We note that the slope function

converges at a faster rate than the intercept function (i.e. T
√
h versus

√
Th). This is directly analogous

to the standard linear cointegration setting in which the slope converges at rate T while the intercept

converges at the slower
√
T rate. Our convergence rates conform with related studies that explored

the use of functional coefficients in unit root settings using kernel smoothing techniques (Juhl (2006),

Xiao (2009), Cai et al. (2009)).

At this stage it is also useful to highlight the bias term that characterises the asymptotics of β̂1r

and that vanishes under Th3/2 → 0. From expressions (17)-(18) in our proof of Proposition 1 it is

straightforward to observe that

β̂1r = f1(q) + f ′1(q)
E[(qt−1 − q)Irt−1]

E[Irt−1]
+Op

(
1

T
√
h

)
= f1(q) + o(h) +Op

(
1

T
√
h

)
. (5)

Note that the bias term f ′1(q)E[(qt−1 − q)Irt−1]/E[Irt−1] is the result of using a first order Taylor

expansion of f1(qt−1) around a q ∈ Hr (see (15)). It is also interesting to note that the bias term that

would arise if we were to use higher order expansions (say up to order m) is given by

Bm =
1

E[Irt−1]

m∑
j=1

1

j!
f (m−j)(q)[E(qt−1 − q)jIrt−1] (6)

and does not depend on derivatives of the pdf of qt−1 (e.g. g
(m−j)
q ) as it is typically the case in kernel

smoothing based methods.

Having established the consistency of our proposed estimators of f0(.) and f1(.) we next concentrate

on explicit representations of their limiting distributions. To achieve this, Assumption C below imposes

further assumptions more explicitly restricting the dynamics of the sequence utIrt−1 and its interaction

with the vt series. Letting ηrt = utIrt−1/
√
h and γ`(q) = E[ut+`vt|qt+`−1] we require the following to

hold.

Assumption C. (i) The sequence {ηrt} is a zero mean strictly stationary ergodic and strong mixing

with mixing coefficients as in A(i) and E|ηrt|2+ρ <∞ for some ρ > 0, (ii) S(q) =
∑∞

`=0 |γ`(q)| < M <

∞.

The above assumption C(i) ensures that an FCLT holds for the ηrt sequence as stated under our

Assumption B. Specifically,
∑[Ts]

t=1 ηrt/
√
T ⇒ Bur(s). Note that in order for Assumption C to hold it
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suffices to require ut to be strong mixing since under Assumption A(i), qt and hence Irt−1 are strong

mixing. The main motivation for the more primitive requirements stated in C comes from the need to

use a martingale approximation for ηrt as described in Phillips (1988) and Hansen (1992). Part (ii) of

Assumption C imposes a mild restriction on the joint dynamics of {ut, vt, qt} and is satisfied under the

assumption that the series involved are strictly stationary and ergodic. We are now in a position to

obtain a representation of the limiting distribution of our estimators.

Proposition 2. Under assumptions A, B and C, as T →∞ and if Th→∞ and Th3/2 → 0 we have

√
Th(f̂0(q)− f0(q)) ⇒

Bur(1)

E[Irt−1/h]

→ 1

gq(q)
N(0, ω2) as h→ 0

T
√
h(f̂1(q)− f1(q)) ⇒

∫ 1
0 BvdBur +

∑∞
`=0E[ηrt+`vt]

E[Irt−1/h]
∫
B

2
v

(7)

→ MN(0, V (q)) as h→ 0 (8)

with V (q) = ω2/[gq(q)]
2
∫
B

2
v and where ω2 = limh→0E[u2t Irt−1/h].

The above asymptotics allow for very general dynamics across the shocks driving (1)-(2). It is useful

to note that unlike the linear cointegration setting mixed normality arises despite the presence of

endogeneity and possible serial correlation. At this stage it is also worth pointing out that if we impose

E[u2t |qt−1] = E[u2t ] ≡ σ2u then ω2 = σ2ugq(q) and we have

√
Th(f̂0(q)− f0(q)) ⇒ N(0, σ2u)

T
√
h(f̂1(q)− f1(q)) ⇒ MN

(
0,

σ2u

gq(q)
∫
B

2
v

)
. (9)

4 Finite Sample Analysis

Our goal here is to illustrate the behaviour of our piecewise local linear estimators via a series of simula-

tion experiments. We will consider five functional forms including one that violates our differentiability

assumption in A(iii). The stochastic structure of our DGPs will be sufficiently general to allow for the

presence of endogeneity and a rich dynamic structure for the errors driving xt. Specifically, our DGP

is given by

yt = f0(qt−1) + f1(qt−1) xt + ut

xt = xt−1 + vt

ut = ρuut−1 + eut

vt = ρvvt−1 + evt

qt = ρqqt−1 + eqqt (10)
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and letting zt = (eut, evt, eqt)
′ and Σz = E[ztz

′
t], we use

Σz =


1 σuv σuq

σuv 1 σvq

σuq σqv 1


for the covariance structure of the random disturbances. Note that our chosen covariance matrix

parameterisation allows qt to be contemporaneously correlated with the shocks to yt and throughout

all our experiments we set {σuv, σuq, σvq} = {−0.5, 0.5, 0.5}.

The range of possible functional coefficients we consider for either the intercept or the slope functions

is given by

A : f(q) = 0.3− 0.5 e−1.25q
2

B : f(q) =
0.5

1 + e−4q
− 0.75

C : f(q) = 0.25 e−q
2

D : f(q) = 1 + 2(q > 0.5)

E : f(q) = (1.5 + 0.6q) e−0.5(0.5q−1.5)
2

(11)

thus covering a very wide range of shapes including for illustration purposes a threshold type function

which violates our differentiability assumption. Following standard practice in the functional coefficient

literature, the quality of our estimators will be assessed via the computation of the root MSE defined

as follows

RMSEi =

√√√√1

k

k∑
r=1

(f̂i(qr)− fi(qr))2 i = 0, 1 (12)

for some qr falling within each bin, say the midpoint. All our experiments use NID(0, 1) variables

for the random disturbances zt while setting {ρu, ρv, ρq} = {0.25, 0.25, 0.25} thus allowing both serial

correlation and endogeneity.

Before proceeding with our simulations we give a snapshot of the performance of our estimators

by displaying plots of single realisation based f̂i(q)
′s for i = 0, 1 together with their true counterparts.

Figure 1 below presents the plots of the functions corresponding to our formulations in A-E across

samples of size T=500 and T=2000. The corresponding choice for the number of bins was k=50 and

k=100.

Figure 1: Piecewise Local Linear Estimation under T=500 and T=2000
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The above plots suggest that our f̂1(q) estimator has an excellent ability to trace its true counterpart.

Note also that these figures have been obtained allowing for both serial correlation and endogeneity

in the underlying dynamics. It is also very interesting to note the performance of f̂1(q) when the

underlying true function has a kink as in scenario D. Both intercept and slope function estimators

appear to match their true counterparts very accurately. However we must also emphasise the generally

poor performance of f̂0(q) when the sample size is small. This is clearly not unexpected and stems

from the slow convergence of the estimator relative to that of f̂1(q). Regardless of the sample size it is

also evident that the variance of f̂0(q) is substantially larger than that of f̂1(q).

We next aim to highlight more formally the consistency properties of our estimators by documenting

the progression of the corresponding RMSE’s as the sample size is allowed to increase. Results across

a selective set of scenarios are summarised in Table 1 below which displays simulated averages of (12)

across N=2000 Monte-Carlo replications. The rows labelled PLLE correspond to our piecewise local

linear estimator while the rows labelled KERN are based on a Kernel estimation as described in Xiao

(2010) and using a Gaussian Kernel with h = 1/k (the number of bins associated with each sample

size is denoted k).

Table 1. RMSE of Estimators

T = 250 T = 500 T = 1000 T = 2000 T = 250 T = 500 T = 1000 T = 2000

k = 25 k = 50 k = 100 k = 200 k = 25 k = 50 k = 100 k = 200

f̂0(q) f̂1(q)

A PLLE 0.6349 0.6201 0.5973 0.5551 0.0052 0.0025 0.0012 0.0006

KERN 0.8416 2.0433 1.6833 2.9416 0.0047 0.0038 0.0027 0.0021

B PLLE 0.6376 0.6204 0.6001 0.2249 0.0023 0.0011 0.0005 0.0000

KERN 1.6611 119.1210 2.4946 0.0485 0.0037 1.2556 0.0015 0.0000

C PLLE 0.6421 0.6116 0.5941 0.2308 0.0023 0.0011 0.0005 0.0000

KERN 1.0415 4.8373 38.6487 0.0515 0.0055 0.0137 0.1126 0.0000

D PLLE 6.0625 6.8851 5.4973 3.4962 0.0318 0.0173 0.0080 0.0022

KERN 3.7597 3.8441 3.4285 1.7273 0.0748 0.0376 0.0183 0.0064

E PLLE 0.6121 0.5831 0.5581 0.5517 0.0084 0.0041 0.0020 0.0010

KERN 5.2090 8.0993 7.0420 29.2622 0.5476 0.1457 0.0647 0.0069

Across all functional forms we note a clear decline in the PLLE based RMSE’s as the sample size

is allowed to increase. As expected from Proposition 1, the slope functions see their RMSEs decline

substantially faster than their intercept counterparts. Our comparisons with an alternative Kernel

based estimator also suggest that our method competes favourably. Naturally, since alternative Kernels

or functional forms may produce different finite sample outcomes it would be misleading to argue that

our PLLE approach strictly dominates alternative approaches.
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Our final goal is to explore the finite sample adequacy of the asymptotic normality result docu-

mented in our Proposition 2. It is important to note at this stage that the main goal of this paper is

the estimation of the unknown functions f0(q) and f1(q) rather than the development of a full infer-

ence theory underlying these functions. For this reason we chose to concentrate solely on f̂1(q) and

empirically back up our statements in Proposition 2 through the simulation of the quantiles of the

normalised quantity given by

Z(q) =
(f̂1(q)− f1(q))√

σ2u/
∑

(xt − x̄r)2Irt−1
(13)

and which is distributed as N(0,1) under the scenario descibed in (10).

Our simulations set σ2u = 1 and continue to allow for both endogeneity and serial correlation. We

evaluate Z(q) at the midpoint, say qr, of each bin r = 1, . . . , k and obtain the relevant quantiles

corresponding to each bin across our N replications i.e. k values of 2.5% cutoffs, k values of 5%

cutoffs etc. Rather than displaying each of the resulting individual bin specific quantiles we average

them across the k bins in order to obtain a compact metric of adequacy of the theoretical limiting

distributions. Results are displayed in Table 2 below.

Table 2. Simulated Quantiles under T=1000 and k=100 (Averages across k bins)

2.5% 5.0% 95.0% 97.5%

N(0,1) −1.96 −1.65 1.65 1.96

A −2.07 −1.75 1.63 1.95

B −2.07 −1.74 1.61 1.94

C −2.05 −1.73 1.64 1.96

D −3.40 −2.18 1.83 3.07

E −2.08 −1.75 1.65 1.96

The above figures highlight a good to excellent match of the theory obtained under Proposition 2

with finite sample data across a wide range of functional forms. It is also interesting to note the inad-

equacy of the proposed theory for functions such as D which violate our differentiability assumptions.

5 Conclusions

This paper introduced the concept of functional cointegration and proposed a novel method of estimat-

ing the unknown functional coefficients linking the variables of interest under a nonstationary unit root

setting. Our method is based on a simple binning idea and is shown to perform well asymptotically as

well as in finite samples. Operating within a highly general probabilistic setting that allows for both
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serial correlation and endogeneity we established the consistency of our function estimators and also

derived their limiting distribution. Since developing formal inferences was beyond the scope of this

paper, in future work it will be interesting to use our results to obtain the properties of test statistics

that could be used to tests hypotheses such as the null of a linearly cointegrated model versus our

functional specification.
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APPENDIX

LEMMA 1: As T → ∞ and with Bv ≡ Bv −
∫ 1
0 Bv we have (i)

∑
Irt−1/T

p→ E[Irt−1], (ii)
∑

(qt−1 −
q)Irt−1/T

p→ E[(qt−1 − q)Irt−1], (iii)
∑
utvtIrt−1/T

p→ E[utvtIrt−1], (iv)
∑

(xt − xr)Irt−1/T
3/2 ⇒

E[Irt−1]
∫ 1
0 Bv, (v)

∑
(xt − xr)

2Irt−1/T
2 ⇒ E[Irt−1]

∫ 1
0 B

2
v, (vi)

∑
(xt − xr)(qt−1 − q)xtIrt−1/T

2 ⇒
E[(qt−1 − q)Irt−1]

∫ 1
0 B

2
v for some q ∈ Hr.

PROOFS: (i)-(iii) Assumption A ensures that Irt is also strong mixing with the same mixing num-

bers as qt. The results then follow from a suitable law of large numbers (see White (2001, Sections

3.3-3.4)). (iv) For notational simplicity we focus on
∑
xtIrt/T

3/2 which we rewrite as
∑
xtIrt/T

3/2 =∑
xt(Irt − pr)/T 3/2 + pr

∑
xt/T

3/2 with pr ≡ E[Irt]. Since
∑
xt/T

3/2 ⇒
∫
Bv from Phillips (1987) it

suffices to show that
∑
xt(Irt − pr)/T 3/2 is op(1). Letting St =

∑t
j=1(Irj − pr) and using summation

by parts we write
∑T

t=1 xt(Irt − pr)/T 3/2 = (xT /
√
T )(ST /T ) −

∑T
t=1 St−1∆xt/T

3/2. Since ST /T
p→ 0

and xT /
√
T = Op(1) it follows that xTST /T

√
T

p→ 0. Similarly,
∑
St−1∆xt =

∑
vtSt−1 is such that

E[
∑
vtSt−1]

2 = O(T 2) implying that
∑
vtSt−1 = Op(T ) and thus ensuring that

∑
vtSt−1/T

3/2 = op(1)

as required. The proofs of (v)-(vi) follow identical lines and are therefore omitted.

LEMMA 2: As h→ 0 (i) E[Irt−1]/h→ gq(q), (ii) E[Irt−1(qt−1 − q)m] = o(hm+1).

PROOF: We focus on (ii) and evaluate the expression at some q = qr. We have

|E[(qt−1 − qr)mIrt−1]| =

∣∣∣∣∫
Hr

(q − qr)mgq(q)dq
∣∣∣∣

≤
∫
Hr

|q − qr|mgq(q)dq

≤ hm
∫
Hr

gq(q)dq = const ∗ hm+1 (14)

and the result follows.

PROOF OF PROPOSITION 1: Given xt, yt, qt and the known bin cutoff locations the least squares

estimators of the intercept β0r and slope parameter β1r of the regression line within each bin can be

formulated as

β̂0r = yr − β̂1rxr

β̂1r =

∑
(xt − xr)Irt−1yt∑
(xt − xr)2Irt−1

(15)

with xr =
∑
xtIrt−1/

∑
Irt−1 and yr =

∑
ytIrt−1/

∑
Irt−1. Next, using yt = f0(qt−1)+f1(qt−1)xt+ut,

taking a first order Taylor expansion of the unknown coefficients around some q ∈ Hr

fi(qt−1) ≈ fi(q) + f ′i(q)(qt−1 − q) + o(h2) (16)
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for i = 0, 1 and ignoring terms that are o(h2) we can rewrite β̂1r as

β̂1r − f1(q) =

∑
(xt − xr)Irt−1[f0(qt−1) + f1(qt−1)xt]∑

(xt − xr)2Irt−1
+

∑
(xt − xr)Irt−1ut∑
(xt − xr)2Irt−1

= f ′0(q)

∑
(xt − xr)(qt−1 − q)Irt−1∑

(xt − xr)2Irt−1
+ f ′1(q)

∑
xt(xt − xr)(qt−1 − q)Irt−1∑

(xt − xr)2Irt−1

+

∑
(xt − xr)Irt−1ut∑
(xt − xr)2Irt−1

. (17)

It is now also convenient to reformulate the above as

T
√
h(β̂1r − f1(q)) = f ′0(q)

(∑
(xt − xr)(qt−1 − q)Irt−1/T 2h∑

(xt − xr)2Irt−1/T 2h

)
T
√
h+

f ′1(q)

(∑
xt(xt − xr)(qt−1 − q)Irt−1/T 2h∑

(xt − xr)2Irt−1/T 2h

)
T
√
h+∑

(xt − xr)Irt−1ut/T
√
h∑

(xt − xr)2Irt−1/T 2h

≡ T
√
h Art + T

√
h Brt + Crt (18)

and the result follows by showing that T
√
h Art and T

√
h Brt are asymptotically negligible when

Th3/2 → 0 while Crt is Op(1). From Lemma 2(i)-(ii) we have

Brt ⇒ f ′1(q)
E[(qt−1 − q)Irt−1/h]

E[Irt−1/h]
≡ B1∞ (19)

and using Lemma 2 it is also clear that B1∞ = o(h) as needed since we operate under Th3/2 → 0. The

asymptotic negligibility of T
√
h Art follows along identical lines using Lemma 2. Finally, for Crt we

concentrate solely on its numerator since from Lemma 1(v) its denominator is known to be Op(1) since

converging in distribution. Using xt = xt−1 + vt we write∑
(xt − xr)Irt−1ut

T
√
h

=

∑
xt−1Irt−1ut

T
√
h

+

∑
utvtIrt−1

T
√
h

−

(∑
xtIrt−1/T

√
T∑

Irt−1/T

)∑
utIrt−1√
Th

. (20)

From Lemma 1(iii)
∑
utvtIrt−1/T

p→ E[utvtIrt−1] so that the second term in the right hand side of

(20) is o(
√
h) while the third term is Op(1) by Lemma 1 and Assumption B so that we can concentrate

on
∑
xt−1utIrt−1/T

√
h. We write∣∣∣∣ 1

T
√
h

∑
xt−1utIrt−1

∣∣∣∣ ≤ max
t≤T

∣∣∣∣ xt√T
∣∣∣∣ 1√

Th

∑
|ut|Irt−1

≤

(
sup
s∈[0,1]

Bv(s) + 1

)
1√
Th

∑
|ut|Irt−1 = Op(1) (21)

and hence leading to the required result.

Proceeding along the same lines for β̂0r and using β̂1r = f1(q) +Op(1/T
√
h) we write

β̂0r − f0(q) = f ′0(q)

∑
(qt−1 − q)Irt−1∑

Irt−1
+ f ′1(q)

∑
(qt−1 − q)xtIrt−1∑

Irt−1
+∑

utIrt−1∑
Irt−1

− xrOp(
1

T
√
h

). (22)

14



Applying suitable normalisations we reformulate (22) as

√
Th(β̂0r − f0(q)) = f ′0(q)

(∑
(qt−1 − q)Irt−1∑

Irt−1

)√
Th+

(
f ′1(q)

∑
(qt−1 − q)xtIrt−1∑

Irt−1

)√
Th+∑

utIrt−1/
√
Th∑

Irt−1/Th
+Op(1/

√
Th). (23)

Proceeding as above and using Lemmas 1-2 it is again straightforward to observe that under
√
Th3/2 →

0 the first two terms in the right hand side of (23) are asymptotically negligible while the third term

is Op(1) by our Assumptions A-B.

PROOF OF PROPOSITION 2: From our Assumption A we have
∑
utIrt−1/

√
Th⇒ Bur(r) while from

Lemma 1 (i) we have
∑
Irt−1/T

p→ E[Irt−1]. The result in (7) then follows directly from the continuous

mapping theorem, noting also that E[Irt−1/h] → gq(q) as h → 0. Regarding (8), since we operate

under Th3/2 → 0, from (19) it follows that we can concentrate on the limiting behaviour of Crt =∑
((xt−x̄r)utIrt−1/T

√
h)/

∑
(xt−x̄r)2Irt−1/T 2h. Given our result in Lemma 1(v) we consider solely the

numerator of Crt, and for simplicity we can focus on the simpler quantity
∑
xt−1ηrt/T

√
h ≡ NCrt with

ηrt = utIrt−1. Letting Ft = σ(ηrt, ηrt−1, . . . , vt, vt−1, . . .) we follow Phillips (1988) and Hansen (1992)

and make use of the martingale approximation ηrt = ert + zrt−1 − zrt where ert =
∑∞

`=0(E[ηrt+`|Ft]−
E[ηrt+`|Ft−1]) and zrt =

∑∞
`=1E[ηrt+`|Ft]. We can now write

∑
xt−1ηrt =

∑
xt−1ert −

∑
(zrt −

zrt−1)xt−1 and equivalently

1

T
√
h

∑
xt−1ηrt =

1

T
√
h

∑
xt−1et +

1

T
√
h

∑
vtzt −

RrT√
h

(24)

with RrT = zrTxT /T and ∆xt = vt. Clearly maxt |zrtxt/T | ≤
∣∣∣∑T

j=1 vj/
√
T
∣∣∣maxt |zrt|/T

p→ 0 since

maxt |zrt|/T
p→ 0 from Hansen (1992). We can therefore write

1

T
√
h

∑
xt−1ηrt =

1

T
√
h

∑
xt−1et +

1

T
√
h

∑
vtzt + op(1). (25)

Since {et,Ft} is a martingale difference sequence and x[Tr]/
√
T ⇒ Bv(r) by our Assumption B it follows

from Kurtz and Protter (1991) and Hansen (1992) that
∑
xt−1et/T

√
h⇒

∫
BvdBur. The result in (7)

then follows by noting that E[
∑∞

`=1E[ηrt+`vt|Ft]] =
∑∞

`=1E[vtηrt+`]. More specifically, using (21) and

the continuous mapping theorem gives∑
(xt − xr)Irt−1ut

T
√
h

⇒
∫ 1

0
BvdBur +

∞∑
`=1

E[ηrt+`vt] + E[ηrtvt]−Bur(1)

∫ 1

0
Bv

=

∫
BvdBur +

∞∑
`=0

E[ηrt+`vt] (26)
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as required. The result in (9) follows noting that E[ηrt+`vt] =
∫
Hr
γ0(q)/

√
h = o(

√
h) and∣∣∣∣∣ 1√

h

∞∑
`=1

E[ut+`Irt+`−1vt]

∣∣∣∣∣ =

∣∣∣∣∣ 1√
h

∞∑
`=1

E[Irt+`−1E[ut+`vt|qt+`−1]]

∣∣∣∣∣
=

1√
h

∣∣∣∣∣
∞∑
`=1

∫
Hr

γ`(q)g(q)dq

∣∣∣∣∣
≤ 1√

h

∫
Hr

∞∑
`=1

|γ`(q)|g(q)dq

≤ 1√
h
M

∫
Hr

g(q)dq

= o(
√
h) (27)

which follows directly from our Assumption C(ii).
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