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Abstract

We study the properties of Dutch auctions in an independent private value setting,
where bidders face uncertainty over the type distribution of their opponents and eval-
uate their payoffs by the worst-case from a set of probabilistic scenarios. In contrast
to static auction formats, participants in the Dutch auction gradually learn about the
valuations of other bidders. We show that the transmitted information can lead to
changes in the worst-case distribution and thereby shift a bidder’s payoff maximizing
exit price over time. We characterise the equilibrium bidding function in this envi-
ronment and show that the arriving information leads bidders to exit earlier at higher
prices. As a result, the Dutch auction systematically generates more revenue than the
first-price auction.
Keywords: Auctions, Ambiguity, Consistent Planning

1 Introduction

The descending price (or Dutch) auction and the first-price sealed-bid auction are known
to be strategically equivalent in the canonical model, regardless of whether bidders are
risk-neutral or risk-averse, whether values are affiliated or independent, etc. An important
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and Marciano Siniscalchi for very helpful comments.
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assumption underlying the canonical model is that bidders are subjective expected utility
maximizers and, as such, quantify the uncertainty over other bidders’ private information
with a single prior belief (or behave as if they do). Yet, in practice, bidders often do not
know with precision the distribution of their opponent’s private valuation, especially when
transactions are infrequent and past data points are scarce. This paper revisits the properties
of the descending price auction and shows that the consideration of uncertainty about the
distribution of bidders’ valuations has important implications for equilibrium bidding and
revenue properties.

We study a setting with two bidders, whose private valuations are drawn independently
from a continuum of values, according to some unknown distribution. From the viewpoint
of a bidder, the descending price auction takes the form of an optimal stopping game in
continuous time. At each point in time, the bidder decides whether to terminate the auction
and pay the currently displayed price or whether to wait for a lower price. We depart
from the benchmark model by assuming that bidders demand robustness with regard to the
uncertainty they perceive. Their preferences are represented by the maxmin expected utility
model (Gilboa and Schmeidler, 1989). Accordingly, bidders evaluate each bid by the worst
case from a set of distributions that they view as possible.

An important feature of the Dutch format is that it gradually transmits information to
the participants: given a bidding strategy, players learn about their opponent’s valuation
from the observation that the auction has not yet been terminated. In particular, as time
progresses, bidders revise their beliefs towards lower and lower types. We assume that bid-
ders update each of the distributions and consider the worst case over the set of updated
distributions. Updating is thus prior by prior, also referred to as full Bayesian updating.
Apart from a smoothness condition, we do not impose any restrictions on the set of dis-
tributions over which bidders minimise and, therefore, do not rule out that the worst-case
scenario for a bidder, identified by one of the distributions in the set, changes over time.
When such changes occur, bidders face a time-inconsistency problem: their current optimal
exit point may no longer be optimal at a later point in time.1 We assume that bidders are
sophisticated in that they correctly anticipate how their future selves will act and optimise
accordingly.

We start the analysis with an important preliminary result: provided the other bidder
follows a strictly monotone strategy, a bidder locally evaluates her expected payoff from

1Also Riedel (2009) studies optimal stopping problems with multiple-prior preferences but, in contrast to
us, restricts attention to sets of priors under which dynamic consistency is ensured.
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continuing the auction at a given point in time with the distribution function that has the
highest reversed hazard rate. The reversed hazard rate for a probability distribution with a
cumulative distributions function F and density function f is described by the ratio f/F

(see Figure 1). It determines the rate by which the probability of winning the auction falls
at a given point in time conditional on reaching that time.
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Figure 1: Two cumulative distributions functions and their reversed hazard rates. Both
distributions are truncated normals with mean 0.5 and standard deviation 0.135 (F 1) and
0.5 (F 2).

When the maximal reversed hazard rate belongs to different distributions at different
points of the support, bidders’ preferences over exit prices change over time. The fact that
time is continuous makes such preference reversals challenging. To address this issue, a new
approach is followed: we construct an auxiliary distribution function with the property that
its reversed hazard rate agrees with the maximal reversed hazard rate in the set of distribu-
tions over which bidders minimise, illustrated in Figure 2. Using the auxiliary probability
distribution, we follow a standard first-order condition approach to derive the candidate
equilibrium bidding function; as if both bidders had a single prior belief corresponding to
the auxiliary distribution. Finally, to verify the equilibrium, we leverage the fact that bidders
foresee the behavior of their future selves and use a backward induction argument.
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Figure 2: Auxiliary distribution function F̃ for {F 1, F 2}.

The auxiliary distribution function method not only provides a surprisingly simple char-
acterization of the equilibrium bidding function but also allows for a clean comparison of
the properties of the equilibrium outcome of the Dutch auction with that of other auction
formats. We show that the auxiliary distribution first-order stochastically dominates the
lower envelope of the set of distributions over which bidders minimise; strictly so whenever
there is no single distribution in the set that maximizes the reversed hazard rate at each
point of the support. Using this feature, we can show that the Dutch auction generates more
revenue than the first-price auction, where the ranking is strict if and only if the first-order
stochastic dominance is strict. Combining our result with those of the earlier literature (e.g.
Lo, 1998) allows us to conclude that the Dutch auction dominates the other standard auction
formats in terms of revenue; strictly so for a large class of sets of probability distributions.

Why does strategic equivalence between the Dutch auction and the first-price auction fail?
At each point in time, a bidder evaluates her utility of ending the auction at a later time with
the conditional distribution under which winning the auction is least likely. Hence, she uses
the lower envelope of the set of updated distribution functions to evaluate her continuation
payoff. In the first-price auction, bidders receive no information, which means that they use
the lower envelope of the set of unconditional distributions. The same is true at the start of
the Dutch auction. However, once the price starts descending, bidders discard the possibility
of the opponent’s valuation being very high and, hence, no longer care about the upper tail
of the distribution. Instead they are concerned about the probability of losing the auction
if they wait a little longer and evaluate their continuation payoffs with the distribution that
maximizes this probability. Since this distribution is in general not the same as the one used
in the beginning of the auction, exiting immediately becomes more attractive than it would
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have been from an ex-ante point of view. The gradual disclosure of information in the Dutch
auction thus leads bidders to end the auction earlier at higher prices, which then benefits
the auctioneer. Finally, we extend our results to the case where the auctioneer sets a reserve
price and show that the optimal reserve price in the Dutch auction is smaller than in the
first-price auction.

The contribution of this paper is twofold. First, we provide a new rationale for the use
of descending prices. Besides actual Dutch auctions (e.g., for flowers, treasury bonds, etc.),
descending prices appear informally in many situations, such as in the housing market, where
asking prices of listed homes decline until a buyer is found. Lucking-Reiley (1999) provides
an interesting empirical study on the revenues generated by the different auction formats,
using field experiments that auction off collectible trading cards over the Internet. In each
experiment, two identical cards are sold: one using a dynamic format (Dutch or English
auction), the other using the strategically equivalent static format (first- or second-price
auction). While the English auction and the second-price auction produce roughly the same
revenue, the Dutch auction generates 30 percent higher revenues than the first-price auction,
in line with our theory.2 Given that our revenue result holds regardless of the set of proba-
bility distributions representing bidders’ beliefs—or the seller’s knowledge thereof, choosing
a descending price auction over another standard format can be viewed as a robust way of
increasing revenue. Secondly, we make a methodological contribution by demonstrating a
new way of deriving optimal strategies for games in continuous time with preference rever-
sals related to worst-case robustness: after identifying the characteristics of the distribution
functions that matter for local optimality conditions, an auxiliary distribution function that
shares these characteristics with the worst case is found, mapping the problem into a simpler
one with a single distribution. This method is not restricted to dynamic auctions but could,
for instance, be applied to a general optimal stopping problem.

The paper proceeds as follows. In Section 2, we describe the environment, in particular
the auction game and the solution concept. Section 3 derives the bidding equilibrium, pro-
viding the main constructive steps, while Section 4 presents the revenue result and explains
the role of reserve prices. Section 5 discusses the updating rule and explains in detail the
connection of our work with the existing literature. Section 6 concludes.

2Although some of the revenue differences between Dutch and first-price auction in the experiments can
be attributed to different participation rates, Lucking-Reiley (1999) shows that individual bidders violate
strategic equivalence in a way that favors the Dutch auction in terms of revenue.
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2 Environment

A good is sold using a descending price auction. There are two identical bidders, who
perceive the distribution of their valuation to be subjectively unknown. They have maxmin
preferences, identified by a set of distribution functions F . We assume that F is the convex
hull of a set of differentiable distribution functions {F n(θ)}n∈N , indexed by a compact set
N . We further assume that F n(θ) is continuous in n, fn(θ) ≡ F n′(θ) and fn′(θ) are jointly
continuous in (θ, n) and fn(θ) > 0,∀θ ∈ [0, 1].3

The auction starts at a price weakly greater than one; the price then descends contin-
uously until either of the two bidders stops the auction. The bidder who terminates the
auction receives the object at the current price. We focus on symmetric equilibria in pure
strategies, which can be described by a mapping b from a bidder’s type θi ∈ [0, 1] to a price
at which the bidder ends the auction, provided the other bidder has not already stopped the
auction. As we discuss at the end of this section, a strategy is a reduced form of a complete
contingent plan of what to do at every information set (a combination of type and time) in
the game.

We assume that bidders use prior-by-prior (or full) Bayesian updating in response to new
information.4 Under this rule, bidders update each distribution in F according to Bayes’ rule
and consider the worst case from the set of updated distributions. Prior-by-prior updating
does not satisfy dynamic consistency, which means that the sequentially optimal plan in a
decision tree need not coincide with the optimal plan based on prior preferences. Indeed,
when retaining consequentialism—the property whereby only the outcomes that are still
possible matter for updated preferences—dynamic consistency must be dropped if ambiguity
attitudes are not to be restricted (Ghirardato, 2002).5 We follow the ‘consistent planning’
approach in the spirit of Strotz (1955-56), and assume that agents are sophisticated in that
they correctly anticipate their future preferences. This means that bidders will discard all
current plans which their future selves are not willing to carry out. An axiomatic foundation
of such sophisticated dynamic choice for maxmin expected utility and prior-by-prior Bayesian
updating is provided by Siniscalchi (2011). The assumption that a bidder’s optimal plan may
change over time plays an important role in the analysis that follows.

Next, we formulate the agents’ conditional expected payoffs, given an increasing strategy
3The case of a finite index set N is thus included as a special case.
4See Pires (2002) for an axiomatization of this updating rule.
5Another well-known updating rule for multiple priors is maximum likelihood updating (Gilboa and

Schmeidler, 1993). As the prior-by-prior updating rule, it violates dynamic consistency. For a further
discussion see Section 5.1.
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b(θi),6 representing the exit price of the other bidder. To keep the notation simple, we will
not measure time in terms of the price displayed on the clock but instead in terms of the
type who would exit according to the strategy of the other bidder. That is, when we say a
decision maker exits at time θ, we mean that she exits when the clock displays price b(θ).

Consider a bidder of type θi and suppose the current time is θ. The bidder’s expected
payoff from exiting at time θ̂ ≤ θ is given by the difference between her valuation θi and
the price b(θ̂), weighted by the worst-case conditional probability that the other bidder does
not end the auction before θ̂. Provided θi ≥ b(θ̂), the latter probability is equal to the
minimal conditional probability that the other bidder’s value is smaller than θ̂, given by
minF∈F F (θ̂)/F (θ).7 A bidder’s conditional expected payoff can thus be written as:

V (θi, θ̂, θ) ≡ (θi − b(θ̂))min
F∈F

F (θ̂)/F (θ). (1)

The fact that the set of distributions over the type of the other player is not conditional on
a player’s own valuation reflects independence of the valuations of the two players.8

An important feature of our environment is that bidders face constraints in their exiting
choice imposed by the preferences of their future selves. In particular, viewed from time
θ, there may be exit times θ̂ ≤ θ that are not feasible because they are not compatible
with the bidder’s preferences at later points in time. This can occur either because upon
reaching time θ̂, the bidder’s future self strictly prefers to continue the auction or because
there is some future self that strictly prefers to end the auction before θ̂. In equilibrium,
each bidder responds optimally not only to the other bidder’s equilibrium strategy but also
to the equilibrium strategy of her own future selves.

To formalise this notion of equilibrium for our environment, we fix an increasing bidding
function b(·) and define for each type θi an exit strategy x(·, θi) : [0, 1] → {0, 1}, indicating
whether at time θ type θi exits (x(θ, θi) = 1) or continues (x(θ, θi) = 0). Hence, x is a
contingent plan of what to do at every information set of the game. Given a plan x(θ, θi),

6Standard arguments can be used to show that the equilibrium bidding function for each player must be
strictly increasing.

7For ease of exposition, we will use the minimal conditional probability for all exit prices, even though
for b(θ̂) > θi the worst-case scenario is described by the maximal conditional probability. This will not affect
any of the results, as no bidder would end the auction at a price strictly above her valuation.

8Our assumption is satisfied if before learning their own valuations, both players consider a set of joint
distributions which treats players symmetrically and has a product structure. That is, players preferences
are described by a set of joint distributions, F1,2, such that for each F ∈ F1,2, F (θ1, θ2) = F1(θ1)F2(θ2) and
if F1(θ1)F2(θ2) ∈ F1,2, then F2(θ1)F1(θ2) ∈ F1,2 (see Gilboa and Schmeidler (1989) and Bade (2008) for a
discussion of independence under maxmin preferences).
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we can define a number T (θ, θi), indicating how long a bidder of type θi would remain in the
auction, provided that she continues at time θ. Setting T (θ, θi) ≡ sup{θ̂ < θ : x(θ̂, θi) = 1},
we are ready to define an equilibrium for our game.

Definition 1. Fix an increasing and symmetric bidding strategy b(θi) which satisfies b(0) = 0.
The strategy constitutes an equilibrium if for every θi ∈ [0, 1], there exists an upper-semi
continuous function x(·, θi) with x(0, θi), x(θi, θi) = 1 and ∀θ > θi, x(θ, θi) = 0, which satisfies
the following conditions.

1) For all θ ∈ (0, 1], xi(θ, θi) = 1 only if either

(i) T (θ, θi) < θ and V (θi, θ, θ) ≥ V (θi, T (θ, θi), θ), or

(ii) T (θ, θi) = θ and V (θi, θ̂, θ) ≥ V (θi, θ
′, θ) for all θ′ in a left-neighbourhood of θ.

2) For all θ ∈ (0, 1], x(θ, θi) = 0 only if V (θi, θ, θ) ≤ V (θi, T (θ, θi), θ).

Requiring x(θi, θi) = 1 and ∀θ > θi, x(θ, θi) = 0 ensures that type θi exits the auction
at time θi. The two additional conditions require that a bidder has no profitable one-stage
deviations at any information set, given the plan of future selves. To check such deviations,
we compare the payoff at θ with the payoff at T (θ, θi), the time type θi would exit, provided
that she remains at time θ.9

While this definition considers only one-stage deviations, one could strengthen it to re-
quiring that, given any information set, a bidder cannot gain by deviating to an alternative
continuation plan that she is willing to follow through (i.e. that satisfies the no-one-stage-
deviation conditions). We call equilibria that satisfy this additional requirement “consistent-
planning” equilibria. The requirement is satisfied if, keeping fixed the equilibrium strategy
of the other player, there is a unique plan that satisfies conditions 1) and 2). We will show
that the unique equilibrium in differentiable strategies we characterise in Proposition 4 is
also a consistent-planning equilibrium.

3 Equilibrium

We look for a symmetric equilibrium, where the strategies of both players are described by
a differentiable bidding function b(θ). Towards this goal, a closer inspection of the bidders’

9If there is a left neighbourhood of θ on which the plan specifies ’exit’, then T (θ, θi) = θ. Condition (ii)
of Definition 1 guaranties that a bidder cannot gain by waiting an instance longer.
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conditional payoff V (θi, θ̂, θ) is needed. We first consider the question of when a bidder can
improve her utility locally by remaining in the auction a little longer. We show that at
each point in time θ, a bidder evaluates her utility of continuing the auction for a marginal
amount of time with the distribution function F ∈ F that maximizes the reversed hazard
rate f(θ)/F (θ).

Lemma 1. For all θ ∈ (0, 1],

d−minF∈F(F (θ̂)/F (θ))

dθ̂

∣∣
θ̂=θ

= max
n∈N

fn(θ)

F n(θ)
.

The proof of this and all other results can be found in the Appendix. The lemma is
essentially an application of an envelope theorem in Milgrom and Segal (2002).

For future reference, let m(θ) denote the function that assigns to any θ the index of
the distribution which maximises the reversed hazard rate (making an arbitrary selection
if there is more than one distribution). Lemma 1 establishes that at time θ, the decision
maker evaluates her utility of continuing the auction—at least locally— according to the
distribution Fm(θ). To see why a bidder uses the distribution with the maximal reversed
hazard rate, notice that the marginal cost of waiting for a lower price is the marginal decrease
in the conditional probability of winning the auction, minF∈F F (θ̂)/F (θ). Since at θ̂ = θ

we have F (θ̂)/F (θ) = 1 for all F ∈ F , the distribution function that locally minimizes the
bidder’s utility from waiting is the one with the largest derivative of F (θ̂)/F (θ) at θ̂ = θ.
This derivative is given by the reversed hazard rate f(θ)/F (θ).

3.1 Candidate equilibrium bidding function

With this observation, we can construct a candidate equilibrium bidding function. We
look for a function b(θi) that is strictly increasing and differentiable in the bidder’s type.
By Lemma 1, minF∈F F (θ̂)/F (θ) is differentiable in θ̂ on a left neighbourhood of θ, so we
consider the following first-order condition:

∂V −(θi, θ̂, θi)

∂θ̂

∣∣∣
θ̂=θi

= 0. (2)

Using Lemma 1, the first-order condition can be written as:

b′(θi) = (θi − b(θi))f
m(θi)(θi)/F

m(θi)(θi). (3)
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The fact that m(θi) depends on θi implies that the condition fm(θi)(θi) = dFm(θi)(θi)/ d θi

is not in general satisfied. Due to the failure of this property, the standard approach of
solving for the corresponding bidding function cannot be directly applied. The complica-
tion arises because the distribution that locally minimizes a bidder’s continuation payoff
changes throughout the auction. To address the issue of shifting worst-case scenarios in
continuous time, we follow a new approach: we describe a solution to the first-order con-
dition in terms of an as-if distribution, denoted by F̃ , which has a reversed hazard rate
equal to maxn∈N fn(θ)/F n(θ) for every θ ∈ [0, 1]. The following lemma establishes that such
distribution function exists.

Lemma 2. Let F̃ (0) ≡ 0 and for θ > 0,

F̃ (θ) ≡ exp

(
−
∫ 1

θ

max
n∈N

fn(t)

F n(t)
dt

)
.

Then F̃ (θ) is a cumulative distribution function with a well-defined density function f̃(θ) ≡
F̃ ′(θ). For every θ ∈ (0, 1], the reversed hazard rate of F̃ satisfies:

f̃(θ)

F̃ (θ)
= max

n∈N

fn(θ)

F n(θ)
.

As an immediate corollary of the previous lemma, we can rewrite the first-order condition
in terms of the auxiliary distribution function F̃ :

b′(θi) = (θi − b(θi))f̃(θi)/F̃ (θi). (4)

Hence, the first-order condition (3) is the same as the one of an expected-utility decision
maker who believes F̃ is the distribution over types. Using standard techniques, we can then
characterise the solution to the first-order condition in terms of F̃ .

Lemma 3. Suppose an equilibrium bidding strategy b∗(θi) satisfies the first-order condition
(3). Then

b∗(θi) = θi −
∫ θi
0
F̃ (θ)dθ

F̃ (θi)
. (5)

Figure 3 shows Fm(θ)(θ) and F̃ (θ) for a set of truncated normals with support [0, 1], fixed
mean, and variances σ belonging to a closed interval [σ, σ]. The distribution function F̃ is
obtained by multiplying the function Fm(θ)(θ) with an increasing function α : [0, 1] → [0, 1].
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The transformation of Fm(θ)(θ) to F̃ (θ) is particularly easy to understand for the case where
the index m(θ) changes discretely in θ, as we show in the following example.

1
Θ

1

F
�

Fm HΘL

Figure 3: The functions Fm(θ)(θ) and F̃ (θ)

Example 1. Assume that the type space can be partitioned into M ∈ N intervals such that
on each interval the reversed hazard rate is maximized by a single distribution belonging to
F . We consider the coarsest partition and label the distribution that maximises the reversed
hazard rate on the m’th interval by Fm,m = 1, 2, ...,M . Hence, m(θ) is the index of the
interval to which θ belongs. We define t̄m as the least upper bound of the interval indexed by
m. The auxiliary distribution function is then described as follows:

F̃ (θ) = αm(θ)F
m(θ)(θ),

where αM = 1 and for m < M ,

αm =
M−1∏
i=m

F i+1(t̄i)

F i(t̄i)
.

When there is a finite number of distributions in F maximizing the reversed hazard rate, the
auxiliary distribution F̃ (θ) is thus obtained by multiplying Fm(θ)(θ) with an increasing step
function. It is easy to verify that F̃ is a CDF of a probability distribution with the same
reversed hazard rate as Fm(θ)(θ).10 Figures 1 and 2 in the Introduction provide a graphical
illustration for the case M = 2.

10See Appendix A.8 for details.
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3.2 Verifying equilibrium

The following proposition establishes that there is a symmetric equilibrium where the strate-
gies of the two bidders are described by our candidate bidding function.

Proposition 4. The bidding function b∗(θi), as described in (5), constitutes the unique
symmetric equilibrium in differentiable bidding strategies.

As argued above, the candidate equilibrium bidding function b∗ satisfies the local op-
timality condition for each type of bidder. It thus remains for us to verify that it is also
globally optimal for type θi to terminate the auction at time θi. Existing results for the
model without ambiguity show that this is true if bidders evaluate their utility with F̃ at
each point in time. In this case, a bidder’s expected payoff as a function of the exit time is
single peaked in equilibrium, meaning that if the bidder’s type is θi, her payoff increases from
waiting at any point in time before θi and decreases at any point in time after θi. Bidders in
our framework, however, do not evaluate their utility with F̃ but with the distribution that
minimizes F (θ̂)/F (θ). Locally, F̃ is simply a scaled version of that distribution, but globally
this need not be the case. As a result, there can be situations where the function V is no
longer single peaked.

In order to verify the equilibrium in our environment, we use the feature whereby bidders
anticipate the optimal behavior of their future selves. This allows us to follow a backward
induction argument. We know that since bidders locally evaluate their utility as if they
would be using F̃ , a bidder’s utility must be locally decreasing from continuing the auction
once the time reaches her type. Now suppose the bidder’s type is θi and there is a point
in time θ < θi, which, viewed from time θi, would promise a strictly higher expected payoff
than exiting at time θi. Then at time θ+ ε, with ε sufficiently small, the bidder will strictly
prefer not to wait until time θ and terminates the auction immediately. Anticipating this,
the same bidder at a slightly earlier time will find it optimal to exit immediately, and so on,
until we reach time θi. The backwards induction procedure is particularly simple in the case
of a finite set of distributions in F maximizing the reverse hazard rate.

Example 1. (continued) As we show in Appendix A.8, conditional on reaching an interval
indexed by m = 1, 2, ...,M , a bidder evaluates exit times belonging to m with the distribution
function that maximizes the reversed hazard rate on m, Fm. In other words, for all θ̂ ∈

12



[t̄m(θ)−1, θ], the following property holds:

min
F∈F

F (θ̂)

F (θ)
=

Fm(θ)(θ̂)

Fm(θ)(θ)
=

F̃ (θ̂)

F̃ (θ)
.

The latter equality follows from the fact that in a given interval, the distribution function F̃

is just a scaled version of Fm(θ). Hence, within each interval, a bidder acts like an expected
utility maximizer whose subjective prior is F̃ . Assuming the other player bids according to b∗,
this implies that the expected payoff function is single-peaked within the interval. Consider
now a bidder of type θi at time θ < θi. If θ belongs to the first interval, the bidder optimally
ends the auction immediately, as her payoff is strictly decreasing on the interval below θi.
Anticipating this, the same argument can be applied to the second interval, and so on, until
we reach time θi.

Finally, we can show that type θi has no incentives to terminate the auction before
time θi. To this end, note that at time θ > θi, the payoff obtained when exiting im-
mediately is θi − b∗(θ), whereas the anticipated payoff from waiting for time θi is (θi −
b∗(θi))minF∈F F (θi)/F (θ). As discussed earlier, if the bidders were to evaluate their ex-
pected payoffs with F̃ , waiting for θi would be optimal. It is then useful to recall that
reversed hazard rate dominance implies conditional stochastic dominance (see, for instance,
Shaked and Shanthikumar, 1994). This means that the conditional probability F̃ (θi)/F̃ (θ)

is smaller than F (θi)/F (θ) for all F ∈ F . The expected payoff associated with exiting at
time θi, evaluated at some F ∈ F , is thus weakly greater than that evaluated at F̃ . This
implies that no matter which distribution function type θi uses at time θ to assess the option
of waiting, the associated payoff is strictly greater than the payoff from ending the auction
immediately. Remaining in the auction until the time is θi is therefore optimal and consistent
with the behaviour of later selves.

Remark: The proof of Proposition 4 shows that in equilibrium, at any point in time,
the unique contingent plan without profitable one-shot deviations is to remain before the
suggested exit time and to exit from then on. This means that at no point in time, there is
an alternative consistent plan that would improve a bidders’ contingent payoff. Hence, the
bidding strategy b∗ not only satisfies conditions 1) and 2) of Definition 1 but also the stronger
notion of consistent planning. To prove this, we show that for any type θi and time θ < θi,
there is an interval (θ, θ) with θ < θ < θ such that within the interval a bidder anticipating
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to exit no later than time θ strictly prefers to exit immediately. Thus, despite the continuous
time setup, we can use backward induction over a set of intervals, similar to the case of
finitely many distributions.11

Though bidders have no desire to end the auction before the clock indicates their type,
they may wish to continue longer than their future selves permit. This feature arises when-
ever the worst-case distribution changes over time. At the start of the game, the worst-case
scenario associated to ending the auction at time θi is described by the cumulative distri-
bution function with the smallest value at θi. At time θi, on the other hand, the worst-case
scenario is the probability distribution that has the highest reversed hazard rate at θi. When
these two distributions do not coincide, the ex-ante optimal exit time differs from the contin-
gent optimal exit time, as illustrated in Figure 4. In this case, a bidder would benefit from
a commitment device that precludes her from ending the auction too early. However, in the
absence of such a device, the bidder will act optimally with regard to the set of updated
distribution functions, which is to exit when the clock indicates her type. This discrep-
ancy plays an important role for our results on the revenue properties of the Dutch auction,
presented in the following section.

4 Revenue Comparison

In the first-price auction, bidder’s receive no information about the other bidder’s type. Their
worst case scenario is thus described by the lower envelope of unconditional distribution
functions in F , defined as Fmin(θ) ≡ minn∈N F n(θ), θ ∈ [0, 1]. Indeed, Lo (1998) shows that
the equilibrium bidding function for the first-price sealed bid auction is:

bFPA(θi) = θi −
∫ θi
0
Fmin(θ) d θ

Fmin(θi)
.

Bidders thus behave as if they share a common single prior belief Fmin. Lo (1998) further
shows that the first-price auction generates more revenue than the second-price auction.
In the second-price auction, bidding one’s valuation remains a dominant strategy, even if
bidders face ambiguity about their opponent’s valuation. Likewise, in an English auction

11The continuous time setup presents a challenge as that, at every given point in time, there is no “next”
(respectively, previous) instance of time. We overcome this challenge by showing that, even without knowing
what will be done in the immediate future, there will be a uniquely optimal action at any point in time.
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Figure 4: Max min expected utility at two different clock times and N = {1, 2}. V1 and
V2 are the conditional payoffs, evaluated respectively at F 1 and F 2, for type θi = 0.6. The
upper figure shows the bidder’s maxmin payoff (in blue) at time θ = 1, which is maximized
at θ∗i to the left of 0.6. The lower figure shows the maxmin payoff at time 0.6, where the
bidder optimally exits.

with an ascending price, exiting the auction when the price reaches one’s valuation is the
dominant strategy, no matter how beliefs are updated.12 English and second-price auctions
therefore continue to generate the same revenue. We now show that the Dutch auction
dominates all of the other standard auction formats in terms of revenue, in particular, the
first-price auction.

Proposition 5. For all θi ∈ [0, 1],

b∗(θi) ≥ bFPA(θi).

12See also Karni and Safra (1989).

15



The inequality holds as equality for all θi ∈ [0, 1] if and only if there exists a distribution in
F that stochastically dominates all other distributions in the set according to the reversed
hazard rate order.

By construction, the distribution function F̃ dominates the distribution function Fmin

in terms of the reversed hazard rate. As discussed earlier, stochastic dominance according
to the reversed hazard rate implies conditional stochastic dominance. Hence, we have:

F̃ (θ)

F̃ (θ′)
≤ Fmin(θ)

Fmin(θ′)
for all θ, θ′ with θ ≤ θ′.

Bidders participating in the Dutch auction thus behave as if they are faced with a prob-
ability distribution which, conditional on having reached a given point in time, first-order
stochastically dominates Fmin. The distribution functions F̃ and Fmin are the same if there
is a distribution in F that maximizes the reversed hazard rate for all values of θ. When this
is not the case, the worst-case scenario changes over time and bidders in the Dutch auction
exit sooner than would be optimal from an ex-ante point of view. Intuitively, as time pro-
gresses, the bidder learns that the other bidder’s type is below the currently displayed time
and evaluates her payoff with the distribution that—given this information—makes it most
likely that the opponent ends the auction if she waits a little longer. This leads bidders to
drop out earlier at higher prices compared to the first-price auction, where no information
is conveyed.

The question is in which situation is there a single distribution that maximizes the
reversed hazard rate over all distributions in the set. Eeckhoudt and Gollier (1995) show
that the monotone likelihood ratio (MLR) order implies the reversed hazard rate order
(but is not implied by it). The latter order will often be satisfied if the distributions in F
only vary in their mean. For instance, Milgrom (1981) states that the families of normal,
exponential and Poisson distributions with different means—all else being equal—satisfy the
MLR order, and hence the reversed hazard rate order. However, the case where agents only
perceive ambiguity about the first moment of the distribution is rather special. When there
is ambiguity about higher moments, MPR will typically fail. Figure 3 illustrates this for the
case of truncated normal distributions with changing variances.13

13The case where agents know the mean but perceive ambiguity about higher moments of the distribution
has been the subject of analysis in several recent papers, for example, Wolitzky (2016) and Carrasco et al.
(2018).
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4.1 Reserve Prices

We know that an auctioneer can increase her expected revenue by setting a reserve price r

below which the good will not be sold. In our environment, the construction of the candidate
equilibrium bidding function can be extended to the case where the Dutch auction ends at
time r ∈ [0, 1]. A slight modification of the proof of Proposition 5 verifies that this function
indeed constitutes an equilibrium.14

Corollary 6. Suppose the Dutch auction ends at price r. The equilibrium bidding function
is described by:

b∗r(θi) = θi −
∫ θi

r

F̃ (θ)

F̃ (θi)
d θ.

With regard to the revenue comparison between the Dutch auction and the first-price
auction, we can also adapt the proof we used in the model without reserve prices, and show
that for any given reserve price r, the Dutch auction generates weakly more revenue than
the first-price auction. The revenue ranking is strict if the function F̃ strictly first-order
stochastically dominates Fmin on the restricted domain [r, 1]. This happens if there is no
distribution in the set F that maximizes the reserve hazard rate on the interval [r, 1]. Thus,
if the Dutch auction generates strictly higher revenues than the first-price auction without
reserve prices, it also yields strictly higher revenues with a reserve price, as long as the reserve
price is not too high.

The fact that the Dutch auction generates higher revenues for any given reserve price
implies that it must also lead to higher revenues if we set the reserve price optimally. An
interesting question is how the optimal reserve prices in the two auction formats relate. Thus
far, we have not had to make any assumptions about the beliefs or preferences of the seller.
Since the equilibrium bid in the Dutch auction exceeds the equilibrium bid in the first-price
auction for each type, it is irrelevant how the seller aggregates her utility over the possible
types. For the optimal reserve price, however, the seller’s preferences and beliefs matter.

For simplicity, we consider the case where the seller is risk- and ambiguity-neutral. Her
subjective belief about a bidder’s type is described by the cumulative distribution function
F S, assumed to be differentiable on its domain [0, 1] with density function fS. For instance,
the seller might consider an average over all distributions in F (according to some unspecified

14The modification of the equilibrium definition to accommodate reserve prices is straightforward. Given
a reserve price r, types below r will never participate, making the effective type space become [r, 1].
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second-order belief).15 The probability that the higher of the two valuations is at most θ is
given by (F S(θi))

2. Thus, the seller’s expected revenue Π can be written as:

Π(r) =

∫ 1

r

(
θi −

∫ θi
r
F̃ (θ) d θ

F̃ (θi)

)
d(F S(θi))

2,

where d(F S(θi))
2 = 2F S(θi)dF S(θi). The following proposition characterizes the reserve

price that maximizes this revenue function and relates the optimal reserve prices in the two
auction formats to each other.

Proposition 7. The optimal reserve price in the Dutch action, denoted by r∗, is characterized
by the condition:

F S(r∗)

F̃ (r∗)
r∗ =

1

fS(r∗)

∫ 1

r∗

F S(θi)

F̃ (θi)
dF S(θi). (6)

The reserve price r∗ is weakly smaller than the optimal reserve price in the first-price auction,
strictly so whenever F̃ (r∗) < Fmin(r∗).

The optimal reserve price r∗ solves the auctioneer’s tradeoff between increasing the proba-
bility of selling the item and increasing the price in the event that he does. More specifically,
a marginal increase in r raises the equilibrium bids of all types greater than r, but also
expands the set of types who prefer not to participate in the auction. The condition charac-
terizing the price that solves this tradeoff, (6), depends on the distribution functions F S and
F̃ . When these two functions are the same, equation (6) simplifies to the familiar condition:

r∗ =
1− F S(r∗)

fS(r∗)
.

The optimal reserve price in the first-price auction is characterized by the same condition
as the one in the Dutch auction, with the function Fmin taking the place of F̃ . Proposition
7 states that in the first-price auction the seller optimally sets a reserve price higher than
the optimal reserve price in the Dutch auction. This result comes from the property that
bidders in the Dutch auction terminate the auction at higher prices compared to the first-
price auction. As a consequence, the cost of excluding certain types is greater, shifting the

15It is straightforward to extend the characterization to the case where the seller has maxmin preferences.
If she minimizes over the same set of distributions as the bidders, she evaluates her payoff according to
Fmax(θ) = maxn∈N Fn(θ), the distribution that is first-order stochastically dominated by all other distri-
butions in the set.
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auctioneer’s tradeoff in favor of lower reserve prices.

5 Discussion

5.1 Prior-by-prior updating

The non-equivalence between the Dutch auction and the first-price auction in our setting
is closely linked to the dynamic inconsistency of the prior-by-prior updating rule. There
are alternative updating rules of ambiguous beliefs that restore dynamic consistency, at the
expense of other desirable properties.16 For instance, Klibanoff and Hanany (2007) propose a
dynamically consistent updating rule for the maxmin model, where some distributions from
the initial set of distributions over which the decision maker minimizes are discarded. For
the Dutch auction this means that as the price descends, bidder have to dispose of those
distributions under which exiting before the ex-ante optimal time is preferable. It should be
noted, however, that eliminating a subset of distributions in F cannot solely be defended
on the grounds of received information. Indeed, bidders with different valuations discard
different sets of probability distributions after the same amount of time has passed (and
hence after receiving exactly the same information). For an illustration, consider Example 1
with two subintervals (M = 2). Types whose valuation falls into the first subinterval discard
probability distributions once the price starts descending (see Figure 5), whereas types be-
longing to the second subinterval maintain the whole set F . The reason for this is that types
in the second subinterval face no time-inconsistency issues; the conditional expected payoff
is evaluated with the distribution that maximizes the reversed hazard rate in the second
subinterval, both at the start of the auction and at the time they exit. Hence, under the
dynamically consistent updating rule, bidders in our auction behave as if the ambiguity they
perceive diminishes over time, the extent to which depends on their (independent) payoff
type. The latter feature might be difficult to reconcile if ambiguity is to be understood as
an informational phenomenon (for a further discussion see Siniscalchi (2009)).

16As we mentioned in Section 2, if ambiguity attitudes are not to be restricted, any updating rule must
dispense with one of two natural requirements: dynamic consistency or consequentialism. Dropping con-
sequentialism means that updated preferences may depend on the outcomes of events that are no longer
possible. Hence, a decision maker violating consequentialism can have opposing preferences over choices
that are identical on all non-null events. Dominiak et al. (2012) provide evidence showing that ambiguity-
averse subjects tend to drop dynamic consistency over consequentialism.
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Figure 5: Dynamically consistent updating in the Dutch auction for N = {1, 2}, M = 2, and
θi = 0.6 < t̄1. The upper figure shows the bidder’s expected payoff at time one, evaluated
at F 1, F 2, and convex combinations thereof. The ex-ante optimal exit time is denoted by
θ∗i . The lower figure shows the bidder’s payoff at time θ < 1 after updating. All probability
distributions under which exiting earlier than θ∗i is optimal (dotted curves) are discarded.

5.2 Relation to the Literature

There is a growing literature on ambiguity and auctions. While most work in that literature
is focussed on static settings,17 some papers have considered dynamic auctions as well. Karni
(1988) is the first to show that the equivalence of first-price and descending price auctions

17Early work includes Salo and Weber (1995) and Lo (1998), who show revenue non-equivalence between
static auctions in different frameworks, while Bose et al. (2006) analyze the optimal static auction. Bodoh-
Creed (2012), Wolitzky (2016), and De Castro and Yannelis (2018) consider the general problem of static
mechanism design with maxmin agents and study different applications. In contrast to these papers, Bose
and Renou (2014) and Di Tillio et al. (2016) show that even if type distributions are not ambiguous, the
mechanism designer can benefit from introducing ambiguity to the mechanism that is carried out.
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relies on bidders being dynamically consistent, however without providing a description of
equilibrium bidding when dynamic consistency fails. Nakajima (2011) finds that if prefer-
ences exhibit the typical choice pattern of the Allais paradox, the Dutch auction will result
in higher bids and thus higher revenue. Conversely, Weber (1998) studies a non-expected
utility preference of a form that displays a reversal of the typical Allais choices, which could
be more empirically relevant for small stakes. For such non-expected utility preferences,
the first-price auction generates higher revenues. Closest to our paper is the work by Bose
and Daripa (2009), who emphasize the benefits of using dynamic mechanisms when agents
are ambiguity-averse. They show that when bidders’ preferences are represented by the
ε-contamination model—a special case of the maxmin expected utility model—a discretized
Dutch auction with a particular tie-breaking rule can extract almost all of the surplus. As
Bose and Daripa (2009) emphasize, the full surplus extraction result hinges on the assumed
preference representation. In particular, the result relies on the property whereby bidders
assign at least an ε weight to the event that the other bidder terminates the auction when the
price decreases by a certain amount, no matter how small that amount is. This requirement
is not only violated when the set of distributions functions is a singleton (the standard case)
but, more generally, when bidders minimize over a finite set of smooth distribution functions
(or the convex hull thereof). We view our work as complementary to Bose and Daripa (2009),
in that we show the profitability of dynamic mechanisms even when full surplus extraction
is not attainable.

The Dutch auction is an instance of a dynamic game of incomplete information with
ambiguity-averse players. Some recent papers discuss general solution concepts and their
properties. Battigalli et al. (2017) explore self-confirming equilibria in dynamic games with
players whose preferences are represented by the smooth ambiguity model of Klibanoff et
al. (2005). Like us, they permit dynamic inconsistency and assume that players are sophis-
ticated. Also Hanany et al. (2018) consider multistage games with incomplete information
and smoothly ambiguity-averse players. In contrast to Battigalli et al. (2017), they require
equilibria to satisfy sequential optimality and show that such games are as if players up-
date in a dynamically consistent way. In their framework, suitably extended to continuous
time, the Dutch and first-price auctions thus remain strategically equivalent. Finally, Pahlke
(2018) considers a setting in which players have maxmin expected utility and update their
beliefs prior by prior, as do we. In contrast to our framework, she allows the set of prob-
ability distributions over which players minimize to depend on the game that is played in
such a way that dynamic consistency is maintained within the game. For our setting, this
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requires that players expand the initial set of probabilities F so as to include the auxiliary
distribution function F̃ when faced with the Dutch auction but not when playing a first-price
auction. The interpretation changes in this case, while the main insights do not.

There is also some work on dynamic games with ambiguity-averse preferences in appli-
cations unrelated to auctions. For instance, Kellner and Le Quement (2017, 2018) study
the effects of exogenous and endogenous ambiguity in a cheap-talk setting; Beauchene, et al.
(2019) consider the case of persuasion. As in our work, both consider consistent planning
equilibria with prior-by-prior Bayesian updating.

6 Conclusion

The paper shows that the consideration of uncertainty over probability distributions of bid-
ders’ valuations has important implications for equilibrium bidding in dynamic auctions.
The gradual revelation of information about the opponent’s valuation in the Dutch auction
can cause a bidder’s worst-case scenario to shift over time. We show that this leads bidders to
purchase the good at higher prices compared to the case when no information is transmitted,
which then benefits the auctioneer.

Throughout the analysis, we maintain the assumption that bidders are symmetric with
respect to the set of distributions over which they minimize. A question for future research
is how the equilibrium outcome is affected when we allow for asymmetries across bidders.
Of particular interest are situations where more experienced bidders compete against less
experienced ones and this difference is reflected in the degree of ambiguity they perceive.

Another important question concerns the optimal design of dynamic mechanisms in envi-
ronments with ambiguity-averse agents. While Bose and Daripa (2009) show the possibility
of full surplus extraction for certain cases, a comprehensive answer to the question does not
yet exist. We saw for our setting that different mechanisms induce different distributions
that describe an agent’s ‘as if’ beliefs. It would be interesting to explore whether this feature
can be used to map the problem of designing an optimal dynamic mechanism into a simpler
one over a set of such distributions.
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A Appendix

A.1 Proof of Lemma 1

Proof. We start by proving that minF∈F F (θ̂)/F (θ) = minn∈N F n(θ̂)/F n(θ). To see this,
consider n̄ and n such that F n̄(θ̂)/F n̄(θ) ≤ F n(θ̂)/F n(θ), i.e. F n(θ)F n̄(θ̂)/F n̄(θ) ≤ F n(θ̂).
Then, for any α(n) ∈ [0, 1], α(n)F n(θ)F n̄(θ̂)/F n̄(θ) ≤ α(n)F n(θ̂). Integrating over n,∫
n∈N α(n)F n(θ)F n̄(θ̂)/F n̄(θ) dn ≤ α(n)

∫
n∈N F n(θ̂) dn, for any α : N → (0, 1) and thus

F n̄(θ̂)
F n̄(θ)

≤
∫
n∈N α(n)Fn(θ̂) dn∫
n∈N α(n)Fn(θ) dn

for any α : N → (0, 1] .
Hence, if for all n, F n̄(θ̂)/F n̄(θ) ≤ F n(θ̂)/F n(θ), it follows that also for all F ∈ F it

holds that F n̄(θ̂)/F n̄(θ) ≤ F (θ̂)/F (θ), as desired.
Note next that, for all θ > 0, fn(θ̂)/F n(θ) = dFn(θ̂)

Fn(θ)
/dθ̂ is continuous in (θ̂, n) and

F n(θ̂)/F n(θ) is continuous in n. Corollary 4(ii) in Milgrom and Segal (2002) applies to
a minimisation problem by exchanging the “max” operator to a “min” (and vice versa).
Letting n∗(θ̂, θ) ≡ argminn∈N (F n(θ̂)/F n(θ)), it establishes that for all θ ∈ (0, 1],

d−minn∈N (F n(θ̂)/F n(θ))

dθ̂
= max

n∈n∗(θ̂,θ)

fn(θ̂)

F n(θ)
. (7)

Since for θ̂ = θ , F n(θ̂)/F n(θ) = 1, irrespective of n, it is true that n∗(θ, θ) = N , so that the
desired result follows.

A.2 Proof of Lemma 2

Proof. For θ > 0 , let ρ(θ) ≡ maxn∈N
fn(θ)
Fn(θ)

. By the Maximum Theorem, ρ is continous. For
any n ∈ N and θ > 0, we can write fn(θ)/F n(θ) = d lnF n(θ)/ d θ. An integration yields∫ 1

θ

fn(t)

F n(t)
d t = [lnF n(t)]1θ,

and hence

F (θ) = exp

(
−
∫ 1

θ

f(t)

F (t)
d t

)
, (8)

so that
∫ 1

θ
fn(t)
Fn(t

dt tends to infinity as θ approaches 0. Thus,
∫ 1

θ
ρ(t)dt tends to infinity, and

F̃ is continuous, even at θ = 0. Given ρ(θ) > 0 for all θ > 0, F̃ (θ) is non-decreasing. Recall
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that
F̃ (θ) ≡ exp

(
−
∫ 1

θ

ρ(t)dt
)
,

Since ρ is continous, it follows from Leibnitz’ Integral rule that

f̃(θ) = ρ(θ) exp

(
−
∫ 1

θ

ρ(t)dt

)
= ρ(θ)F̃ (θ),

which establishes continuity of f̃ and the desired equality.

A.3 Proof of Lemma 3

Given that F̃ is differentiable on (0, θi) we can integrate (4) to:

(b(θ)F̃ (θ))
∣∣∣θi
0
=

∫ θi

0

θf̃(θ) d θ.

A reformulation yields

b(θi) =

∫ θi
t(θi)

θf̃(θ) d θ

F̃ (θi)
,

and integration by parts can be used to express b as in the lemma.

A.4 Proof of Proposition 4

Let µ(θ) denote the correspondence of maximisers of the maximisation problem maxn∈N (fn(θ)/F n(θ)).

Outline

The proof begins with a lemma which will restrict the nature of possible preference reversals
given any increasing bidding strategy. It then identifies four properties of the objective
function of the bidders given the putative equilibrium strategy at various points in time, and
finishes by using these properties to show that if a player bids according to b∗, there is a no-
one-stage-deviation plan for the other player such that she exits at θi. Lastly, we show, using
a backward-induction type argument, that given the equilibrium bidding strategy the no one-
stage-deviation plan is unique, ensuring that it is also a consistent planning equilibrium.
For use below, for any n ∈ N , let Vn(θi, θ̂, θ) ≡ (θi − b(θ̂))F n(θ̂)/F n(θ).
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Lemma 8. Fix arbitrary θ̄, θ ∈ [0, 1] such that θ̄ < θ∗ < θ. Then

(i) If there exists an n ∈ N such that Vn(θi, θ̄, θ) < Vn(θi, θ
∗, θ), then V (θi, θ̄, θ

∗) <

V (θi, θ
∗, θ∗).

(ii) If V (θi, θ̄, θ) < V (θi, θ
∗, θ), then V (θi, θ̄, θ

∗) < V (θi, θ
∗, θ∗).

Proof. To prove i), suppose indeed for some n ∈ N ,

(θi − b(θ̄)F n(θ̄)/F n(θ) < (θi − b(θ∗))F n(θ∗)/F n(θ).

Then,
(θi − b(θ̄))F n(θ̄)/F n(θ∗) < θ − b(θ∗),

so that

(θi − b(θ̄))min
n∈N

F n(θ̄)/F n((θ∗) < θi − b(θ∗).

To prove ii), suppose V (θi, θ̄, θ) < V (θi, θ
∗, θ), i.e.

min
n∈N

(θi − b(θ̄))F n(θ̄)/F n(θ) < min
n∈N

(θi − b(θ∗))F n(θ∗)/F n(θ),

and since n∗(θ̄, θi) is one of the minimisers of the problem on the left hand side and in the
choice set of the problem on the right hand side of the above equation,

(θi − b(θ̄)F n∗(θ̄,θ)(θ̄)/F n∗(θ̄,θ)(θ) < (θi − b(θ∗))F n∗(θ̄,θ)(θ∗)/F n∗(θ̄,θ)(θ),

and thus Vn∗(θ̄,θi)(θi, θ̄, θ) < Vn∗(θ̄,θi)(θi, θ
∗, θ). Point (i) can be used to establish the result.

In what follows, fix an arbitrary θi ∈ (0, 1] and assume b(θ) = θ −
∫ θ

0
F̃ (t)dt/F̃ (θ).

The case of θ > θi

Lemma 9. For any θ such that θ > θi, the function V (θi, θ̂, θ) is decreasing in θ̂ for all
θ̂ ∈ (θi, θ].

Proof. Let H(θ̂, θ) denote the minimal probability that the other bidder’s type is less than
θ̂ at time θ, i.e. H(θ̂, θ) = minn∈N

Fn(θ̂)
Fn(θ)

.
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d−V (θi, θ̂, θ)

dθ̂
=

(
θi − b(θ̂)

)
d−H(θ̂, θ)/dθ̂ − b′(θ̂)H(θ̂, θ)

=

θi − θ̂ +

∫ θ̂

0
F̃ (t)dt

F̃ (θ̂)

 dH(θ̂, θ)/dθ̂ −
f̃(θ̂)

∫ θ̂

0
F̃ (t)dt

F̃ 2(θ̂)
H(θ̂, θ) (9)

= (θi − θ̂)
d−H(θ̂, θ)

dθ̂
−
∫ θ̂

0
F̃ (t)dt

F̃ (θ̂)

(
H(θ̂, θ)

f̃(θ̂)

F̃ (θ̂)
− d−H(θ̂, θ)

dθ̂

)
.

Using equation (7), we get

d−V (θi, θ̂, θ)

dθ̂
= (θi − θ̂) max

n∈n∗(θ̂,θ)

fn(θ̂)

F n(θ)
−
∫ θ̂

0
F̃ (t)dt

F̃ (θ̂)

(
H(θ̂, θ)

f̃(θ̂)

F̃ (θ̂)
− max

n∈n∗(θ̂,θ)

fn(θ̂)

F n(θ)

)

= (θi − θ̂) max
n∈n∗(θ̂,θ)

fn(θ̂)

F n(θ)
−
∫ θ̂

0
F̃ (t)dt

F̃ (θ̂)
H(θ̂, θ)

(
f̃(θ̂)

F̃ (θ̂)
− max

n∈n∗(θ̂,θ)

fn(θ̂)

F n(θ̂)

)
.(10)

Note that the last step follows from

max
n∈n∗(θ̂,θ)

fn(θ̂)

F n(θ)
/H(θ̂, θ) = max

n∈n∗(θ̂,θ)

fn(θ̂)

F n(θ̂)
,

which holds by definition of H(θ̂, θ) and n∗(θ̂, θ). The desired result follows from observing
that V (θi, θ̂, θ) is continuous in θ̂, that the first term of equation (10) is negative if θ > θi,
and that the second term is always weakly negative by Lemma 2.

The case of θ < θi

Lemma 10. Fix an arbitrary θ0 ∈ (0, θi). Then, there exists some θ and θ such that
θi > θ > θ0 > θ ≥ 0 and ∀θ′ ∈ (θ, θ] and ∀θ̂ ∈ [θ, θ′) it is true that V (θi, θ̂, θ

′) < V (θi, θ
′, θ′).

Proof. Fix θ0 ∈ (0, θi) and any n0 ∈ µ(θ0). Similar to equation (9), one can derive:

∂Vn0(θi, θ̂, θ)

∂θ̂
= (θi − θ̂)

fn0(θ̂)

F n0(θ)
−
∫ θ̂

0
F̃ (t)dt

F̃ (θ̂)

F n0(θ̂)

F n0(θ)

(
f̃(θ̂)

F̃ (θ̂)
− fn0(θ̂)

F n0(θ̂)

)
. (11)

Note that this function is continuous in θ̂ and θ. Since Fn0 (θ0)
Fn0 (θ0)

= 1 and fn0 (θ0)
Fn0 (θ0)

= f̃(θ0)

F̃ (θ0)
, we
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have:
∂Vn0(θi, θ0, θ0)

∂θ̂
= (θi − θ0)max

n∈N

fn(θ0)

F n(θ0)
> 0.

Hence, there exist θ∗ > θ0 such that it is true that ∂Vn0 (θi,θ̂,θ
∗)

∂θ̂

∣∣
θ̂=θ0

> 0. Since Vn0 is
differentiable in its second argument, there exists an interval [θ, θ] around θ0 such that
θ ≤ θ∗ and Vn0(θi, θ̂, θ

∗) is increasing in θ̂ ∈ [θ, θ]. Thus, ∀θ′ ∈ (θ, θ] and ∀θ̂ ∈ [θ, θ′) it is true
that Vn0(θi, θ̂, θ

∗) < Vn0(θi, θ
′, θ∗). The application of Lemma 8(i) concludes the proof.

The case of θ = θi

Lemma 11. There exists a θ < θi such that ∀θ′ ∈ (θ, θi] and θ̂ ∈ [θ, θ′), it is true that
V (θi, θ̂, θ

′) < V (θi, θ
′, θ′).

Proof. Let n0 ∈ µ(θi) satisfy

d
fn0(θi)

F n0(θi)
/d θi = min

n∈µ(θi)
d
fn(θi)

F nθi)
/d θi.

We show now that if θ0 = θi, then both ∂Vn0(θi, θi, θi)/∂θ̂ = 0 and ∂2−Vn0(θi, θi, θi)/∂
2θ̂ <

0. Observe first that ∂Vn0(θi, θi, θi)/∂θ̂ = 0 simply follows from (11) since θ̂ = θi so that the
first term vanishes (while, as before, the second term vanishes by Lemma 2). Note that by
Corollary 4.ii in Milgrom and Segal (2002),

d− f̃(θi)

F̃ (θi)

d θi
=

d−
(
maxn∈N

fn(θi)
Fn(θi)

)
d θi

= min
n∈µ(θi)

d
(

fn(θi)
Fn(θi)

)
d θi

=
d
(

fn0 (θi)
Fn0 (θi)

)
d θi

.

Thus, from equation (11) we conclude that ∂2−Vn0(θi, θi, θi)/∂
2θ̂ = − fn0 (θi)

Fn0 (θi)
< 0. Thus, there

exits θ ∈ (0, θi) such that ∀θ′ ∈ (θ, θi] and θ̂ ∈ [θ, θ′), Vn0(θi, θ̂, θi) < Vn0(θi, θ
′, θi). The

results follows from Lemma 8(i).

The case of θ close to zero

Lemma 12. There is a θ ∈ (0, θ) such that ∀θ′ ∈ (0, θ] and ∀θ̂ ∈ [0, θ′) it is true that
V (θi, θ̂, θ

′) < V (θi, θ
′, θ′).
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Proof. To show this, fix some arbitrary θi > 0 and n0 ∈ N . Note that Vn0(θi, θ̂, θi) is
differentiable in θ̂, Vn0(θi, 0, θi) = 0 and, since ∀θ > 0 it is true that b(θ̂) < θ̂ we have
Vn0(θi, θ̂, θi) > 0 and there exists a θ ∈ (0, θ) such that Vn0(θi, θ̂, θi) is increasing in θ̂

∀θ̂i ∈ [0, θ). Thus, ∀θ′ ∈ (0, θ] and ∀θ̂ ∈ [0, θ′), Vn0(θi, θ̂, θi) < Vn0(θi, θ
′, θi). The desired

inequality now follows from Lemma 8(i).

No one-shot deviations

Fix arbitrary θi > 0. The proof proceeds by showing that the function x(· , θi) → {0, 1}
satisfies conditions 1) and 2) of Definition 1 if x(θ, θi) = 1 if θ ≤ θi and x(θ, θi) = 0

otherwise. Since such a function x trivially satisfies the other requirements of this definition,
this establishes equilibrium. Note that for any θ < θi, by the definition of x, x(θ, θi) = 1

and T (θ, θi) = θ and thus Lemma 10 establishes that case point (ii) of condition 1) obtains
whenever x(θ, θi) = 1. Condition 2 holds vacuously. For θ = θi the same argument is
established via Lemma 11. Now consider θ > θi, x(θ, θi) = 0 and T (θ, θi) = θi. Then
condition 1) holds vacuously and Lemma 9 establishes that condition 2) is satisfied.

Uniqueness

To show uniqueness in symmetric, differentiable strategies, note that in any such equilibrium,
for any θi it is true that T (θ′, θi) = θi if θ′ ≥ θi. Fix an arbitrary θi > 0. We will first
show that in any equilibrium ∂V −(θi,θ̂,θi)

∂θ̂

∣∣∣
θ̂=θi

≥ 0. Let θ̄ ≡ T (θi, θi). If θ̄ = θi the claim
follows from the definition of an equilibrium and the fact that, for differentiable strategies,
V (θi, θ̂, θi) is (left-) differentiable in the second argument. Else, suppose that θ̄ < θi and, by
contradiction, ∂V −(θi,θ̂,θi)

∂θ̂

∣∣∣
θ̂=θi

< 0. By the definition of equilibrium, V (θi, θ̄, θi) ≤ V (θi, θi, θi).

Since V (θi, θ̂, θi) is locally decreasing in θ̂, there is θ∗ ∈ (θ̄, θi) such that V (θi, θ̄, θi) <

V (θi, θ
∗, θi). By Lemma 8(ii), V (θi, θ̄, θ

∗) < V (θi, θ
∗, θ∗), contradicting the definition of θ̄.

We next show that the derivative in question cannot be strictly positive (and hence,
equals zero). So suppose, by way of contradiction, that

∂V −(θi, θ̂, θi)

∂θ̂

∣∣∣
θ̂=θi

> 0. (12)
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This implies that
(θi − b(θi))max

n∈N

fn(θ)

F n(θi)
− b′(θi) > 0.

Thus, there exists a θ′ > θi such that

(θi − b(θi))max
n∈N

fn(θ)

F n(θ′)
− b′(θi) > 0.

Thus, for some θ∗ ∈ (θi, θ
′), V (θi, θi, θ

′) < V (θi, θ
∗, θ′). By Lemma 8(ii), also V (θi, θi, θ

∗) <

V (θi, θ
∗, θ∗), so that given T (θ∗, θi) = θi, x(θ∗, θi) = 1 in violation of Definition 1.

Consistent Planning

Finally, we show that the function x(· , θi) → {0, 1} satisfies conditions 1) and 2) of Definition
1 only if x(θ, θi) = 1 if θ ≤ θi and x(θ, θi) = 0 otherwise and, hence, that the consistent
planning property is satisfied.

Assume conditions 1) and 2) of Definition 1 are met. Lemma 12 says that there is a
θ ∈ (0, θ) so that x(θ, θi) = 1 if θ ∈ (0, θ), i.e. for low enough values of θ, the bidder will find
it optimal to exit irrespective of the behavior of future selves.
Now, consider any θ in (θ, θ). We will argue that x(θ, θi) = 1. Note that Lemma 10 assigns
to any point θ0 ∈ [θ, θ) two values θ(θ0) and θ(θ0) such that θ(θ0) < θ0 < θ(θ0). Hence, the
set of intervals {

(θ(θ0), θ(θ0))
}
θ0∈[θ,θ]

form an open cover of the compact set [θ, θ], and thus have a finite subcover. Consider now
this subcover, a finite collection of (overlapping, open) intervals.

Lemma 10 also says that for any θ ∈ (θ(θ0), θ(θ0)), provided that T (θ(θ0), θi) ≥ θ(θ0)

it holds that x(θ, θi) = 1. Since, x(θ, θi) = 1 for any θ ≤ θ it is true that for any θ in
the first interval, if θ denotes its lower bound, T (θ, θi) ≥ θ. Thus for all θ within the first
interval, x(θ, θi) = 1. Also, given x(θ, θi) = 1 for all values weakly below an interval, the
same argument establishes that x(θ, θi) = 1 also within this interval. Thus, by induction,
∀θ ≤ θ, x(θ, θi) = 1.

Since ∀θ ∈ [θ, θi], T (θ, θi) ≥ θ, Lemma 11 then implies that ∀θ ∈ [θ, θi], x(θ, θi) = 1.

Lemma 9 then implies that for all θ > θi, since T (θ, θi) ≥ θ, it is true that x(θ, θ) = 0 as
desired.
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A.5 Proof of Proposition 5

The condition b∗(θi) ≥ bFPA(θi) for all θi ∈ [0, 1] is equivalent to
∫ θi
0
Fmin(θ) d θ/Fmin(θi) ≥∫ θi

0
F̃ (θ) d θ/F̃ (θi) for all θi ∈ [0, 1]. A sufficient condition for this inequality to be satisfied

is:

Fmin(θ)

Fmin(θi)
≥ F̃ (θ)

F̃ (θi)
, (13)

for all θi and all θ ≤ θi. Since dominance in the reversed hazard rate implies conditional
stochastic dominance (see Shaked and Shanthikumar, 1994), this condition is satisfied.

As we have shown in Appendix A.2, a cumulative distribution function F (θ) is uniquely
determined by its reversed hazard rate ρF (θ):

F (θ) = exp

(
−
∫ 1

θ

ρF (t) d t

)
.

If there is a distribution function F belonging to F such that ρF (θ) = maxn∈N fn(θ)/F n(θ),
then this distribution function is F̃ . Hence, Fmin(θ) ≤ F̃ (θ), ∀θ. By (13), we have Fmin(θ) ≥
F̃ (θ),∀θ and hence Fmin = F̃ .

Now suppose there is no single distribution in F that maximizes the reversed hazard rate
on the interval [0, 1]. We can then find some θ0 ∈ (0, 1) such that the same property holds on
[θ0, 1]. Let n ∈ N be such that F n(θ0) = Fmin(θ0). Then there exists an open interval (θ, θ)
with θ0 ≤ θ < θ such that n 6= argmaxn′∈N fn′

(θ)/F n′
(θ). For any θ ∈ (θ, θ), we thus have

fn(θ)/F n(θ) < f̃(θ)/F̃ (θ) (while this inequality always holds as a weak inequality). Hence,

F n(θ0) = exp

(
−
∫ 1

θ0

fn(θ)/F n(θ) d θ

)
> exp

(
−
∫ 1

θ0

f̃(θ)/F̃ (θ) d θ

)
= F̃ (θ0),

so that Fmin(θ0) > F̃ (θ0). It follows that b∗(1) > bFPA(1). By continuity of b∗ and bFPA,
the same inequality holds on a left neighbourhood of 1.
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A.6 Proof of Corollary 6

To show that b∗r constitutes an equilibrium, one follows the steps of the proof of Proposition 4
in Appendix A.4, simply replacing zero with r as the lower bound of the domain of integration
in each of the shown integrals.

A.7 Proof of Proposition 7

We start by computing:

Π′(r) = 2

(
−F S(r)fS(r)r + F̃ (r)

∫ 1

r

F S(θi)/F̃ (θi) dF
S(θi)

)
Π′′(r) = 2

(
−fS(r)2r − F S(r)fS ′

(r)r − 2F S(r)fS(r) + f̃(r)

∫ 1

r

F S(θi)/F̃ (θi) dF
S(θi)

)
.

Since Π(r) is continuous on the compact domain [0, 1], a maximum exists. We can first
show that Π is maximized on the interior of the interval [0, 1]. Noticing that Π′′(0) (to be
seen as the right derivative) is strictly positive, we know that r = 0 does not constitute a
maximum point. Similarly, Π′(1) (to be seen as the left derivative) is strictly negative, which
implies that r = 1 does not maximize Π either. Differentiability of Π then implies that the
maximum point is characterized by the first-order condition. Setting Π′(r) equal to zero, a
simple manipulation yields condition (6).

Next, we want to compare the optimal reserve price in the Dutch auction with the optimal
reserve price in the first-price auction. Lo (1998) shows that the equilibrium bidding function
in the first-price auction with reserve price r is bFPA

r (θ) = θ −
∫ θ
r Fmin(θ) d θ

Fmin(θ)
. Analogous to

above, we can write the seller’s revenue in the first-price auction as a function of the reserve
price r:

ΠFPA(r) = 2

∫ 1

r

F S(θi)

(
θi −

∫ θi
r
Fmin(θ) d θ

Fmin(θi)

)
dF S(θi).

If we consider the difference between the two revenues and differentiate with respect to r,
we obtain

Π′(r)− Π′
FPA(r) =

∫ 1

r

F S(θi)

(
Fmin(r)

Fmin(θi)
− F̃ (r)

F̃ (θi)

)
dF S(θi). (14)

We know that reversed hazard rate dominance implies conditional stochastic dominance (see,
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for instance, Shaked and Shanthikumar, 1994). The fact that f̃(θi)/F̃ (θi) ≥ fmin(θi)/F
min(θi)

holds for all θi > r thus implies

F̃ (r)

F̃ (θi)
≥ Fmin(r)

Fmin(θi)
, for all θi > r. (15)

It follows that the difference of the first derivatives in (14) is negative. Since

Π(r∗)− ΠFPA(r
∗) ≥ Π(r∗FPA)− ΠFPA(r

∗) ≥ Π(r∗FPA)− ΠFPA(r
∗
FPA),

and the difference between Π(r) and ΠFPA(r) is weakly decreasing in r, it follows that r∗

must be weakly smaller that r∗FPA. Moreover, if Fmin(r∗) < F̃ (r∗), the difference in (14)
is strictly negative, implying that Π′

FPA(r
∗) is strictly positive. In that case the optimal

reserve price in the first-price auction, r∗FPA is strictly larger than r∗.

A.8 Further details for Example 1

We start by showing that F̃ (θ) = αmF
m(θ), where αm(θ) is defined in Example 1. Since

αM = 1 and Fm(0)(0) = 0, we have F̃ (1) = 1 and F̃ (0) = 0. Let θ belong to the interval
indexed by m and consider:

lim
θ→t̄m−1

+
αmF

m(θ) =
M−1∏
i=m

F i+1(t̄i)

F i(t̄i)
Fm(t̄m−1),

=
M−1∏
i=m

Fm(t̄m−1)

Fm−1(t̄m−1)

F i+1(t̄i)

F i(t̄i)
Fm−1(t̄m−1),

=
M−1∏

i=m−1

F i+1(t̄i)

F i(t̄i)
Fm−1(t̄m−1),

= αm−1F
m−1(t̄m−1).

Since αm is constant on θ in each subinterval, F̃ is differentiable on the interior of each
subinterval. Differentiability at the boundaries of the subintervals requires that for each
t̄m,m = 1, ...,M − 1 the derivative of αmF

m(θ) with respect to θ is equal to that of
αm+1F

m+1(θ). That is,
αmf

m(t̄m) = αm+1f
m+1(t̄m).
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By definition of t̄m, we have fm(t̄m)/F
m(t̄m) = fm+1(t̄m)/F

m+1(t̄m). Together with αm =

Fm+1(t̄m)/F
m(t̄m)αm+1, this implies that the above equality holds for all t̄m,m = 1, ...,M−1.

Further, since all functions in {Fm}Mm=1 are strictly increasing in θ and αm is strictly positive
for all θ, F̃ is strictly increasing on its domain. Finally, given that for each subinterval αm

is just a scaling factor, we clearly have f̃(θ)

F̃ (θ)
= fm(θ)

Fm(θ)
,∀θ ∈ [0, 1].

Next, we will show that bidders evaluate exit times in the current interval with the
auxiliary distribution function F̃ :

min
n∈N

F n(θ̂)

F n(θ)
=

Fm(θ)(θ̂)

Fm(θ)(θ)
=

F̃ (θ̂)

F̃ (θ)
, ∀θ̂ ∈ [t̄m(θ)−1, θ].

To prove the first equality, suppose by contradiction that there exists an n ∈ N such that
Fn(θ̂)
Fn(θ)

< Fm(θ)(θ̂)

Fm(θ)(θ)
for some θ̂ ∈ [t̄m(θ)−1, θ]. Define the difference function

Dθ,n(θ̂) :=
F n(θ̂)

F n(θ)
− Fm(θ)(θ̂)

Fm(θ)(θ)

on [t̄m(θ)−1, θ] with

D′
θ,n(θ̂) =

fn(θ̂)

F n(θ)
− fm(θ)(θ̂)

Fm(θ)(θ)
.

Notice that Dθ,n(θ̂) is continuous on [t̄m(θ)−1, θ] and differentiable on (t̄m(θ)−1, θ). By assump-
tion, we have Dθ,n(θ̂) < 0. This, together with Dθ,n(θ) = 0, implies that we can then find
some θ̂0 ∈ (θ̂, θ) such that Dθ,n(θ̂0) < 0 and

D′
θ,n(θ̂0) =

fn(θ̂0)

F n(θ̂0)

F n(θ̂0)

F n(θ)
− fm(θ)(θ̂0)

Fm(θ)(θ̂0)

Fm(θ)(θ̂0)

Fm(θ)(θ)
> 0.

However, since fn(θ̂)

Fn(θ̂)
≤ fm(θ)(θ̂)

Fm(θ)(θ̂)
for all θ̂ ∈ (t̄m(θ)−1, θ), by definition of Fm(θ), this requires

Fn(θ̂0)
Fn(θ)

> Fm(θ)(θ̂0)

Fm(θ)(θ)
and therefore Dθ,n(θ̂0) > 0. A contradiction. Hence, minn

Fn(θ̂)
Fn(θ)

= Fm(θ)(θ̂)

Fm(θ)(θ)

for all θ̂ ∈ [t̄m(θ)−1, θ].
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