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Introduction to quantum gravity

The two crowning achievements of theoretical physics in the 20th century were general relativity (GR) and quantum field theory (QFT). GR describes the force of gravity as the curvature
of space, QFT describes the interaction of fundamental particles via the electromagnetic, weak nuclear and strong nuclear forces within that space. The combination of these two theories
would be the crowning achievement of theoretical physics in the 21st century.

What is a quantum field?

Quantum field theory is the study of how ‘particles’ such as electrons and photons interact
at the most fundamental level. Originally these were regarded as ‘point particles’; objects
which could no longer be further divided. With the discovery of quantum mechanics
however it was realized that instead of a set position at a point these objects were more
like ‘probability clouds’. The greater the density of the cloud the more likely a particle is
to be found there. When you consider this for multiple particles across all of space this
cloud becomes a ‘quantum field’, imagine this field as a sea across all of space and the taller
the wave the more likely the particle is going to be discovered there. We can understand
a QFT by writing it’s ‘Lagrangian’, this encodes all of the particles in a theory and how
they interact with each other.
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These interactions can then be used to construct ‘Feynman diagrams’ which are used to aid
calculations, the one below for example describes an electron and a positron annhiliating
each other into a photon before the photon splits into an electron and positron pair.
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How do we describe gravity?

Einstein’s greatest discovery was general relativity with the equation bearing his name,

Gµν + Λgµν =
8πG

c4
Tµν.

This equates the matter of the universe on the right with the curvature in space it creates
on the left; we experience gravity as the path along this curved surface. GR was founded
on the basis of the ‘equivalence principle’: that on small scales acceleration in a gravity free
environment is indistinguishable from the effects of gravity. As a consequence we can treat
the effects of gravity as a body moving on a curved surface. We use GR to understand
processes such as black hole collisions, large scale structure and the extremely early times
of the universe, as well as things closer to home such as communicating with satellites and
making sure your GPS works properly.

How do we combine quantum field theory with gravity?

With great difficulty, but why is this? When we describe a QFT we are limited in the ‘size’ of our interaction terms and we can’t exceed a size of 4 otherwise the theory breaks down. For
example if we say a field φ has size 1, the largest interaction we can have is φ4. The problem with gravity is that all of our interactions have a size of 5 or greater!
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In the above equation the field H is our ’graviton’, this is the force carrier for gravity like the photon is for electromagnetism.Because of the fundamental way we describe QFTs we can’t use
general relativity which so far is the best way to describe gravity. There are suggestions that general relativity is a low energy approximation of a more fundamental theory, one which is a
QFT or goes beyong this framework. Such theories include string theory, loop quantum gravity and causal set theory.

A novel approach to combination

Since our difficulties stem from our interactions being too ‘large’, we can resolve this by
introducing a factor to reduce the ‘size’ of our interactions. This factor has negative size
and so ensures the overall interaction has size 4 which is what we need to have a well defined
QFT.
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The n in this new factor means that as the interaction term gets larger this factor will get
correspondingly more negative, ensuring the correct size of these terms. In QFT we are also
limited in the types of interactions we are allowed following something called ‘symmetries’.
A symmetry means that our Lagrangian must look the same after a transformation, for
example in the Higgs Lagrangian above one symmetry could be φ→ −φ. Certain types of
symmetries correspond to a fundamental force, the symmetry of gravity is ‘diffeomorphism
invariance’ which essentially states that the laws of the universe are the same regardless of
our choice in describing their position.

When we attempt to combine QFT with GR we have to respect these two demands, making
sure the size of our interactions aren’t too large as well as respecting the symmetry. These
demands restrict what interactions are allowed but once we have the Lagrangian the world
is our oyster!

WRG and the conformal factor instability

Here we discuss the research undertaken in a more complete manner. When describing
a UV complete QFT in the language of the Wilsonian renormalization group (WRG)
we describe such a theory as a CFT with (marginally) relevant perturbations only. The
problem is that Einstein-Hilbert only has operators which are irrelevant. We resolve this
problem in a natural way via the introduction of ‘tower operators’ which are a consequence
of the conformal factor instability. This addresses this non-renormalizability directly. When
expanding the metric in the Einstein-Hilbert action under the decompositions gµν = δµν +
κHµν and Hµν = hµν + 1

2δµνφ we find the dilaton has a negative sign in the kinetic term.
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Often this minus sign is circumvented via φ → iφ however we choose to maintain it.
We should define the space of our operators and demand that they are square integrable
under the appropriate measure. In the typical case the kinetic term has a plus sign leading
to a measure term with a negative exponent, resulting in polynomial operators. The
dilaton sector however will have a measure with a positive exponent which does not permit
polynomials. ∫ ∞
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As a consequence of this we implement diffeomorphism invariance as a limit, not as a
symmetry that was extant initially, see the above diagram.
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