
IN GREEDY PURSUIT OF NEW DIRECTIONS: (NEARLY) ORTHOGONAL
MATCHING PURSUIT BY DIRECTIONAL OPTIMISATION

Thomas Blumensath, Mike E. Davies

IDCOM & Joint Research Institute for Signal and Image Processing
The University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, EH9 3JL, UK

ABSTRACT

Matching Pursuit and orthogonal Matching Pursuit are
greedy algorithms used to obtain sparse signal approxima-
tions. Orthogonal Matching Pursuit is known to offer better
performance, but Matching Pursuit allows more efficient im-
plementations. In this paper we propose novel greedy Pur-
suit algorithms based on directional updates. Using a con-
jugate direction, the algorithm becomes a novel implemen-
tation of orthogonal Matching Pursuit, with computational
requirements similar to current implementations based on
QR factorisation. A significant reduction in memory require-
ments and computational complexity can be achieved by ap-
proximating the conjugate direction. Further computational
savings can be made by using a steepest descent direction.
The two resulting algorithms are then comparable to Match-
ing Pursuit in their computational requirements, their per-
formance is however shown to be closer to that of orthogonal
Matching Pursuit with the (slightly slower) approximate con-
jugate direction based approach outperforming the gradient
descent method.

1. INTRODUCTION

In this paper we are interested in modelling a vectorx using
the linear model:

x = Φy+ ε, (1)

wherey ∈ R
N andx ∈ R

M with N > M. If we allow for a
non-zero errorε we talk about a signalapproximation, while
for zeroε we have an exact signalrepresentation.

Given anovercompletefull rank matrix Φ (commonly
called the dictionary) and a signalx, the problem is to find
an optimally sparse expansiony, i.e an expansion with the
largest number of zero (or very small) elements. This prob-
lem is known to be NP-hard [1] and different sub-optimal
strategies have to be used. These are generally based on con-
vex relaxation of the problem, non-convex (often gradient
based) local optimisation or greedy search strategies. Greedy
methods include the Matching Pursuit [2] and orthogonal
Matching Pursuit [3] algorithms.

Matching Pursuit is one of the fastest strategies and very
efficient O(N logN) implementations for each iteration are
possible [4], [5] if Φ is the union of dictionaries that al-
low fast transforms. For general dictionaries the method is

This research was supported by EPSRC grant D000246/1. MED ac-
knowledges support of his position from the Scottish Funding Council and
their support of the Joint Research Institute with the Heriot-Watt University
as a component part of the Edinburgh Research Partnership. Some of the
fundamental ideas underlying the work presented here were inspired by a
discussion the second author had with Rémi Gribonval, whomwe like to
thank for this stimulating input.

O(NM) per iteration. On the other hand, orthogonal Match-
ing Pursuit has superior performance. Different fast imple-
mentations are now available, however, these do not achieve
the fastO(N logN) complexity of Matching Pursuit. More
importantly these methods also require additional storage,
which for large scale problems can become a limiting fac-
tor.

In this paper we develop an implementation of orthogo-
nal Matching Pursuit based on conjugate direction updates.
This method requires the same computational resources than
other fast implementations of orthogonal Matching Pursuit.
We therefore propose an approximation of the conjugate di-
rection, which can be computed more efficiently and which
requires significantly less storage. A further simplification
is then introduced, which uses the gradient direction. This
approach offers additional computational savings.

We start the development with a review of Matching Pur-
suit and orthogonal Matching Pursuit in section 3. State of
the art implementations of orthogonal Matching Pursuit are
then reviewed in section 4 before we develop the conjugate
direction based algorithm in section 5. The approximate im-
plementation of orthogonal Matching Pursuit are developed
in 6 while some computational performance studies are pre-
sented in 7.

2. NOTATION

In this paper we use the following conventions. Theith col-
umn of Φ will be denoted byφi . The setΓn will be a set
containingn indices. The matrixΦΓn will be a sub-matrix
of Φ containing only those columns ofΦ with indices inΓn.
We use the same convention for vectors, e.g.yΓn is a sub-
vector ofy containing only those elements ofy with indices
in Γn. In general, the superscript in the subscript ofyΓn re-
minds us that we are in iterationn, on occasion, however,
we use additional superscripts, e.g.yn−1

Γn now refers to an
n-dimensional vector as calculated in iterationn−1. In gen-
eral, in iterationn−1 we only update elements with indices
in Γn−1, therefore, the element inyn−1

Γn which is not inyn−1
Γn−1

will typically be zero. We also make heavy use of the Gram
matrixGΓn = ΦT

ΓnΦΓn.

3. FROM MATCHING PURSUIT TO
ORTHOGONAL MATCHING PURSUIT

Matching Pursuit [2] is a greedy algorithm that iterativelyse-
lects elements fromΦ that have the largest (in absolute mag-
nitude) inner product with the current approximation error,
i.e the algorithm selects that atom that on its own leads to the
largest reduction in the approximation error. In the first step,
the approximation errorr0 is the signalx itself. After an el-
ement is selected, the coefficientsy are updated by adding

the value of the inner product to the appropriate coefficient
yi . The error is then reduced accordingly. More formally we
write this algorithm as:
1. Initialiser0 = x,y0 = 0
2. for n = 1;n := n+1 till stopping criterion is met

(a) ∇n = ΦTrn

(b) in = argi max|∇i |

(c) yn
in = yn−1

in + ∇in

(d) rn = rn−1−φin∇in

3. Output:rn,yn

The computational bottle neck of this algorithm is the re-
quired matrix multiplicationΦTrn, however, if the errorrn

only changes locally, more efficient updates are possible [2].
Furthermore, if the dictionaryΦ is the union of orthogonal
dictionaries for which fast transforms are available, thenthis
multiplication can be implemented efficiently [4]. In this
case, the search for the maximum correlation in step 2.b) is
often more costly and efficient search strategies should be
used [4].

Orthogonal Matching Pursuit [3], [6] differs from Match-
ing Pursuit in that in each iterationy is calculated by pro-
jecting the signalx orthogonally onto all selected atoms. Or-
thogonal Matching Pursuit therefore calculates the best sig-
nal approximation possible with these atoms. This benefit
comes at the cost of the orthogonal projection. The orthogo-
nal Matching Pursuit algorithm is:
1. Initialiser0 = x,y0 = 0,Γ0 = ⊘
2. for n = 1;n := n+1 till stopping criterion is met

(a) ∇n = ΦTrn

(b) in = argi max|∇i |

(c) Γn = Γn−1∪ in

(d) yn = Φ†
Γnx

(e) rn = x−Φyn

3. Output:rn,yn

Here the dagger † indicates the Moore-Penrose pseudo-
inverse.

4. TRADITIONAL IMPLEMENTATIONS OF
ORTHOGONAL MATCHING PURSUIT

Calculating the pseudo-inverse in each iteration of orthogo-
nal Matching Pursuit is costly and faster strategies are avail-
able. Here we mention two approaches, one based on QR
factorisation and one, based on iterative updates of the re-
quired matrix inverse.

4.1 Orthogonal Matching Pursuit by QR Factorisation

Currently, the most efficient implementation of orthogonal
Matching Pursuit is based on QR factorisation. In this im-
plementation the sub-dictionaryΦΓn is factorised as follows:

ΦΓn = QΓnRΓn, (2)

whereQΓn ∈ R
M×n is a unitary matrix, i.e.QT

ΓnQΓn is the
identity matrix andRΓn is upper-triangular. With this fac-
torisation we can write then-term approximations ˆxΓn as:

x̂Γn = ΦΓnyΓn = QΓnRΓnyΓn. (3)

If we let zΓn = RΓnyΓn, then a very efficient implementation
of orthogonal Matching Pursuit does not need to calculate
yΓn in each iteration, i.e. the algorithm becomes:

1. Initialiser0 = x,z0 = 0,Γ0 = ⊘
2. for n = 1;n := n+1 till stopping criterion is met

(a) ∇n = ΦTrn

(b) in = argi max|∇i |

(c) Γn = Γn−1∪ in

(d) UpdateQΓn and RΓn such thatQΓnRΓn = ΦΓn,
QT

ΓnQΓn = I andRΓn is upper triangular.
(e) zΓn = [zΓn−1;zn]

(f) rn = rn−1−znq

3. yΓn = R−1
Γn zΓn

4. Output:rn,yn

wherezn = qTx. q is defined below. There are several im-
portant computational tricks to be used when implementing
the above algorithm. The QR factorisation in step 2.d) can be
solved iteratively using a variety of methods and normally a
form of the Modified Gram-Schmidt procedure is used1. In
iterationn bothQΓn andRΓn are updated using:

RΓn =

[

RΓn−1 QT
Γn−1φin

0 ‖q‖2

]

; (4)

and
QΓn = [QΓn−1;q], (5)

where q is such that: QT
Γn−1q = 0,span{QT

Γn−1,q} =

span{ΦΓn} and ‖q‖2 = 1. Finally, the calculation ofyΓn

in 3) can be done efficiently using back-substitution.

4.2 Orthogonal Matching Pursuit using Directional Up-
dates

Orthogonal Matching Pursuit can also be implemented using
a form of directional update. In each iteration, we calculate
a directiondn

Γn and a step-sizean and update :

yn
Γn = yn−1

Γn +andn
Γn. (6)

It was shown by Pati et al. in [3] that we can solve the
orthogonal Matching Pursuit problem by using the direction:

dn
Γn =

[

−G−1
Γn−1ΦΓn−1φin

1

]

; (7)

where Gn−1
Γ = ΦT

Γn−1ΦΓn−1. The step size is thenan =

∇in/(1− φT
inΦT

Γn−1G
−1
Γn−1ΦΓn−1φin). Note that the matrix in-

verse can be updated efficiently in each iteration using the
block matrix inversion formula [3].
1. Initialiser0 = x,y0 = 0,Γ0 = ⊘
2. for n = 1;n := n+1 till stopping criterion is met

(a) ∇n = ΦTrn

(b) in = argi max|∇i |

(c) Γn = Γn−1∪ in

(d) updateG−1
Γn

(e) calculatedΓn

(f) calculatean

(g) yn
Γn = yn−1

Γn +andn
Γn

(h) rn = rn−1−anΦdn
Γn

3. Output:rn,yn

1The normal Modified Gram-Schmidt method orthogonalises allselected
elements and at the same time ensures that a copy of the not selected ele-
ments is also orthogonalised to all selected elements. Thiscan be costly.
A faster implementation orthogonalises new elements only once they are
selected.

5. CONJUGATE GRADIENT IMPLEMENTATION
OF ORTHOGONAL MATCHING PURSUIT

Instead of calculating the update direction as in equation (7),
we here derive a different method based on the idea of con-
jugate directions.

The conjugate direction method [7, Section 10.2], [8,
Section 16.4] is similar to the gradient descent algorithm,
however, it is guaranteed to solve quadratic optimisation
problems inN steps, whereN is the dimension of the prob-
lem. In general, let us assume we want to minimise a
quadratic function, which can be written as1

2y
TGy−bTy.

This is equivalently to solvingGy = b overy. The conju-
gate direction method calculates a new update direction such
that the new direction isG-conjugate to the previously cho-
sen directions. This means that in thenth iteration the conju-
gate directiondn satisfies:

dnT
Gdk = 0 (8)

for all k 6= n. See [7, Section 10.2] and [8, Section 16.4] for
further details.

In iterationn of the orthogonal Matching Pursuit algo-
rithm we need to minimise the quadratic cost-function inn
unknowns:

‖x−ΦΓnyΓn‖2
2. (9)

The dimensionn of the cost function in equation (9) changes
in each iteration. Let us use the notationdk

Γn to denote the
kth conjugate direction, where the subscript reminds us that
this vector is n dimensional. In theΓn notation,yΓn is an
n-dimensional sub-vector ofy, which is updated in direction
dn

Γn. This is equivalent to updatingy using a directional vec-
tor dn of dimensionN, with all elements zero apart from the
element indexed byΓn. Similarly, the previous update di-
rectionsdk

Γk can be thought of as higher dimensional update

directionsdk
Γn that are only non-zero at the indexes associ-

ated withΓk.
With this notation we can state the conjugate direction

Theorem [8, Theorem 16.2] as:

Theorem 1 [8, Theorem 16.2] Let[d1
Γn,d2

Γn, . . . ,dn
Γn] be

any set of non-zeroGΓn-conjugate vectors, then the solution
to the problemGΓnyΓn = ΦT

Γnx is

yn
Γn =

n

∑
k=1

akdk
Γn, (10)

with a step-size of:

ak =
rkT ΦΓkdk

Γn

dkT

ΓnGΓkdk
Γn

, (11)

whererk = x−ΦΓk−1

(

∑k−1
i=1 aidi

Γn

)

.

Note that the step-sizeak only depends on the firstk−1 step-
sizes and the firstk−1 conjugate-directions so thatyn

Γn can
be approximated iteratively by calculating a new direction
and step-size in each iteration.

In the first iteration of orthogonal Matching Pursuit we
are dealing with a one dimensional problem and we have a
single trivial direction and step-size. In thenth iteration, we

select a further atom from the dictionary and increase the
dimension by one. If then−1 previous update directions are
GΓn conjugate, then, by the above theorem, we only require
one more conjugate direction and step-size to exactly solve
then dimensional problem.

To show that all the previousGΓn−1-conjugate directions
are alsoGΓn-conjugate (note the different subscripts), we de-
fine the matrixDn−1

Γn−1 as the matrix containing all conjugate

update directions from iterationn− 1 and the matrixDn−1
Γn

to be the same matrix but with an additional row of zeros
at the bottom. Then in the definition ofGΓn-conjugacy, i.e.
Dn−1T

Γn GΓnDn−1
Γn the last row and column ofGΓn are mul-

tiplied by zeros, which implies thatDn−1T

Γn−1 GΓn−1D
n−1
Γn−1 =

Dn−1T

Γn GΓnDn−1
Γn .

It therefore remains to calculate a single conjugate di-
rection in each iteration. Due toGΓn-conjugacy in thenth

iteration, the new direction has to satisfy the following con-
straint:

Dn−1T

Γn GΓndn
Γn = 0 (12)

In stepn− 1, assumeyn to be the projection onto the ele-
ments ofΦΓn−1, then each new direction can be expressed
as a combination of all previously chosen directions and the
current gradient∇Γn [7, Section 10.2], i.e. we expressdn

Γn

as:
dn

Γn = b0∇Γn +Dn−1
Γn b. (13)

Without loss of generality we can setb0 = 1. Pre-multiplying
by Dn−1

Γn GΓn and using theGΓn-conjugacy then leads to the
n−1 constraints:

Dn−1T

Γn GΓn(∇Γn +Dn−1
Γn b) = 0 (14)

from which we can write

b = −(Dn−1T

Γn GΓnDn−1
Γn)−1(Dn−1T

Γn GΓn∇Γk). (15)

Again usingGΓn-conjugacy we find thatDn−1
Γn GΓnDn−1

Γn is
diagonal so that the conjugate direction can be calculated
without matrix inversion.

Note that in the standard conjugate gradient algorithm [7,
Section 10.2], [8, Section 16.4] each new update direction
can be calculated as a combination of the current gradient
and the previous update direction alone, i.e. in the standard
conjugate gradient algorithm, all but the last conjugate up-
date direction turn out to beG conjugate to the current gra-
dient such thatb in equation (15) has only a single non-zero
element. Unfortunately, in the context of orthogonal Match-
ing Pursuit, the changing dimensionality destroys this prop-
erty so that we have to take account of all previous update
directions in each step.

We call this algorithm Conjugate Gradient Pursuit
(CGP), which can be summarised as:
1. Initialise:r0 = x,y0 = 0,Γ0 = ⊘
2. for n = 1;n := n+1 till stopping criterion is met

(a) ∇n = ΦTrn

(b) in = argi max|∇i |

(c) Γn = Γn−1∪ in

(d) if n = 1
- d1

Γ1 = 1

(e) if n 6= 1

- b = −(Dn−1T

Γn GΓnDn−1
Γn)−1(Dn−1T

Γn GΓn∇Γk)
- dn

Γn = ∇Γn −Db

(f) Dn
Γn = [Dn−1

Γn ;dn
Γn]

(g) cn = ΦΓndn
Γn

(h) an = rnT
cn/(cnT

cn)

(i) yn
Γn = yn−1

Γn +andn
Γn

(j) rn = rn−1−ancn

3. Output:rn,yn

Note that in the calculation ofb the productDn−1
Γn GΓn

can be updated recursively by adding a single new
row and column in each iteration. Note also that
(Dn−2

Γn−1GΓn−1D
n−2
Γn−1)

−1 and (Dn−1
Γn GΓnDn−1

Γn)−1 are equal
apart from a single additional value added in each iteration.
This value is(cn−1T

cn−1) used in step 2.h) of iterationn−1
and does not have to be recalculated.

6. APPROXIMATING ORTHOGONAL MATCHING
PURSUIT USING DIRECTIONAL UPDATES

We have remarked that all previous implementations of or-
thogonal Matching Pursuit as well as the proposed conjugate
direction method require the storage of different matrices.
For several problems, this storage requirement is undesirable.
In this section, we therefore propose two directional update
methods, similar to the conjugate direction method, which do
not require the storage of any matrices. The price we pay for
the reduced memory requirement is that we do not solve or-
thogonal Matching Pursuit exactly. The two directional op-
timisation strategies proposed below can however easily be
used several times in each Matching Pursuit iteration to get
better approximations to orthogonal Matching Pursuit. This
naturally comes at the additional cost of multiple calculations
of the required update directions and step-sizes.

6.1 Using an Approximated Conjugate Direction

As stressed above, the changing dimensionality of the prob-
lem makes it necessary to take account of all previous up-
date directions in the conjugate direction algorithm. If we
cannot store all previous update directions we can neverthe-
less calculate an update direction that isGΓn-conjugate to
only a limited number of previous update directions. We will
call this approach Approximate Conjugate Gradient Pursuit
(ACGP). Let us here derive this approximate conjugate di-
rection method by only considering a single previous update
direction.

In iterationn of the algorithm we require the new update
direction to be a linear combination of the previous update
direction and the current gradient direction, i.e. we calculate
the new direction as:

dn
Γn = b0∇Γn +dn−1

Γn b1. (16)

We again setb0 = 1. To calculateb1 we then enforceGΓn-
conjugacy with the previous update direction, which leads to
the constraint:

dn−1T

Γn GΓn(∇Γn +dn−1
Γn b1) = 0 (17)

from which we get

b1 = −(dn−1T

Γn GΓndn−1
Γn)−1(dn−1T

Γn GΓn∇Γk). (18)

The optimal step-size can also be easily calculated as [7, pp.
521]:

an = rnT
cn/(cnT

cn), (19)

wherecn is the vectorcn = ΦΓndn
Γn.

The update direction is not guaranteed to beGΓn-
conjugate to all previous update directions, however, we now
only require a single vector to be kept in memory between
iterations. Furthermore:

(dn−1T

Γn GΓndn−1
Γn) = (ΦΓndn−1

Γn)T(ΦΓndn−1
Γn) (20)

whereΦΓndn−1
Γn = cn−1 has been evaluated in the previous

iteration to determine the step sizean and the same is true
for the denominator, which is nothing else than the product
cn−1T

cn−1 calculated in the previous iteration. Therefore, the
algorithm uses the same computations as Matching Pursuit,
with the addition of two more matrix vector multiplication,
one to evaluateb1 and one to evaluate the step-sizecn.

6.2 Using the Gradient Direction

One further approximation and simplification could be made
by settingb1 = 0 so that only a single additional matrix mul-
tiplication is required compared to Matching Pursuit. This
method is then a gradient descent procedure we call Gradi-
ent Pursuit (GP). The update direction is now simply chosen
to be the current gradient∇Γn, i.e

dn
Γn = ∇Γn. (21)

The step size can also be calculated as in equation (19).

6.3 Approximate orthogonal Matching Pursuit Algo-
rithm

The approximate orthogonal Matching Pursuit algorithms
are then:
1. Initialise:r0 = x,y0 = 0,Γ0 = ⊘
2. for n = 1;n := n+1 till stopping criterion is met

(a) ∇n = ΦTrn

(b) in = argi max|∇i |

(c) Γn = Γn−1∪ in

(d) if n = 1
- d1

Γ1 = 1

(e) if n 6= 1
- for the approximate conjugate direction method:

b1 = −cn−1T ΦΓn∇Γk/(cn−1T
cn−1)

for the gradient descent method
b1 = 0

- dn
Γn = ∇Γn −b1d

n−1
Γn

(f) cn = ΦΓndn
Γn

(g) an = rnT
cn/(cnT

cn)

(h) yn
Γn = yn−1

Γn +andn
Γn

(i) rn = rn−1−ancn

3. Output:rn,yn

7. EXPERIMENTAL EVALUATION

To give an indication of the stability of the different imple-
mentations of exact orthogonal Matching Pursuit we used
ill conditioned dictionaries generated by perturbing a single

0 20 40 60 80 100 120
−200

−150

−100

Number of non−zero elements

E
rr

or
 in

 d
B

Figure 1: Comparison between matrix inverse based
(dashed), QR based (dash-dotted) and conjugate direction
based (solid) implementation of orthogonal Matching Pur-
suit for a dictionary with condition number of 3∗106.

0 20 40 60 80 100 120
−120

−100

−80

−60

−40

−20

0

Number of non−zero elements

E
rr

or
 in

 d
B

Matching Pursuit

Gradient Descent Pursuit

Approx. Conjugate Direction

Orthogonal Matching Pursuit

Figure 2: Comparison between MP (dashed), CGP (dotted),
the GP (dash dotted) and ACGP (solid). Data averaged over
1 000 randomly generated signals (see text).

randomly generated atom to create all other dictionary el-
ements. Average results for dictionaries of size 128× 256
with condition number of around 3∗106 are shown in figure
1.

To evaluate the Gradient Pursuit and the Approximate
Conjugate Gradient Pursuit algorithms we used a toy exam-
ple and compared the performance to standard Matching Pur-
suit and orthogonal Matching Pursuit. We generated 1 000
dictionaries of size 128×256, drawing elementsφi uniformly
from the unit sphere. From each dictionary we selected 64
elements at random and multiplied these with unit variance
zero mean Gaussian coefficients to generate 1 000 test sig-
nals.

The averaged results are shown in figure 2 where we plot
the number of non-zero coefficients against the approxima-
tion error in dB. From these results it can be seen that the ap-
proximation to the conjugate direction leads to better results
than the use of the simpler gradient based approximation to
orthogonal Matching Pursuit. Both methods are shown to
outperform Matching Pursuit and for a wide range of spar-
sity levels perform nearly as good as orthogonal Matching
Pursuit.

8. CONCLUSIONS

In this paper we have introduced a conjugate direction imple-
mentation of orthogonal Matching Pursuit which has a simi-
lar computational complexity as currently used QR factorisa-

Table 1: Comparison of the methods in terms of computa-
tional requirements in iterationn.

Algo. Multiplications of vector byΦ Storage
MP 1 0
GP 2 0
ACGP 3 0
CGP a) n+3(+1 mult. byDΦT) D

CGP b) 3(+1 byD and 1 byDTG) D, DTG

tion base approaches. The memory requirements of orthog-
onal Matching Pursuit implementations such as those based
on QR factorisation as well as our new conjugate direction
based method are often too high. We therefore have intro-
duced two new directional update schemes that approximate
the conjugate update direction. These do not require addi-
tional storage. Furthermore they can be implemented very
efficiently.

The gradient based method only requires the additional
evaluation of the step size, while the approximation to the
conjugate direction involves one further matrix vector mul-
tiplication. Typically used over-complete dictionaries are
unions of transforms for which fast algorithms are available,
so that multiplications involving the dictionary can be eval-
uated much faster than general matrix multiplications. The
computational cost in terms of multiplications of vectors with
the dictionary and additional storage is summarised in table 1
for the Matching Pursuit (MP), the Gradient Pursuit (GP), the
Approximate Conjugate Gradient Pursuit (ACGP) and two
implementations of Conjugate Gradient Pursuit (CGP), one,
which only storesD and one that also iteratively updates and
storesDTG. Note that the last two algorithms also require
general vector matrix multiplications as given in the paren-
thesis.

REFERENCES

[1] G. Davis,Adaptive Nonlinear Approximations. PhD the-
sis, New York University, New York, USA, 1994.

[2] S. Mallat and Z. Zhang, “Matching pursuits with time-
frequency dictionaries,”IEEE Transactions on Signal
Processing, vol. 41, no. 12, pp. 3397–3415, 1993.

[3] Y. C. Pati, R. Rezaifar, and P. S. Krishnaprasad, “Or-
thogonal matching pursuit: recursive function approxi-
mation with applications to wavelet decomposition,” in
27th Asilomar Conf. on Signals, Systems and Comput.,
Nov. 1993.

[4] S. Mallat, A Wavelet Tour of Signal Processing. Aca-
demic Press, 1999.

[5] S. Krustulovic and R. Gribonval, “MPTK: Matching pur-
suit made tractable,” inProc. Int. Conf. on Acoustic
Speech and Signal Processing, (Toulouse, France), May
2006.

[6] S. Mallat, G. Davis, and Z. Zhang, “Adaptive time-
frequency decompositions,”SPIE Journal of Optical En-
gineering, vol. 33, pp. 2183–2191, July 1994.

[7] G. H. Golub and F. Van Loan,Matrix Computations.
Johns Hopkins University Press, 3rd ed., 1996.

[8] T. K. Moon and W. C. Stirling,Mathematical Methods
and Algorithms for Signal Processing. Addison Wesley,
September 1999.

