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Abstract—Sparse signal approximations have become a funda-
mental tool in signal processing with wide ranging applications
from source separation to signal acquisition. The ever growing
number of possible applications and in particular the ever
growing problem sizes throw up new challenges in terms of
computational strategies and the development of fast and efficient
algorithms has become paramount.
Recently, very fast algorithms have been developed to solve

convex optimisation problems that are often used to approximate
the sparse approximation problem, however, it has also been
shown, that in certain circumstances, greedy strategies, such as
Orthogonal Matching Pursuit, can have better performance than
the convex methods.
In this paper we therefore concentrate on improving greedy

strategies and develop algorithms that approximate Orthogonal
Matching Pursuit, but which have computational requirements
more akin to Matching Pursuit. We discuss three different
directional optimisation schemes based on the gradient, the
conjugate gradient and an approximation to the conjugate
gradient respectively. We show that the conjugate gradient update
leads to a novel implementation of Orthogonal Matching Pursuit,
while the gradient based approach as well as the approximate
conjugate gradient methods both lead to fast algorithms, with
the approximate conjugate gradient method being superior to
the gradient method.

Index Terms—Sparse Representations/Approximations,
Matching Pursuit, Orthogonal Matching Pursuit, Gradient
Optimisation, Conjugate Gradient Optimisation.

I. INTRODUCTION
A sparse signal expansion is a signal model that uses a linear

combination of a small number of elementary waveforms
selected from a large collection to represent or approximate
a signal. Such expansions are of increasing interest in signal
processing with applications ranging from source coding [1]
to de-noising [2], source separation [3] and signal acquisition
[4].
Let x ∈ RM be a known vector and Φ ∈ RM×N a matrix

with M < N . We will refer to Φ as the dictionary and call
the column vectors φi of Φ atoms. The problem addressed in
this paper is to find a vector y satisfying the relationship:

x = Φy + ε. (1)

If we allow for a non-zero error ε we talk about a signal
approximation, while for zero ε we have an exact signal
representation.
Because M < N , there are an infinite number of y

satisfying the above equation. It is therefore common to search
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for a vector y optimising a certain sparsity measure. For
example, it is common to look for a vector y with the smallest
number of non-zero elements. The problem of finding such a y

is, however, NP-hard [5], [6]. Therefore, different sub-optimal
strategies are used in practise. Commonly used strategies
are generally based on convex relaxation, non-convex (often
gradient based) local optimisation or greedy search strategies.
Convex relaxation is used in algorithms such as Basis Pursuit
and Basis Pursuit De-Noising [7], the lasso and Least Angle
Regression (LARS) [8]. Recently fast algorithms solving the
lasso convex problem have been suggested in [9] and [10].
Non-convex local optimisation procedures include the Focal
Underdetermined System Solver FOCUSS [11]. In this paper
we are interested in greedy methods, the most important of
which are Matching Pursuit (MP) [12], Orthogonal Matching
Pursuit (OMP) [13] and Orthogonal Least Squares (OLS)1
[14].
MP is an algorithm often used for practical applications and

there are now very efficient O(N log N) (for each iteration)
implementations [15], [16] whenever Φ is the union of dic-
tionaries for which fast transforms are available. For general
dictionaries MP is O(NM) (per iteration). On the other hand,
OMP has superior performance. Current implementations,
however, are more demanding both in terms of computation
time and memory requirement.
In this paper we combine an MP type algorithm with direc-

tional optimisation to derive ‘Directional Pursuit’ algorithms.
These new algorithms use a similar greedy element selection
as MP and OMP, however, the costly orthogonal projection is
(approximately) done using directional optimisation. We pro-
pose two update directions which can be calculated efficiently
such that the algorithms have the same memory requirements
and computational complexity as MP. A third update direction
is based on the calculation of a conjugate gradient, which
leads to a novel implementation of OMP with computational
requirements similar to currently used methods based on QR
factorisation.

A. Paper Overview
The main part of this paper starts with a review of MP

and OMP in section II. Based on these two algorithms, we
develop the general Directional Pursuit framework in section
III. Particular directions are then suggested in the following
three sections, starting with the gradient direction in section
IV, followed by the conjugate gradient in section V and an
approximate conjugate gradient in section VI. Section VII
takes a closer look at the computational requirements of the
proposed algorithms while section VIII gives theoretic bounds

1Note that OLS is different from OMP as it uses a different criterion to
select new elements.
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on the convergence of the gradient based algorithm. The paper
concludes with a range of experiments presented in section IX.
In particular, we analyse the approximation performance of the
algorithms and the ability to exactly recover the underlying
sparse structure in subsections IX-A and IX-B respectively.
This is followed by two experiments that highlight the ap-
plicability of the methods to two different problems, audio
de-noising in subsection IX-C and compressive sampling of
Magnetic Resonance Imaging in subsection IX-D.

B. Notation

Before delving into the thick of the topic, let us define some
additional notation. We will throughout use the set Γn to be
the set containing the indices of the elements selected up to
and including iteration n. Using this index set as a subscript,
the matrixΦΓn will then be a sub-matrix ofΦ containing only
those columns of Φ with indices in Γn. The same convention
is used for vectors. For example, yΓn is a sub-vector of y

containing only those elements of y with indices in Γn. In
general, the superscript in the subscript of yΓn reminds us that
we are in iteration n, on occasion, however, we resort to using
superscripts (e.g. yn) to label the iteration. The gram matrix
GΓn = ΦT

ΓnΦΓn will also be used frequently. In general,
lower case bold face characters represent vectors while upper
case bold characters are used for matrices.

II. MATCHING PURSUIT AND ORTHOGONAL MATCHING
PURSUIT

The algorithms in this paper approximate a vector x itera-
tively. In iteration n we calculate an approximation using

x̂n = ΦΓnyΓn
, (2)

and calculate the approximation error as:

rn = x − x̂n. (3)

In each iteration, the approximation error is then used to
determine a new element to be selected from Φ in order to
find a better approximation.
One of the simplest such algorithm is possibly Matching

Pursuit (MP) [12]. New elements are selected based on the
inner product between the current residual rn and the columns
in Φ after which a single element of y is updated. MP is
summarised as follows:
1) Initialise r0 = x,y0 = 0
2) for n = 1; n := n + 1 till stopping criterion is met

a) ∇n = ΦT rn

b) in = argi max |∇i|
c) yn

in = yn−1
in + ∇in

d) rn = rn−1 − φin∇in

3) Output: rn,yn

MP requires the evaluation of matrix multiplications in-
volving ΦT . If Φ is a union of dictionaries for which fast
transforms exist, then these matrix operations can be computed
efficiently. Another trick used in MP [12] is to compute

the inner products between the residual and the dictionary
elements recursively. This can be done using:

∇n+1
i = rn+1

T

φi = ∇n
i −∇n

inφT
inφi, (4)

where φin is the last selected element. This result is a direct
consequence of the MP error recursion:

rn+1 = rn − gn
inφin . (5)

This approach is of advantage whenever the inner products
〈φin , φi〉 between the dictionary elements can either be store
or efficiently computed and, crucially, whenever these inner
products are predominantly zero.
In Orthogonal Matching Pursuit [13], [17] y is updated in

each iteration by projecting x orthogonally onto all selected
atoms. OMP therefore finds the best signal approximation
possible with these atoms. This algorithm is:
1) Initialise r0 = x,y0 = 0, Γ0 = &
2) for n = 1; n := n + 1 till stopping criterion is met

a) ∇n = ΦT rn

b) in = argi/∈Γn−1 max |∇i|
c) Γn = Γn−1 ∪ in

d) yn = Φ
†
Γnx

e) rn = x − Φyn

3) Output: rn,yn

Here the dagger † indicates the Moore-Penrose pseudo-inverse.
Note that this inverse should never be calculated explicitly
and more efficient implementations of OMP based on QR
factorisation [17] or Cholesky factorisation are available. The
main drawback of these approaches is that they require addi-
tional storage, with the storage requirements for the QR based
method being larger than that for the Cholesky based approach.
The QR based method is, however, faster than the Cholesky
based method. The QR based method requires the storage
of an orthogonal matrix with dimensions M × nmax and an
upper triangular matrix of dimension nmax × nmax, where
nmax is the overall number of iterations of the algorithm. The
Cholesky method only stores a nmax×nmax triangular matrix
but requires the solution to three inverse problems per iteration
involving this matrix.

III. THE DIRECTIONAL PURSUIT FRAMEWORK
In iteration n the problem solved by Orthogonal Matching

Pursuit (OMP) is to minimise the quadratic cost-function (in
n unknowns):

‖x− ΦΓnyΓn‖2
2. (6)

Instead of updating yin by adding ∇n
in as in Matching Pursuit

(MP), we propose a directional update:

yn
Γn = yn−1

Γn + andΓn , (7)

where dΓn is an update direction. The optimal direction
in each iteration would be the direction that minimises the
squared error between the signal and the approximation based
on the selected subset of elements. However, as we discuss
below, evaluating this direction can be computationally de-
manding. In this paper we propose the use of three different



VERSION: MAY 3, 2007 3

directions, the gradient, a conjugate gradient and an approxi-
mated conjugate gradient. These are described in more details
in the next three sections.
Once an update direction has been calculated, the step-size

an can be determined. Because of the quadratic cost function,
a close form solution to this exists and it is easy to show [18,
pp. 521] that the optimum step size is:

an = rnT

cn/(cnT

cn), (8)

where cn is the vector cn = ΦΓndn.
In general, a single directional update does not guarantee

convergence to the minimum of equation (6) (one could
therefore also term the method “nearly” Orthogonal Matching
Pursuit) and an additional generalisation of the proposed
approach would be to use several directional update steps
before selecting a new element.
This leads to the question of how and how often to select

new elements from the dictionary. As in MP and OMP, this
selection is based on the inner product between the residual
and the dictionary elements. Because all previously chosen
elements are updated in each iteration, it would be possible
to restrict the selection of new elements to those elements not
selected previously. However, whenever the selection criterion
suggest that an element should be selected again, this indicates
that the residual is ’far’ from orthogonal to the selected
elements (a requirement which would be met by the optimum
of equation (6)).
The theoretical considerations discussed in section VIII as

well as experimental results, some of which can be found
in section IX, show that it is beneficial to always select the
element with the largest inner product2. We therefore allow
the selection step to select elements more than once, i.e. we
do not force the selection step to select a new element in each
iteration, thereby letting the algorithm automatically decide
how many directional update steps are required for each new
element.
The Directional Pursuit family of algorithms can then be

summarised as follows:
1) Initialise: r0 = x,y0 = 0, Γ0 = &
2) for n = 1; n := n + 1 till stopping criterion is met

a) ∇n = ΦT rn

b) in = argi max |∇i|
c) if in /∈ Γn−1: Γn = Γn−1 ∪ in, else Γn = Γn−1

d) calculate update direction dΓn

e) cn = ΦΓndΓn

f) an = rnT

cn/(cnT

cn)
g) yn

Γn := yn−1
Γn + andΓn

h) rn = rn−1 − ancn

3) Output: rn,yn

IV. GRADIENT PURSUIT

One of the simplest update directions that springs to mind
is the gradient evaluated at the current coefficient value. This

2This for example ensures that the algorithm belongs to the class of General
MP algorithms defined in [19](see IX).

leads to an algorithm we will call Gradient Pursuit (GP). The
gradient of equation (6) is:

∇Γn = ΦT
Γn(x − ΦΓnyn−1

Γn ). (9)

Looking at this gradient it is important to realise, that this
gradient is exactly the vector ∇n restricted to the elements
in Γn, which has already been calculated in step 2.a) of
the Matching Pursuit (MP) algorithm, i.e. MP calculates this
gradient in each step, so that the use of this gradient comes
for free in a directional pursuit approach. The only additional
cost compared to MP is then the evaluation of the step-size.
(Note, however, that when updating more than one element in
yn, the recursion in equation (4) becomes less efficient.)

V. CONJUGATE GRADIENT PURSUIT

Another popular directional optimisation algorithm is the
conjugate gradient method [18, Section 10.2], [20, Section
16.4], which is a well known optimisation procedure that
is guaranteed to solve quadratic optimisation problems in as
many steps as the dimension of the problem. The conjugate
gradient algorithm can be summarised as follows. We de-
note the cost function to be minimised by 1

2
yT Gy − bTy

(which is equivalent to solving Gy = b over y). The
conjugate gradient method uses directional updates that areG-
conjugate to the previously chosen directions. A set of vectors
{d1,d2, . . . ,dn} is G-conjugate if

dnT

Gdk = 0 (10)

for all k *= n. More details can be found in for example [18,
Section 10.2] and [20, Section 16.4].
The same idea can be used in the directional Pursuit frame-

work, where we now want to calculate an update direction that
isGΓn conjugate to all previously used update directions. Here
GΓn = ΦT

ΓnΦΓn . The cost function is now

‖x− ΦΓnyΓn‖2
2, (11)

where the dimension n of the cost function changes whenever
a new element is selected. Let dk

Γn be the kth conjugate
gradient. The subscript reminds us that this vector is |Γn|
dimensional. We update yΓn (which is an |Γn|-dimensional
sub-vector of y) in direction dn

Γn , which is equivalent to
updating y using a directional vector dn of dimension N ,
with all elements zero apart from the element indexed by Γn.
Therefore, we can think of all previous update directions dk

Γk

(note the superscript in the subscript) as higher dimensional
vectors dk

Γn , where the elements associated to the ‘new’
dimensions are set to zero.
To derive the algorithm, we recall the conjugate gradient

Theorem [20, Theorem 16.2], which we give here using the
notation introduced above:
Theorem 1: [20, Theorem 16.2] Let [d1

Γn ,d2
Γn , . . . ,dn

Γn ]
be any set of non-zero GΓn -conjugate vectors, then the
solution to the problem GΓnyΓn = ΦT

Γnx is

yn
Γn =

n
∑

k=1

akdk
Γn , (12)
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with step-sizes:

ak =
rkT

ΦΓkdk
Γn

dkT

ΓnGΓkdk
Γn

, (13)

where

rk = x− ΦΓk−1

(

k−1
∑

i=1

aidi
Γn

)

. (14)

The importance of this theorem lies in the fact that the
step-size ak only depends on the current residual error and
the current conjugate gradient. This means that yn

Γn can be
approximated iteratively by calculating a new direction and
step-size in each iteration.
The other important aspect of this theorem is that it guaran-

tees an optimal solution in N iterations. In a directional pursuit
framework, the dimensions can change from one iteration to
the next. In the first iteration we have a single trivial direction
and step-size. In general, if the n − 1 previously used update
directions are GΓn conjugate, then, by the above theorem,
we only require one additional conjugate gradient update to
exactly solve the n dimensional problem.
Assume that the n−1 previously used update directions are

GΓn−1-conjugate. We want to show that they are also GΓn -
conjugate (note the different subscripts!). Using the matrix
Dn−1

Γn−1 to denote the matrix containing all conjugate update
directions from iteration n − 1 and the matrix Dn−1

Γn to be
the same matrix but with an additional row of zeros at the
bottom. From the definition of GΓn -conjugacy we require
Dn−1

T

Γn GΓnDn−1
Γn = B, where B is a diagonal matrix.

Because the last row of Dn−1
Γn contains only zeros, the last

row and column ofGΓn are multiplied by zeros, which implies
that

B = Dn−1
T

Γn−1 GΓn−1Dn−1

Γn−1 = Dn−1
T

Γn GΓnDn−1
Γn . (15)

The main question is now how to calculate a new conjugate
gradient. We require the new direction to be GΓn -conjugate.
Therefore, the new direction has to satisfy

Dn−1
T

Γn GΓndn
Γn = 0 (16)

We write each new direction as a combination of all previously
chosen directions and the current gradient ∇Γn [18, Section
10.2]

dn
Γn = b0∇Γn + Dn−1

Γn b. (17)

Without loss of generality we can set b0 = 1. Pre-multiplying
by Dn−1

Γn GΓn and using the GΓn -conjugacy then leads to the
n − 1 constraints:

Dn−1
T

Γn GΓn(∇Γn + Dn−1
Γn b) = 0 (18)

from which we can write

b = −(Dn−1
T

Γn GΓnDn−1
Γn )−1(Dn−1

T

Γn GΓn∇Γk). (19)

Again using GΓn -conjugacy we find that Dn−1
Γn GΓnDn−1

Γn

is diagonal so that the conjugate gradient can be calculated
without matrix inversion.
Note that in the standard conjugate gradient algorithm [18,

Section 10.2], [20, Section 16.4] each new update direction
can be calculated as a combination of the current gradient and
the single previous update direction alone, i.e. in the standard

conjugate gradient algorithm, all but the last conjugate update
direction turn out to be G conjugate to the current gradient
such that b in equation (19) has only a single non-zero
element. Unfortunately, in the context of OMP, the changing
dimensionality destroys this property so that we have to take
account of all previous update directions in each step.
For an efficient implementation it is worth noting that in

the calculation of b the product Dn−1
Γn GΓn can be updated

recursively by adding a single new row and column in
each iteration. Note also that (Dn−2

Γn−1GΓn−1Dn−2

Γn−1)−1 and
(Dn−1

Γn GΓnDn−1
Γn )−1 are equal apart from a single additional

value added in each iteration. This value is (cn−1
T

cn−1)
used in step 2.f) of iteration n − 1 and does not have to be
recalculated.
It is important to realise that the algorithm derived here

is different form an implementation of OMP in which a full
conjugate gradient solver is used for each newly selected
element. Instead, the proposed method only uses a single
directional update step for each new element. The most
similar method to the proposed algorithm is probably the
implementation of OMP proposed in [13], which also uses
a directional update. However, the method in [13] uses matrix
inversions, which have to be updated iteratively and which can
make the approach less stable.
Another approach to OMP is based on QR factorisation. The

selected dictionary ΦΓn is decomposed into ΦΓn = QΓnRΓn

where in each iteration new elements are added to QΓn−1 and
RΓn−1 . The algorithm then does not need to evaluate yΓn in
each iteration, instead, rn = rn−1 − (qT x)q, where q is the
newly added column in QΓn . Using zΓn = QT

Γnx, the final
solution is yΓn = R−1zΓn , which can be solved efficiently
by back-substitution.
Interestingly, the QR factorisation and the proposed con-

jugate gradient method show many similarities. In the nth

iteration the QR based approach calculates an estimate:

x̂ = QΓnRΓny = QΓnzΓn , (20)

whilst the conjugate gradient based approach calculates the
approximation as:

x̂ = ΦΓnDΓnaΓn (21)

where aΓn is the vector containing the different up-
date step sizes. Because of GΓn -conjugacy the matrix
DnT

Γn ΦT
ΓnΦΓnDn

Γn must be diagonal. Also, it can be shown
by induction that, with appropriate diagonal weighting matrix
W:

ΦΓnDn
ΓnW = QΓn . (22)

This implies that,

W−1aΓn = zΓn . (23)

The conjugate gradient approach therefore calculates a similar
decomposition as the QR factorisation, the way this decom-
position is represented is, however, slightly different.
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VI. APPROXIMATE CONJUGATE GRADIENT PURSUIT

We have just spent some effort in deriving an algorithm
similar to Orthogonal Matching Pursuit (OMP) based on QR
factorisation, not only in terms of the decomposition as shown
above, but also in terms of the computational requirements.
Apart from the additional insight this derivation has given us,
it also allows us to derive a fast algorithm that approximates
the conjugate gradient. This algorithm is then a compromise
between MP and OMP. An approximate conjugate gradient
update does not guarantee the OMP solution in each step, the
benefit is, however, that the approximate conjugate gradient is
much easier to calculate than the full conjugate gradient. Fur-
thermore, the memory requirements are significantly reduced.
The conjugate gradient implementation derived above re-

quired the storage of all previous update directions. This
storage requirement can be significantly reduced by calculating
the new update direction such that it is GΓn -conjugate to
only a limited number of previous directions. This leads to an
Approximate Conjugate Gradient Pursuit (ACGP) algorithm.
For notational simplicity, we here restrict the derivation and
only considering a single update direction. The more general
derivation follows similar arguments.
To enforce GΓn -conjugacy to the previous update direction

we have
dn

Γn = b0∇Γn + dn−1
Γn b1. (24)

We can again set b0 = 1 and calculate b1 using

dn−1
T

Γn GΓn(∇Γn + dn−1
Γn b1) = 0. (25)

Therefore

b1 = −(dn−1
T

Γn GΓndn−1
Γn )−1(dn−1

T

Γn GΓn∇Γk). (26)

For an efficient implementation it is worth noting that

(dn−1
T

Γn GΓndn−1
Γn ) = (ΦΓndn−1

Γn )T (ΦΓndn−1
Γn ) (27)

where ΦΓndn−1
Γn = cn−1 has been evaluated in the previous

iteration to determine the step size an and the same is true
for the denominator, which is nothing else than the product
cn−1

T

cn−1 calculated in the previous iteration.

VII. COMPUTATIONAL COMPLEXITY
The main computational bottel-neck in the algorithms dis-

cussed in this paper is the evaluation of matrix vector multipli-
cations of the form Φx and ΦT y. In most practical situations,
Φ is chosen to be the union of dictionaries for which fast
transforms exist such as Wavelet transforms or Fourier based
transforms. This means that these multiplications can be
computed efficiently [16]. Nevertheless, these matrix vector
multiplications remain the limiting factor for most algorithms.
As noted above, for Matching Pursuit (MP), the new gradient
can often be updated locally as only a single element is
updated in each iteration. In the table below, we make no use
of this fact. All of the methods proposed in this paper update
all selected elements at the same time making this strategy
less effective. This is the price one has to pay for updating all
elements.

TABLE I
COMPARISON OF THE METHODS IN TERMS OF COMPUTATIONAL

REQUIREMENTS IN ITERATION n.

Algo. Multiplications of vector by Φ (other) Storage
MP 1 0
GP 2 0
ACGP 3 0
CGP a) n + 3(+1 mult. by DΦT ) D

CGP b) 3(+1 by D and 1 by DT G) D, DT G

To compare the different approaches we compare the re-
quired number of matrix vector multiplications and distinguish
between those involvingΦ and those involving other matrices.
The Gradient Pursuit (GP) method requires the additional
evaluation of the step size, while the approximation to the
conjugate gradient involves one further matrix vector multi-
plication to evaluate b1. All of these mulitiplications involve
Φ.
On the other hand, the Conjugate Gradient Pursuit algorithm

requires additional storage and multiplications by more general
matrices. Here two implementational strategies are available,
one in which the matrix DT G is updated iteratively (which
can be done efficiently) and one, in which the matrix is re-
evaluated in each iteration. The former uses less computations
but requires more storage.
We summarise the computational cost in terms of multi-

plications of vectors with the dictionary (and with general
matrices) as well as the additional storage required in table
I for Matching Pursuit (MP), Gradient Pursuit (GP), Ap-
proximate Conjugate Gradient Pursuit (ACGP) and the two
implementations of Conjugate Gradient Pursuit (CGP).

VIII. CONVERGENCE
Note that the directional pursuit algorithms proposed here

belong to the general family of General MP as defined in
[19]3. The theoretic results presented in [19] do therefore also
hold for the directional pursuit algorithms.
We here derive an additional convergence result for Gradient

Pursuit (GP).
Theorem 2: There exist a constant k < 1, which only

depends on Φ, such that the residual calculated with GP
decays as:

‖rn‖2
2 ≤ k‖rn−1‖2

2 (28)
Proof: Let us use rn = rn−1 − anΦΓnd, then it can be

shown that

‖rn‖2
2 = ‖rn−1‖2

2 −
(rn−1

T

ΦΓnd)2

‖ΦΓnd‖2
2

. (29)

Using d = ΦT
Γnrn−1 we can bound

(rn−1
T

ΦΓnΦT
Γnrn−1)2

‖ΦΓnΦT
Γnrn−1‖2

2

≥
‖ΦT

Γnrn−1‖4
2

‖ΦΓn‖2
2‖Φ

T
Γnrn−1‖2

2

≥
‖ΦT

Γnrn−1‖2
2

‖ΦΓn‖2
2

≥
‖ΦT

Γnrn−1‖2
∞

‖ΦΓn‖2
2

(30)

3Given that the algorithms selects the element with the largest inner product
in each iteration
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Fig. 1. Comparision between Matching Pursuit (dotted), Orthogonal
Matching Pursuit (dashed), Gradient Pursuit (dash-dotted) and Approximate
Conjugate Gradient Pursuit (solid) for a mildly sparse signal. Data averaged
over 1 000 randomly generated signals (see text).

By theorem 9.10 in [15, pp. 422], there exist a ω > 0 such that
‖ΦTx‖2

∞ > ω‖x‖2
2, for all x. Due to the selection procedure,

‖ΦTx‖2
∞ = ‖ΦT

Γnx‖2
∞. Gathering this all together we see that

the theorem holds for k = (1− ω
‖Φ‖2

2

), where ‖Φ‖2
2 ≥ ‖ΦΓn‖2

2

is the squared norm of the full dictionary.
Note that for Matching Pursuit (and similarly for Orthogonal

Matching Pursuit), a corresponding result holds where k =
(1 − ω)[15, section 9.5.2], which in general would suggest a
faster decay, however, the numerical studies below show that
GP outperforms MP in general. Note also, that the direction d

that minimises the expression in equation (29) is exactly the
direction that would give the OMP solution.
Unfortunately, we have currently no convergence proof

for ACGP, however, a slight modification of the proposed
algorithms can be shown to converge in a finite number of
steps. This approach would use a gradient step (equation (9))
whenever a new element is selected, while the update direction
in equation (24) is used, whenever no new element is added to
the selected subset. Empirical evidence for this method shows
that the actual performance is close to that of GP and we
therefore do not pursue this method further here.

IX. EXPERIMENTAL EVALUATION
A. Signal Approximation Performance
We first evaluate the algorithms on a toy example and

compare the performance to Matching Pursuit and Orthogonal
Matching Pursuit. We generated 1 000 dictionaries of size
128 × 256, drawing elements φi uniformly from the unit
sphere. From each dictionary we selected 64 elements at
random and multiplied these with unit variance zero mean
Gaussian coefficients to generate 1 000 test signals. We then
run Matching Pursuit (MP), Orthogonal Matching Pursuit
(OMP), Approximate Conjugate Gradient Pursuit (ACGP) and
Gradient Pursuit (GP) on each example.
The averaged results are shown in figure 1 where we plot

the approximation error in dB against the iteration (top panel)

MP 0.02
GP 0.02
ACGP 0.03
OMP-QR 0.12

TABLE II
AVERAGE TIME IN SECONDS EACH ALGORITHM TOOK TO CALCULATE THE

RESULTS.

as well as against the number of non-zero coefficients selected
(lower panel). The results are virtually identical with the
exception of the results for MP, which often selected elements
repeatedly and therefore had an average error of 4dB higher
after 128 iterations as compared to the average error after it
had selected 128 different elements (which took on average
179 iterations). From these results it can be seen that the GP
algorithm is closer to the performance of OMP than to MP.
Overall we see that by incorporating a gradient step into the
pursuit framework, significant improvements can be made over
MP. Using ACGP can be seen to offer additional benefits.
We repeated a similar experiment in which we used a fixed

number of gradient steps in each iteration of GP (not shown).
Unsurprisingly, such an increase gives results that get closer
to the performance of OMP. It is, however, noteworthy that
ACGP with a single directional update step was found to
outperform GP, even if this method uses two gradient steps
per iteration.
The average computation times for the results are shown in

table II. All results are for our Matlab implementation4 of the
methods run on a Apple Macintosh G5 Quad 2.5GHz.
The above experiments were conducted with a signal gen-

erated using half as many non-zero coefficients than the signal
dimension. As shown in the next subsection, in this regime,
the algorithms are not able to exactly recover the exact non-
zero coefficients. We therefore repeat the experiment reported
above, but this time, the signals were generated using only 12
non-zero coefficients. As shown in the next section, for such
highly sparse signals, all algorithms are able to recover the
correct non-zero elements with high probability.
The averaged results are shown in figure 2, where we again

plot the SNR value in dB against the iteration count, i.e.
against the number of gradient steps (top panel) as well as
against the number of selected elements (bottom panel).
The performance in the lower panel shows that in this

experiment the algorithms perform comparable. They all select
the correct atoms most of the time, so that they all find an exact
signal representation. They also do not differ significantly
in their approximation behaviour. A slight exception is MP,
which occasionally select more than 12 non-zero elements.
This accounts for the slightly worse performance observed.
The results in the top panel reveal that ACGP and GP require
more iterations in general to select the 12 non-zero elements,
using roughly 20 and 25 steps respectively. Obviously, OMP
selects a new element in each iteration and finds the correct
representation after 12 iterations, while MP shows its typical

4The software will be made available through the first authors web-page.
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Fig. 2. Comparision between Matching Pursuit (dotted), Orthogonal Match-
ing Pursuit (dashed), Gradient Pursuit (dash-dotted) Approximated Conjugate
Gradient Pursuit (solid) for a highly sparse signal. Data averaged over 1 000
randomly generated signals (see text).

exponential error decay, which theoretically would mean that
the algorithm would never reach the exact result. (We stopped
MP once it attained a certain approximation accuracy.)

B. Exact Recovery Performance
For highly sparse signals and certain dictionaries, it is

known that the Pursuit type algorithms are guaranteed to
exactly recover the elements used to generate the signal [19].
These bounds are worst case bounds and the same bounds
hold for all algorithms given in this paper. We here analyse
the average performance of the methods in terms of exact
recovery of the elements used to generate the signal.
The signals were generated as in the previous experiment,

however, we varied the number of elements used to generate
the signals over a larger range. The results (averaged over
10 000 runs) are shown in figure 3. To support our argument
for a repeated selection of atoms, we here show the results for
two different implementations of GP and ACGP, one in which
we select a new element in each iteration (shown with grey
lines) and one in which we allowed the algorithm to select
atoms repeatedly (black lines). All algorithms were stopped
after they had selected exactly the number of elements used
to generate the signal.
We see that OMP outperforms the other algorithms in terms

of retrieving the true signal elements, however, ACGP and
GP are not far off, when we allow elements to be selected
repeatedly. Forcing GP and ACGP to select a new element
in each iteration is seen to have detrimental effects for the
performance in terms of exact signal recovery.

C. Audio Example
In order to demonstrate the applicability of the proposed

methods to larger problems that cannot be solved with current
OMP implementations, we used MP, GP and ACGP on a
ca. 2.5 second long excerpt from a jazz trio audio recording
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Fig. 3. Comparison of the algorithms in terms of exactly recovering the
original coefficients. The grey lines are the implementation of the algorithms
in which a new element is chosen in each iteration, while the black lines
allow elements to be chosen repeatedly. Results averaged over 1000 runs.

(mono, 44 100kHz sampling frequency). As a dictionary we
used a four times overcomplete Modified Discrete Cosine
Transform (MDCT) dictionary, using Tukey windows of length
4096 and 512 with 75% overlap. We also added i.i.d. Gaussian
noise to the signal before analysis, so that the analysed signal
had a signal to noise ratio (SNR) of 20dB.
We run MP, GP and ACGP (both with a single gradient

step), using a fast implementation of the MDCT, to retrieved
as many coefficients as the dimension of the signal (110 592
samples)5.
In figure 4 we compare the approximation performance

and the de-noising performance of the methods. The lower
panel shows the detail in the box in the top panel. We here
show the performance in terms of signal approximation (the
error between the signal estimate and the noisy signal) and
in terms of de-noising performance (the error between the
signal estimate and the noiseless signal). We found that the
performance of ACGP was virtually identical to GP in this
example. Also, looking at the decay of the error in the top
panel for the signal approximation performance of GP, we see
that the error goes virtually to zero (150dB) once we select as
many elements as the signal dimension. This suggests that the
algorithm gives nearly the exact signal projection, explaining
why ACGP did not offer any advantages in this example.
We see that GP offers a much better signal approximation

for the same number of used elements. For example, using
10% of the elements GP offers 0.75 dB better performance
than MP, while for 25% the performance benefit is 1.7 dB. For
de-noising the maximum SNR were, 22.2 dB for GP and 21.9
dB for the MP algorithm. These were achieved using 7.8% and

5Note that we do not use OMP as an implementation of OMP based on
QR factorisation would require the storage of a square 110 592 × 110 592
matrix as well as the storage of an upper triangular matrix of the same size.
For 64 bit floating point arithmetic, this would require 50 451 628 032 bytes
or roughly 47 gigabytes of storage! An implementation based on Cholesky
factorisation requires less storage (‘only’ an upper triangular matrix), but the
required solutions to the inverse problems is far to costly for upper triangular
matrixes of this size.
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Fig. 4. Approximation and de-noising performance of Matching Pursuit and
Gradient Pursuit.

9.3% of the selected elements respectively. Therefore GP does
not only require less elements to approximate or de-noise the
signal, it also shows a slightly better de-noising performance.

D. Compressive Sampling
An application that crucially depends on the algorithm being

able to estimate the correct elements is compressive sampling.
Compressive sampling is an emerging paradigm that exploits
the sparsity of a signal in some transform domain in order to
reduce the number of samples required for signal acquisition
[4]. In the language of this paper, assume a signal x has a
sparse representation Φy. In several applications, it is often
not possible to measure all values of x, instead, it is possible
to acquire a small number of linear measurements of x of the
form z = Mx, where M is a measuring matrix and where the
dimension of z is less than that of x. The problem is then to
estimate x given only z, M and Φ. If M and Φ have certain
properties and if y is sparse enough, then it is possible to
recover x [4] by finding a sparse representation y such that
z = MΦy.
One particularly promising application domain of compres-

sive sampling is Magnetic Resonance Imaging (MRI) [21] and
we take our example from this area. In particular, we here
use the same MRI example as presented [4], which uses the
Logan-Shepp phantom. The Logan-Shepp phantom is shown
in the top left panel in figure 5.

Original / Reconstruction Haar Wavelet Transform

Frequency Domain Observation

Fig. 5. Magnetic Resonance Imaging (MRI) Example. Original phantom
image (top left), Fourier domain representation (bottom left), observation of
15% of the frequency coefficients sampled along 42 radial lines (bottom right)
and sparse representation in Haar wavelet domain (top right).

The physical process of acquiring MRI images is equivalent
of taking one dimensional slices from the 2 dimension Fourier
domain of the image under investigation. The magnitude of
the 2-D Fourier transform is shown in the bottom left panel
of figure 5. The measuring matrix M here only takes a small
subset of these slices as shown in the bottom right panel in
figure 5.
In order to reconstruct the original phantom image, we

utilise the fact that the image has a sparse representation in
the Haar wavelet transform. The Haar wavelet coefficients
are shown in the top right panel of figure 5, where we plot
the logarithm of the absolute of these coefficients. For this
particular image of size 256 × 256, it was observed that the
original image is well approximated (over 300 dB peak signal
to noise ratio) using only 4000 of the wavelet coefficients.
We compare the performance of OMP, MP, GP and ACGP

using between 30 and 52 radial lines from the 2 dimensional
Fourier domain as the measurements. We here used the
implementations of the algorithms in which we allowed the
algorithms to select elements repeatedly. All algorithms were
run until they had selected 4000 different elements. After
the selection of 4000 elements with the different algorithms,
we additionally calculated the vectors yΓn that minimised
equation (6) for the particular elements selected with each of
the methods.
For comparison, we also used the Gradient Projection for

Sparse Reconstruction (GPSR) algorithm proposed in [10]
(labelled L1 in figure 6), which solved the problem ‖x −
Φy‖2

2 + λ‖y‖1. We set the parameter λ for each condition
such that the algorithm recovered approximately 4000 non-
zero elements.
The results are shown in figure 6, where we show the results

after the projection onto the selected subset. The solid lines
are the results calculated with ACGP, the dashed lines are
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Fig. 6. Comparison between the different algorithms for different numbers of
observations in the compressive sampling example. The solid line shows the
results for the approximate conjugate gradient method, the dashed line shows
the results for Gradient Pursuit and the dotted line shows the performance of
Matching Pursuit. Shown are the Peak Signal to Noise Ratio (PSNR) after
orthogonal projection onto the selected elements.

the results for GP and the dotted lines are the results for
MP. The abscissa here is the ratio of the dimension of the
measurement z to the dimension of the signal x. The ordinate
shows the Peak Signal to Noise Ratio (PSNR) in dB. The
results for GP and ACGP before projection were nearly the
same as those shown here for ratios of measurement to signal
dimension above 0.15, while they were several dB less for the
other ratios. For MP as well as for GPSR, the results always
were several dB better after projection. Running OMP, it is
interesting to note that for certain problem sizes the algorithm
is able to exactly recover the significant coefficients, while
for slightly larger ones it might fail. A visual comparison of
the reconstruction for the experiment in which the observation
dimension was 15% of the signal dimension is given in figure
7 for the result found with ACGP and the L1 method.
From the results it is clear that MP fails to recover the

original signal over the range of measurement dimensions
used, while ACGP recovers the original signal for a mea-
surement to signal dimension ratio above 15%, where it fur-
thermore also returns a result close to the projection onto the
selected elements. It should be noted that the best PSNR value
achievable with 4000 wavelet coefficients was over 300dB
for this example and ACGP was here able to nearly recover
these elements above a measurement to signal dimension ratio
above 15%. GP was found to also perform well, however,
we found that this algorithm required more observations to
exactly recover the signal. Interestingly, the GPSR algorithm,
which solves a constraint quadratic optimisation problem did
not seem to be able to recover the correct elements and the
performance was found to be worse than that of GP and
ACGP. However, GPSR outperformed MP. Note that the better
performance of OMP as compared to convex optimisation of
the problem was shown for certain problems in [22] (for other
problems the performance of OMP can be worse).
All the greedy algorithms were run until they had selected

4000 different elements. Interestingly, MP and OMP were

ACGP Reconstruction

L1 Reconstruction

Fig. 7. Magnetic Resonance Imaging (MRI) Example. Comparison between
the reconstructed images using the ACGP algorithm and the l1 algorithm for
the experiment in which the observation dimension was 15% of the signal
dimension.

found to be slower in this example than the other two algo-
rithms. The OMP algorithm used here was based on Cholesky
factorisation and we used the implementation available in the
SparseLab toolbox (http://sparselab.stanford.edu/). MP took
roughly twice as long as ACGP and three times as long as
GP. This can be explained by looking at the total number of
iterations, i.e. at the number of times the algorithms selected
elements repeatedly. ACGP as well as GP only selected a
small number of elements repeatedly and the total number of
iterations was not much more than 4000, MP on the other hand
was found to require around 12 000 iterations to select 4000
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TABLE III
COMPARISON BETWEEN THE APPROXIMATE COMPUTATION TIME OF
SEVERAL ALGORITHMS RUN ON THE MIR EXAMPLE. TIMES ARE

NORMALISED TO THE TIME OF GP.

GP 1.0
ACGP 1.5
MP 3.4

OMP-Chol 3.2
GPSR-PBB 0.4

TIM 0.4
LARS 3.4

Homotopy 3.7

different elements, i.e. MP on average selected each element
three times. The GPSR algorithm was found to be very fast
and took a fifth of the time of MP to converge, however,
the calculated coefficients are far from the minimum least
squares solution for the selected coefficients and the required
orthogonal projection, which we calculated using a conjugate
gradient algorithm, took roughly the same computation time
than the GPSR itself. The results also show that GPSR is not
able to exactly recover the correct non-zero elements in the
example used here. A more thorough study and comparison
of the performance of l1-regularised optimisation methods and
OMP can be found in [22].
A comparison between the computational times of the

different algorithms is given in table III6. The times shown
include the times for the calculation of the orthogonal pro-
jection onto the selected subset, which was here done using
a conjugate gradient algorithm. We also state the compu-
tation times for other state of the art algorithms available.
In particular we also use the LARS algorithm and the
Homotopy method as described in [8], both implemented
in the SparseLab toolbox (http://sparselab.stanford.edu/).
We also used the Truncated Interior-Point Method for
l1-regularised least squares (which we will call TIM)
from [9] an implementation of which is available at
(http://www.stanford.edu/∼boyd/l1 ls/). This method is very
similar to the GPSR-PBB method in [10], which is available
for download from (http://www.lx.it.pt/∼mtf/GPSR/). To fa-
cilitate comparison we have here normalised the computation
times by dividing them all by the time of GP (which took
around 30 minutes on a Apple Macintosh G5 Quad 2.5GHz
computer). Note that the results for GPSR-PBB, the homotopy
method as well as TIM (which all solve the same convex
optimisation problem) where comparable to the results shown
above for GPSR-PBB. LARS (which only approximately
solves the convex optimisation problem) was found to perform
marginally worse.

X. DISCUSSION AND CONCLUSION

Sparse representations are used in many areas of signal
processing and efficient algorithms are required to solve many
real world problems. In this paper we have introduced a
novel extension to greedy Matching Pursuit type algorithms
based on directional optimisation. This framework allows

6Note that we here do not use equation (4) in our MP implementation,
which would make MP substantially faster [16].

different directions to be chosen and we have here discussed
three possibilities, the gradient, the conjugate gradient and
an approximation to the conjugate gradient. While the conju-
gate gradient solves the Orthogonal Matching Pursuit (OMP)
algorithm exactly, the evaluation of this direction has the
same computational complexity as previous implementations
of OMP, such as the approach based on QR factorisation.
The gradient as well as the approximate conjugate gradient
are much easier to calculate, with the gradient being available
in Matching Pursuit (MP) for free. The resulting algorithms
therefore have the same order of computational complexity as
MP.
For many applications, OMP can outperform convex opti-

misation methods. For large problems, in which the number
of non-zero elements is of the order of several thousands or
more, the computational requirements and storage demands
of currently available implementations of OMP can easily
become too large, and faster alternatives are required. In this
paper we have suggested two such alternatives, the Gradient
Pursuit (GP) algorithm and the Approximate Conjugate Gra-
dient Pursuit (ACGP) method.
Experimental results show that both, GP as well as ACGP

outperform MP and often get a performance close to OMP,
with ACGP often exhibiting a better performance than GP. In
the de-noising example, the performance of GP was compara-
ble to ACGP and the results suggested that the method gives
results close to OMP. This is probably due to the particular
example used in which the selected elements only influence
a small part of the signal. A newly selected element does
then not influence the optimal solution for most of the other
coefficients.
Greedy strategies often select a single element at a time and

therefore require at least as many iteration as the number of
non-zero elements to be selected.This could be overcome by
selecting more than one element at a time, for example by
using a thresholding procedure as recently proposed for the
Stagewise Orthogonal Matching Pursuit (StOMP) algorithm
[23].
The only draw back of the suggested approach when com-

pared to MP is that in MP it is often possible to update the
inner products locally, whenever the Gram matrix is sparse.
As the algorithms suggested in this paper update all previously
selected elements, such an approach is not directly applicable.
Nevertheless, as shown in the experiments, the methods are
applicable to larger problems, for which traditional implemen-
tations of OMP are not feasible.
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