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Abstract

Errors are common in strategic situations. We use a genetic algorithm to simulate the evolu-

tion of error-prone finite automata in the repeated Prisoner’s Dilemma game. In particular, the

automata are subjected to implementation and perception errors. The computational experiments

assess whether and how the distribution of outcomes and structures in the population changes with

different levels of errors. We find that the complexity of the automata is decreasing in the proba-

bility of errors. Furthermore, the prevailing structures tend to exhibit low reciprocal cooperation

and low tolerance to defections as the probability of errors increases. In addition, by varying the

error-level, the study identifies a threshold. At and above the threshold, the prevailing structures

converge to the open-loop (history-independent) automaton Always-Defect. On the other hand,

below the threshold, the prevailing structures are closed-loop (history-dependent) and diverse,

which impedes any inferential projections on the superiority of a particular machine.
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1 Introduction

Agents, in the real world, are not hyper-rational but engage in actions that are constrained by

the limitations of human nature and the surrounding environment. Due to these disturbances,

the decision-makers may occasionally draw incorrect inferences about their peers’ actions which

may lead to significant complications quite fast. For example, on September 1, 1983, Korean

Air Lines Flight 007 strayed into prohibited Soviet airspace around the time of a planned missile

test. It was shot down by the Soviets, killing all 269 people aboard. The Americans and Soviets

echoed their anger at each other in a short, but sharp, escalation of cold war tensions (Goldstein

1991).

In this paper, we use the genetic algorithm to simulate an evolving, error-prone population

that plays the repeated Prisoner’s Dilemma (PD) paradigm. The primary objective of the study

is to use computational experiments that incorporate different levels of errors to assess whether

and how the distribution of outcomes and strategies in the population changes. Our analysis

utilizes a novel tool, local polynomial regression, which has recently gained a considerable

amount of interest in social sciences. A secondary objective of the study is to identify and

discuss behavioral patterns that fare well in the simulated environments.

According to the thought experiment, a group of agents is set to play the PD game. Each

agent is required to submit a strategy that is implemented by a type of finite automaton called a

Moore machine (Moore 1956). The machine specifies actions contingent upon the opponent’s

reported actions. The agents play the PD game against each other and against their twin

in a round-robin structure. The machines of the agents are subjected to implementation and

perception errors. Implementation errors are errors in the implementation of actions along the

lines of Selten’s trembling hand (Selten 1975). Moreover, imperfect monitoring takes the form

of perception errors; that is, errors in the transmission of information. With the completion of

all round-matches, the actual scores and machines of every agent become common knowledge.

Based on this information, agents update their machines for the next generation.

Under the proposed framework, the incorporation of implementation and perception errors

is sufficient to reduce cooperative outcomes. In particular, we find that the prevailing structures

tend to exhibit low reciprocal cooperation and low tolerance to defections as the probability

of errors increases. Furthermore, the complexity of the machines, defined as the number of
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accessible states, is decreasing in the probability of errors. In addition, by varying the error-

level, the study identifies a threshold. At and above the threshold, the prevailing structures

converge to the open-loop (history-independent) automaton Always-Defect.1 On the other

hand, below the threshold, the prevailing structures are closed-loop (history-dependent) and

diverse, which impedes any inferential projections on the superiority of a particular machine.

The study aims to elicit an understanding of the patterns of reasoning of agent-based behav-

iors in the presence of errors. Conventional game theory rests on the foundations that agents

are hyper-rational with full ability to select the most-preferred action. Yet, the latter is rarely

justified as an empirically realistic assumption. Rather, it is usually defended on methodolog-

ical grounds as the appropriate theoretical framework to analyze behavior. On the contrary,

the incorporation of errors in the proposed context is a viable alternative and consequently,

one that merits further investigation. Having said this, we do hope, more than our specific

findings and interpretations, that this work will help move computational research away from

the study of misleading, hyper-rational agents and towards the study of agents with human-like

characteristics and qualities.

The rest of the paper is organized as follows. In Section 2, we review the related literature

while in Section 3, the concept of a Moore machine as the carrier of an adaptive agent’s

strategy is presented. In Section 4, we explain the methodology. In Section 5, we focus on the

results of the evolutionary process while elaborating on broad characteristics of the evolutionary

machines. In Section 6, we discuss the properties of the machines which are then compared to

the results of previous studies. Finally, in the Conclusion, we offer direction for future research.

2 Literature Review

The study is related to several strands of literature. First, it is related to the large literature on

optimization routines. The genetic algorithm (Holland 1975) is one of many search techniques

developed for solving hard combinatorial optimization problems in large search spaces. Other

1Oscar Volij (2002) provides a theoretical framework which confirms that the only evolutionary stable strategy

is Always-Defect when agents’ preferences are lexicographic; first, according to the limit of the means criterion,

and second, according to the complexity of the automaton.
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optimization techniques include: Simulated Annealing (Kirkpatrick, Gelatt and Vecche 1983),

Tabu Search (Glover and Laguna 1993), Stochastic Hill Climbing and Compset Algorithm

(Hamo and Markovitch 2005). Axelrod (1987) was the first to model the evolutionary process

of the repeated PD game with a genetic algorithm. Nevertheless, his study was restricted by

his use of strategies whose actions were contingent to the action profiles of (only) the last three

periods, and by his use of a fixed environment composed of (only) eight strategies. On the other

hand, Miller (1996) circumvented these restrictions by the use of a variable environment where

strategies co-evolved as the strategic population changed. In addition, Miller used automata to

enable the definition of many theoretically important strategies (for example, strategies relying

on counting or triggers) that could not be defined under the framework of Axelrod. Miller’s

approach is used in this formulation as well. Using finite automata as the carriers of agents’

strategies was first suggested by Aumann (1981) for the study of decision-making with bounded

rationality. The first application originated in the work of Neyman (1985) who investigated a

finitely-repeated game model in which the pure strategies available to the agents were those

which could be generated by machines utilizing no more than a certain number of states.

Additionally, several researchers have studied the effect of complexity on the set of equilibria

in repeated games with finite automata. Abreu and Rubinstein (1988) for one, showed that if

agents’ preferences are increasing in repeated-game payoffs and decreasing in the complexity of

the strategies employed, then the set of Nash-equilibrium payoffs that can occur is dramatically

reduced from the folk-theorem result (Fudenberg and Maskin 1986). Yet, the authors indicate

that a wide variety of payoffs remains consistent with equilibrium behavior in the presence

of complexity costs, including the strategy Always-Defect. Binmore and Samuelson (1992) in

their seminal work, motivated by the non-existence of an evolutionary stable strategy in the

PD game (see Boyd and Lorberbaum 1987) propose a modified evolutionary stable strategies’

solution concept. Under this solution concept, the strategy Always-Defect ceases to persist in

equilibrium. Foster and Young (1990) on the other hand, develop the concept of stochastic

stability which requires a population to be immune to persistent random mutations. Stochastic

stability has been successfully applied by Kandori, Mailath and Rob (1993) in the analysis of

symmetric 2 × 2 games, by Vega-Redondo (1997) in the analysis of competition among firms,

and by Ben-Shoham, Serrano and Volij (2004) in the analysis of a housing problem. Yet,

Bergin and Lipman (1996) point out a weakness of the concept of stochastic stability; the
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actions selected out of the recurrent classes depend on the rate of mutation. It is noteworthy

that Abreu and Rubinstein (1988), just like the other papers mentioned, define the complexity

of a strategy as the size of the minimal automaton implementing it. On the other hand, Banks

and Sundaram (1990) argue that the traditional number-of-states measure of complexity of an

automaton neglects some essential features such as informational requirements at a state. They

propose instead, a criterion of complexity which takes into account both the size (number of

states) and transitional structure of a machine. Under this proposition, they prove that the

resulting Nash equilibria of the machine-game are now trivial: the machines recommend actions

in every period that are invariably stage-game Nash equilibria.

Finally, the current work builds on the computational simulations’ literature. Robert Ax-

elrod pioneered this area, with the computational tournaments he conducted to determine the

best strategy in the repeated PD game. The results were a clear victory for Tit-For-Tat (TFT);

a strategy that starts off by cooperating and then imitates the most recent action of the op-

ponent. Bendor, Kramer and Stout (1991) have been, to our knowledge, the first to conduct a

computer tournament with random shocks. In their study, the authors re-evaluate the perfor-

mance of reciprocating strategies such as TFT and identify alternative strategies that sustain

cooperation in an environment with random shocks. The computer tournament is constructed

in a manner similar to the tournaments of Axelrod. The winning strategy in their tournament

is Nice-And-Forgiving (NAF) which differs in many ways from TFT.2 First, NAF is nice in the

sense that it cooperates as long as the frequency of cooperation of the opponent is above some

threshold. Second, NAF is forgiving in the sense that although NAF retaliates if the opponent’s

cooperation falls below the threshold level of cooperation, it reverts to full cooperation before

its opponent does, as long as certain minimal levels of cooperation are met by the opponent.

3 Finite Automata

A finite automaton is a mathematical model of a system with discrete inputs and outputs. The

system can be in any one of a finite number of internal configurations or “states.” The state of

the system summarizes the information concerning past inputs that is needed to determine the

2TFT’s performance was mediocre, placing eight out of thirteen strategies.
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behavior of the system on subsequent inputs. The specific type of finite automaton used here is

a Moore machine (Moore 1956). Let I denote the set of agents, Ai denote the set of i’s actions,

A denote the cartesian product of the action spaces written as A ≡
I
×
i=1
Ai, and gi : A → <

denote the real-valued utility function of i. Thus, a Moore machine for an adaptive agent i in

a repeated game of G = (I,{Ai}i∈I , {gi}i∈I) is a four-tuple (Qi, qi
0, f

i, τ i) where

• Qi is a finite set of internal states,

• qi
0 is specified to be the initial state,

• f i : Qi → Ai is an output function that assigns an action to every state, and

• τ i : Qi × A−i → Qi is the transition function that assigns a state to every two-tuple of

state and other agent’s action.3

In the first period, the state is qi
0 and the machine chooses the action f i(qi

0). If a−i is

the action chosen by the other agent in the first period, then the state of agent i’s machine

changes to τ i(qi
0, a
−i), and in the second period agent i chooses the action dictated by f i in

that state. Then, the state changes again according to the transition function given the other

agent’s action. Thus, whenever the machine is in some state q, it chooses the action f i(q) while

the transition function τ i specifies the machine’s transition from q (to a state) in response to

the action taken by the other agent.

C C,D

D
start C D

Figure 1: Grim-Trigger machine

3It is pertinent to note that the transition function depends only on the present state and the other agent’s

action. This formalization fits the natural description of a strategy as agent i’s plan of action in all possible

circumstances that are consistent with agent i’s plans. On the other hand, the notion of a game-theoretic

strategy for agent i requires the specification of an action for every possible history, including those that are

inconsistent with agent i’s plan of action. To formulate the game-theoretic strategy, one would have to construct

the transition function such that τ i : Qi ×A→ Qi instead of τ i : Qi ×A−i → Qi.
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Qi = {qC , qD}
qi
0 = qC

f i(qC) = C and f i(qD) = D

τ i(q, a−i) = {qC (q,a−i)=(qC ,C)
qD otherwise

For example the machine (Qi, qi
0, f

i, τ i) in Figure 1, carries out the Grim-Trigger strategy

in the context of the PD game. Thus, the strategy chooses C so long as both agents have

chosen C in every period in the past, and chooses D otherwise. In the transition diagram, the

vertices denote the internal states of the machine and the arcs labeled with the action of the

other agent, indicate the transition to the states.

The study considers errors in the implementation of actions and errors in the perception

of actions. Implementation and perception errors when considered in isolation lead to quite

different results. For instance, the machine Contrite-Tit-For-Tat in the repeated PD game is

proof against errors in implementation but not against errors in perception. The machine acts

in principle as Tit-For-Tat, but enters a “contrite” state if it erroneously implements a defection

rather than a cooperation. Consequently, the machine accepts the opponent’s retaliation and

cooperates for the next two periods but leaves the contrite state soon after. On the other

hand, if the machine Contrite-Tit-For-Tat mistakenly perceives that the opponent defected,

will respond with a defection without switching to the contrite state and will not meekly

accept any subsequent retaliation. It is therefore important to formally define implementation

and perception errors in the context of Moore machines.

Definition 1 The machine of agent i in the PD game commits an implementation error

with probability ε, when for any given state q, the machine′s output function returns the

action f i(q) with probability 1 − ε and draws another action “f i(q)” where f i(q)6=“f i(q)”

otherwise.4

That is, an implementation error level of ε indicates that with probability ε the course

of action dictated by the particular state of the machine will be altered. For example, a

4A more general definition would postulate that the machine of agent i commits an implementation error

with probability ε, when for any given state q, the machine′s output function returns the action f i(q) with

probability 1 − ε and draws another action ai ∈ Ai \ f i(q) randomly and uniformly otherwise. However,

since the action space in the PD game consists of only two actions, the former definition suffices.
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cooperation dictated by the particular state will be implemented erroneously as a defection

with probability ε. On the other hand, perception errors are defined as follows.

Definition 2 The machine of agent i in the PD game commits a perception error with

probability δ, when for any given opponent′s action a−i, the machine inputs the opponent′s

action a−i into the transition function with probability 1−δ and inputs the opponent′s action
“a−i” into the transition function where a−i 6=“a−i” otherwise.

Thus, a perception error level of δ indicates that with probability δ an opponent’s action is

reported incorrectly, while with probability 1− δ the opponent’s action is perfectly transmitted.

Furthermore, the study considers machines that hold no more than eight internal states. The

choice to keep the upper bound on the number of internal states at eight is a considered

decision. First, such a bound is reasonable given complexity considerations. As Rubinstein

(1986) indicates, agents seek to devise behavioral patterns which do not need to be constantly

reassessed and which economize on the number of states needed to operate effectively in a given

strategic environment. A more complex plan of action is more likely to break down, is more

difficult to learn, and may require more time to be executed. In fact, a number of studies (some

with subjects in the laboratory) have been suggestive of the effectiveness of simple strategies

over more complex ones in a wide range of environments (Axelrod 1984; Rust, Miller and Palmer

1994; Selten, Mitzkewitz and Uhlich 1997). Second, the choice of eight internal states allows for

a sufficient variety of machines to emerge that incorporate a diverse array of characteristics.5

4 Methodology

The mechanics of the genetic algorithm involve copying strings and altering states through the

operators of selection and mutation. Each generation starts with a given population called the

parent population. A new population of the same size is then constructed called the offspring

population. In our formulation, the algorithm operates with a population of machines. Initially,

a population of thirty machines is chosen at random. Then, each machine is tested against the

5To test the robustness of the results with respect to the size selection, computational experiments with

machines that held 16 states were conducted. The computations performed, confirm that the results are robust.
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Cooperate Defect

Cooperate 3,3 0,5

Defect 5,0 1,1

Table 1: Prisoner’s Dilemma Matrix

environment (which is composed of the other machines and its twin). The game-play occurs

for 200 periods per match. Each machine, thus aggregates a raw score based on the payoffs

illustrated in Table 1. The offspring population is constructed from the parent population, by

selecting the machines that aggregated the top twenty scores. In addition, ten new structures

are created via a process of selection and mutation. The process requires the draw of ten pairs

of machines from the parent population (with the probabilities biased by their scores) and the

selection of the better performer from each pair. Then, these ten machines undergo a process

of mutation.6 Mutation occurs when an element at a random location on the selected string

changes value. Each element on the string is subjected to a 4% independent chance of mutation,

which implies an expectation of 1 element-mutation per string.7 The population is iterated for

500 generations. The adaptive plan is summarized in Figures 2 and 3.8

6Bergin and Lipman (1996) indicate that mutation rates intent to represent either experimentation or com-

putational errors. In our context, mutation rates represent experimentation. In addition, we assume that the

mutation rate is constant across strings, across agents and over time.
7A higher mutation rate increases the variation in the population; as a result, in such an environment

the machine Always-Defect is hugely favored. The computational simulations performed with higher rates of

mutation (8% and 12% independent chance of mutation per element which imply an expectation of 2 and

3 elements-mutation per string, respectively) confirm this claim. On the other hand, the choice of a 4%

independent chance of mutation is a conservative one that allows forms of innovation to appear in the structure

of the machines while controlling for the variation in the population.
8For a more detailed discussion on genetic algorithms refer to the book by Goldberg (1989). No previous

knowledge of genetic algorithms is required to understand the description of this genetic algorithm.
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Specify error-level 
Fix max-periods = 200 
 
Create initial population: 30 agents (seed randomly) 
Initiate round-robin tournament 
 
For t = 1 to 500 do 
 
 For all agent-pairs do 
  For p = 1 to max-periods do 
   Award utils to each agent based on the PD matrix 
  End loop 
 
  Output performance score 
 End loop 
 
 Apply subroutine for the offspring-population-creation 
 Store agent results 
 
End loop 

Figure 2: Pseudocode of the Main Program

Sort agents based on performance score 
 
Copy top 20 agents to offspring-population 
 
Select 10 agent-pairs via probabilities biased by performance scores 
 
For each of 10 pairs do 
 Create new agent as a copy of the winner of the pair’s match 
 Mutate new agent by switching one element at random 
 
End loop 
 
 
 Figure 3: Subroutine of the Offspring-Population-Creation
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5 Results

In order to assess how the distribution of outcomes and structures in the population changes

with different levels of errors, four computational experiments were conducted. In particular,

the machines are subjected to a constant independent chance of implementation and perception

errors of 4%, 2%, 1% and 0%, respectively. In the absence of a theoretical background on the

functional form of the model, non-parametric methods are used to carry out the estimation.

More specifically, local polynomial regression was used to fit the dependent variables over the

course of the evolution.9 The dependent variables were found to exhibit non-stationary behavior

which is attributed to the selection dynamics of the genetic algorithm. All the smoothed curves

presented next, utilize first-ordered polynomial functions which are found in the literature to be

quite effective in balancing the bias-variance trade-off. In addition, the Epanechnikov-Kernel

weighting function was used. The bandwidth was chosen via the (data-based) rule-of thumb

bandwidth. The latter was preferred, in the absence of any periodical patterns on the way

agents behave across generations.

5.1 Evolution Of Payoffs

In Figure 4, local polynomial regression is used to fit the average payoffs10 over the course

of the evolution. The payoffs are found to exhibit non-stationarity which can be attributed

to the dependence of the generational selection. In the early generations, the agents tend to

use machines that defect continuously. The reason is that at the start of the evolution, the

machines are generated at random. In such an environment, the best strategy is to always

defect. With the lapse of a few generations though, machines in the less error-prone treatments

achieve consistent cooperation which allows the payoffs to move higher. The paired-differences

tests establish that the means of the treatments are statistically different at a 99% level of

significance. Thus, the incorporation of implementation and perception errors is sufficient to

alter the evolution of cooperative outcomes.

9A discussion on local polynomial regression can be found in the Appendix.
10The average payoffs of a given generation t are calculated as the sample average of the payoffs of the thirty

members of the population, and over the thirty simulations conducted for each treatment.
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Figure 4: Average Payoffs

5.2 Prevailing Machines

The incorporation of different levels of errors in the analysis provides a richer framework to

address the impact of errors on the structure of the prevailing machines. The clear winner in

the 4% and 2% treatments was the machine Always-Defect. Always-Defect was the winner in

22 out of the 30 simulations run in the 4% treatment, and in 19 out of the 30 simulations run

in the 2% treatment. The machine Always-Defect is presented in Figure 5. Always-Defect is an

open-loop machine; that is, the actions taken at any time-period do not depend on the actions

of the opponent.

On the other hand, the structures that prevailed in the 1% and 0% treatments were diverse.

This result halts any possible attempt to discern a particular behavioral pattern that fares

well in these specific treatments. Yet, it is noteworthy that unlike the open-loop machine

Always-Defect, the diverse array of machines that prevailed in the 1% and 0% treatments were

all closed-loop (history-dependent). Thus, the effect of different error-levels on the structure
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C,D

start
D

Figure 5: Always-Defect

of the machines points towards the existence of a threshold error-level at 2%. At and above

the threshold, the prevailing structures converge to the open-loop automaton Always-Defect,

whereas below the threshold, the prevailing structures are closed-loop and diverse.

5.3 Automaton Characteristics

Here, we ascertain broad characteristics of the structures that work “reasonably well.” To

that extent, it is necessary to use some summary measures of machine-behavior. The first

summary measure is the size of the machine, which is measured by its number of accessible

states. A state is accessible if, given the machine’s starting state, there is some possible

combination of the opponent’s possible actions that will result in a transition in that state.

Therefore, even though all machines are defined on eight states, some of these states may never

be reached. Other summary measures that shed more light to the machine-composition are

the cooperation-reciprocity and the defection-reciprocity. The cooperation-reciprocity is the

proportion of accessible states that respond to an observed cooperation by the opponent with

a cooperation. On the other hand, the defection-reciprocity is the proportion of accessible

states that respond to an observed defection by the opponent with a defection. Consequently,

in this subsection, we identify characteristics that are important to the survival of the machines

in the simulated environments. A characteristic is a property of the machines whose presence

can be objectively determined by an examination of the corresponding graph. Noticeably, the

characteristics listed are also indicators of strategic ideas underlying the machines.11

In Figure 6, local polynomial regression is used to fit the average number of accessible states

per generation of the four treatments. Over the course of the evolution the average number of

11All the statistical tables based on the tests performed can be provided by the author upon request.
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Figure 6: Average Number of Accessible States

accessible states is consistently less in the more error-prone environments. This suggests that

under more error-prone treatments, the average number of accessible states drops. Thus, if we

assume that the average number of accessible states is a good measure of machine-complexity,

then a possible conclusion is that strategic simplification is advantageous in the presence of

errors. The first descriptive characteristic of the machines is summarized below.

CHARACTERISTIC 1: The average number of accessible states of the machines is decreas-

ing in the probability of errors.

The average cooperation-reciprocity of the four treatments is fit into a local polynomial

regression in Figure 7. As the likelihood of errors increases, the machines tend to reduce

their cooperation-reciprocity. This observation also accounts for the low payoffs of Figure 4.

An alternative perspective to consider is the proportion of accessible states that respond to an

observed cooperation by the opponent with defection; this proportion is given by the expression

1 − cooperation-reciprocity. The latter expression can be used as a proxy for the degree of
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Figure 7: Cooperation-Reciprocity

sneakiness of the machines. Thus, machines with relatively low cooperation-reciprocity are

also relatively more sneaky, in the sense that these machines incorporate states that shoot for

the “temptation” payoff more often. Such exploitation can be camouflaged in the presence of

errors, but not in their absence. The second descriptive characteristic is summarized next.

CHARACTERISTIC 2: The cooperation-reciprocity of the machines is decreasing in the

probability of errors or, alternatively, the degree of sneakiness is increasing in the probability of

errors.

The defection-reciprocity of the four treatments is fit into a local polynomial regression in

Figure 8. The pattern deduced is that defection is not tolerated in the error-prone environments.

It is noteworthy that machines in general, are more likely to reciprocate a defection by the

opponent with a defection than to cooperate after the opponent cooperates. On the other hand,

the proportion of accessible states that respond to an observed defection by the opponent with

cooperation is 1− defection-reciprocity. This expression signifies the degree of forgiveness of

the machines. For example, a sizable 1− defection-reciprocity indicates that the machines on

average, incorporate quite a few states that respond to observed defections by the opponent
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Figure 8: Defection-Reciprocity

with cooperation. Yet, the computational experiments of Figure 8 indicate otherwise. The

third descriptive characteristic is summarized below.

CHARACTERISTIC 3: The defection-reciprocity of the machines is increasing in the prob-

ability of errors or, alternatively, the degree of forgiveness is decreasing in the probability of

errors.

6 Discussion

TFT was the winner in the tournaments with error-free strategies of Robert Axelrod (1984).

The performance of TFT lead Axelrod to identify some basic attributes that were necessary

for the emergence and survival of cooperation. These were: (i) an avoidance of unnecessary

conflict by cooperating as long as the other agent does, (ii) provocation in the face of an

uncalled for defection by the other, (iii) forgiveness after responding to a provocation, and (iv)
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clarity of behavior so that the other agent can adapt to your pattern of action. On the other

hand, Bendor, Kramer and Stout (1991) incorporated in their computer tournament random

shocks. The winning strategy in that tournament was Nice-And-Forgiving (NAF) which differed

in many ways from TFT. First, NAF was nice in the sense that it cooperated as long as the

frequency of cooperation of the opponent was above some threshold. Second, NAF was forgiving

(generous) in the sense that although NAF would retaliate if the opponent’s cooperation fell

below the threshold level of cooperation, it would revert to full cooperation before its opponent

did, as long as certain minimal levels of cooperation were met by the opponent.

Yet, the success of NAF is not a robust result but is limited to the particular ecology. As

Bendor, Kramer and Stout (1991) note, the generosity of NAF creates a risk: other strategies

may exploit NAF’s willingness to give more than it receives. In other words, NAF can be

suckered by a nasty strategy that is disinterested in joint gains.12 As Axelrod and Dion (1988)

aptly note, “in the presence of large amounts of errors, there is a trade-off: unnecessary conflict

can be avoided by generosity, but generosity invites exploitation.” Thus, strategies that are

unilaterally generous will not fare well in every ecology.

Another objection to NAF’s generosity is the lack of generalizability of this finding. With

the exception of social-welfare models, where agents are willing to exhibit generosity to increase

social surplus, other models do not establish the presence of ad hoc generosity in the agents’

decisions. In the difference-aversion models for example, agents may be particularly sensitive

and reactive to any indication that the other party is doing better or coming out ahead. Fur-

thermore in the reciprocity models, an agent’s generosity is likely to be influenced by the other

party’s behavior. Many recent experimental studies have demonstrated that the willingness to

be generous in games is sensitive not only to the choice set available to the agent contemplat-

ing an action, but also to the behavior of the other agent that generated that choice set (see

for example, Ioannou, Qi and Rustichini 2011). Consequently, when an unfavorable outcome

is attributed to the other party’s greed, individuals will abandon cooperation. Finally in the

competitive (self-interest) models, agents approach the game with a preference for outcomes

12Due to its generosity NAF lost in its pairwise play with every one of its opponents. In contrast to NAF’s

pattern, VIGILANT, the strategy that placed dead last in the tournament, beat every one of its partners in

bilateral play. VIGILANT was a highly provocable and unforgiving strategy that retaliated sharply if it inferred

that its partner was playing anything less than maximal cooperation.
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that maximize the difference between the parties. Thus, agents with a competitive motive may

be particularly unlikely to regard generosity as an attractive or viable strategy in a PD game.

In addition, laboratory research has identified several psychological factors that might di-

minish generosity among human strategists. First, the fear of exploitation or desire to avoid the

“sucker’s” payoff may make it difficult for individuals to risk generosity. Experimental studies of

the PD game in particular, have found that agents will often cooperate until they have evidence

or even the mere suspicion that the other party is taking advantage of them (see discussions in

Dawes and Thaler 1988). The fear of exploitation may induce individuals to engage in a kind of

defensive “stinginess” even though they recognize the merits of generosity. Furthermore, Pedro

Dal Bo and Guillaume Frechette (2011) provide compelling experimental evidence to suggest

that even in treatments where cooperation can be supported in equilibrium, the level of co-

operation may remain at low levels even after significant experience is obtained. The authors

conclude that, “these results cast doubt on the common assumption that agents will make the

most of the opportunity to cooperate whenever it is possible to do so in equilibrium.”

On the other hand, the summary measures of the present study point to a very different

direction from that in Bendor, Kramer and Stout (1991). In the computational experiments,

the cooperation-reciprocity of the machines is relatively low reflecting their readiness to exploit

(to sneak on the opponent). The reason is that an attempt to acquire the “temptation” payoff

can be camouflaged in the presence of errors but not in their absence. Furthermore, in sharp

contrast to NAF, the machines that evolve here are relentless punishers of defections. In fact,

the defection-reciprocity of the machines climbs to a proportion close to 1 in the environments

with high levels of errors indicating their lack of forgiveness to defections.

Of importance is also the finding that the size of the automaton is decreasing in the proba-

bility of errors. Thus, it is safe to infer that in the presence of errors, strategic simplification is

advantageous (if the number of accessible states is assumed to be a good measure of complex-

ity). In the absence of errors, the behavior of well-informed agents responding with flexibility

to every perturbation in the environment does not produce easily recognizable patterns, but

rather is extremely difficult to predict. On the other hand, in the presence of errors, behavior is

governed by mechanisms that restrict the flexibility to choose potential actions. These mecha-

nisms simplify behavior to less complex patterns, which are easier for an observer to recognize

and predict.
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In real-life, there exist a number of examples where an agent’s choice of a simple strategy (a

rule of thumb) in the presence of errors, has proved quite successful. An interesting example is

the publishing history on strategies to win at blackjack. Books in the 60s and 70s emphasized

sophisticated card-counting and bet-variation methods (see especially Edward Thorpe’s book,

Beat the Dealer). However, while no one has challenged the mathematical validity of these

earlier more complex methods, their actual use resulted in worse performance by most persons

attempting to use them (which generated sizable unexpected profits to the casinos). As a result,

later books have steadily evolved towards more rigidly-structured methods (for example, the

books No Need to Count and Winning Casino Blackjack for the Non-Counter).

7 Conclusion

The study indicates, via an explicit evolutionary process simulated by the genetic algorithm,

that the incorporation of implementation and perception errors is sufficient to alter the evolution

of cooperative machines. In particular, we find that the prevailing structures tend to exhibit

low reciprocal cooperation and low tolerance to defections as the probability of errors increases.

Furthermore, the complexity of the machines is decreasing in the probability of errors, which

suggests that strategic simplification is advantageous in the presence of errors. In addition, the

study identifies a threshold error-level. Below the threshold, the prevailing structures are closed-

loop and diverse, which impedes any inferential projections on the superiority of a particular

machine. On the other hand, at and above the threshold, the prevailing structures converge to

the open-loop machine Always-Defect. The latter finding makes it pertinent to seek ways to

limit the level of errors in our strategic interactions to avoid suboptimal outcomes. Revisiting

our example in the introduction, president Ronald Reagan, soon after the disaster ordered the

U.S. military to make the developing Global Positioning System (GPS) available for civilian

use, so that navigational errors like that of Korean Air Lines Flight 007 could be averted in the

future.

A wide variety of potential extensions exist. In this study, it was assumed that all machines

were subjected to the same likelihood of errors, generation by generation. Instead, the likelihood

of errors could be contingent upon the number of states accessed by the particular machine. The

18



rationale is that a machine that contains only one state (say, Always Cooperate) is less likely

to commit errors than one that is far more complex. Furthermore, it would be interesting to

examine whether the results are robust to the symmetry of the payoffs. One of the basic features

of the conventional Prisoner’s Dilemma stage-game is the requirement that the values assigned

to the game are the same for both agents. Not uncommon however, are social transactions

where not only is each agent’s outcome dependent upon the choices of the other, but also

where the resources and therefore possible rewards of one agent exceed those of the other. A

social interaction characterized by a disparity in resources and potentially larger rewards for

one of the two participants would in all likelihood call into play questions of inequality. Thus,

one could run two co-evolving populations with asymmetric payoffs to see how the asymmetry

in payoffs affects cooperation under the simulated environments.
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Appendix

The traditional nonlinear regression model fits

yi = f(β,x′i) + εi

where β = (β1, ..., βp) is a vector of parameters to be estimated, and xi = (x1, ..., xk) is a

vector of predictors for the ith of n observations. The errors εi are assumed to be normally

and independently distributed with mean 0 and constant variance σ2. On the other hand,

the non-parametric regression model is written in a similar manner, but the function f is left

unspecified.

yi = f(x′i) + εi

Whilst in conventional parametric modeling the deterministic component of the model is defined

by a single parameter for every value of x, non-parametric regression does not impose such

restrictions. Instead, within local regression, all assumptions regarding the functional form of

the model are discarded. Thus, the value of the deterministic part changes with the value of x

as the regression coefficient is estimated “locally” at a pre-specified sliding window. Once the

bandwidth h(x) is defined, the sliding window which is centred as some point x within which

the regression takes place is defined as [x− h(x), x+ h(x)]. Within this smoothing window

centred at point x, the regression component is approximated with the following polynomial of

order p:13

µ(x) = β0 + β1(u− x) + . . .+ βp(u− x)p

The estimates of the parameter vector [β0, . . . , βp] are obtained from the minimization of

the following objective function:

min
n∑

i=1

wi(x)(yi − (β0 + β1(u− x) + . . .+ βp(u− x)p))2

where the weights wi(x) = W (xi−x
h(x)

) ≥ 0 are derived from the weight function; the latter, assigns

the largest weights to the observations closer to the central point x. The most commonly used

weight function is the Epanenchnikov-Kernel weight function (Epanenchnikov 1969) which is

13β0 is usually referred to as the level, and p denotes the order of the polynomial.
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defined in the following manner:14

W (z) =
3

4
(1− z2) for |z| ≤ 1 and 0 for |z| > 1.

14Other choices of Kernel weight functions such as Gaussian, Parzen and Cosine are made available in widely

used statistical software.
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