
Starting with ONETEP

Rebecca J. Clements

November 19, 2019

Obtaining a copy of ONETEP

First, you must create a BitBucket account with your University of
Southampton email address. Once you have been added to the Con-
tributors’ group and have access to the official ONETEP repository
(https://bitbucket.org/onetep/onetep), read the relevant sections of
the contributing document, found at https://bitbucket.org/onetep/

onetep/src/master/CONTRIBUTING.markdown. Use this to create your own
private fork of the main ONETEP repository. Here, you will also find details
of how to contribute any developments you make to the ONETEP code in the
future.

You can now make a copy of your ONETEP repository on any machine,
using git clone. Make sure you have Git on your computer. From your chosen
directory, use one of the following commands, which can also be copied from
the website, by clicking clone at the top of your repository webpage:

git clone https://rjc1g14@bitbucket.org/<username>/<repo−name>.git
git clone git@bitbucket.org:<username>/<repo−name>.git

and type in your password.

You need to make sure you have set up an environment with the correct
runtime and compilation variables. See the configuration scripts for this, in
/ < repo − name > /config/. The configuration file of choice depends on the
system you are running on, e.g. conf.iridis5.intel18.omp.scalapack is the lat-
est version for compiling on IRIDIS5, and conf.RH7.intel18.omp.scalapack is
preferable for compiling on the RHEL7 linux desktop computers in the chem-
istry office. Load the required modules for your compiler in the terminal and
set the environment details specified. For example,

Load your versions of the following modules for the compiler, Intel MPI
and MKL

module load ifort
module load iimpi
module load imkl

1

https://bitbucket.org/onetep/onetep
https://bitbucket.org/onetep/onetep/src/master/CONTRIBUTING.markdown
https://bitbucket.org/onetep/onetep/src/master/CONTRIBUTING.markdown

e.g.

for Iridis:
module load intel−compilers/18.0.3 >/dev/null 2>/dev/null
module load intel−mkl/2018.1.163 >/dev/null 2>/dev/null
module load intel−mpi/2018.1.163 >/dev/null 2>/dev/null

for Desktop PC:
module load intel/2017u2 # Intel Parallel Studio XE 2017
When using the Intel compilers on the desktop, you must first source

compilervars.sh, see:
https://software.intel.com/en−us/articles/setting−up−the−build−

environment−for−using−intel−c−or−fortran−compilers
source /local/software/intel/2017u2/compilers and libraries 2017.2.174/linux

/bin/compilervars.sh −arch intel64 −platform linux

Set the environment details
ulimit −s unlimited
ulimit −c unlimited
export OMP STACKSIZE=64M
Set a sensible default number of OMP threads for running on the login

nodes (optional)
export OMP NUM THREADS=4

Add the lines to ∼/.bashrc in order to automatically execute every time you
open the terminal. Make sure to use the latest configuration file and compiler.

To update your ONETEP version, you must use git fetch and merge the
update into your local repository’s master branch. First you should check the
URLs you have saved with the command:

g i t remote −v

You should have the URLs to the main ONETEP repository, named
bitbucket master or upstream or something else, and your private repository,
likely to be listed under origin or another name. If you do not, you must save
these URL using git remote add. Then you can download the main repository
update and merge into your local branch:

git remote add <name> <repo URL> −f
git fetch <name of main repository given to the onetep/onetep url>
git merge <same name as above>/master

Compiling

To compile, use the following commands to execute the Makefile in the main
directory of your repository. The ONETEP code is made up of all the modules

2

found in the /src/ directory, with the main program called onetep.F90. The
first command below compiles all of these modules into object files, and then
combines them all into one executable. You must be in the main directory for
this. You must replace the architecture, here, with the name of the configuration
file you are using. The second command compiles in debug mode, which enables
extra information to be displayed in the output when running ONETEP. This
makes it easier to identify the reason for any errors in the running of the code,
in the case when the error messages are not intuitive. If this is so, these should
be addressed. Debug mode shows when each subroutine and function is called
in the calculation, for example. The final command allows you to clear the
compiled files. This should not generally be necessary. You should only need to
recompile when updating the ONETEP code version between projects.

make onetep ARCH=RH7.intel17.omp.scalapack
make debug ARCH=...
make clean ARCH=...

Testing for successful setup

You need to QC (quality control) test the code and make sure it runs correctly
in parallel with MPI and OMP before running any of your own calculations.
There are instructions about this with the code that you should read. See
/ < repo − name > /tests/ for the tests directory. You must run all tests by
following the README.test document. This uses the Python script from the
/testcode/ directory. Make sure to specify your chosen configuration file in place
of $ARCH in the userconfig file. This runs the script on the login nodes. To
submit the tests to the job queue on a cluster computer such as IRIDIS5, there
are submission scripts available for this. See below for running on IRIDIS. If
any QC tests fail, speak to the group.

Running ONETEP

Once you have compiled ONETEP and all QC tests pass, it is time to run
your calculations. The executable can be found in the /bin/ directory, although
it is recommended that you use onetep launcher which runs this executable
< repo − name > /utils/onetep launcher, as it usually sets up the correct
environment.

Input files

Go to ONETEP’s website, onetep.org. Here you will find the Tutorials
section, which introduces running various levels of ONETEP calculations. Take
a look at some of the input files at the bottom of the page. Input files in
ONETEP have the .dat file ending. If you download any as .txt files, you will

3

onetep.org

need to change the ending.

Data input files contain keywords, instructing ONETEP on what calcula-
tions to run, and to set the parameters needed to run them. Check out the
keywords listed in this file on the webpage onetep.org/Main/Keywords to see
what they mean. If not specified, most of them have default settings, as listed
on the webpage.

The keywords come in different types; logical, block, integer, real, text, and
physical. Logical comprises of True or False. Block indicates more than one
line specifying coordinates. Integer and real are numbers. Text is a string of
characters. Physical refers to physical variables, which come with units such as
Angstrom, bohr, Joule, Hartree, etc.

The important ones to get started are:

• Task; to choose what main calculation you would like ONETEP to per-
form, e.g. a single point energy or geometry optimisation. You can run a
properties calculation this way, using output files generated from a single
point energy calculation or using the task singlepoint and the separate
keyword do properties set to T.

• XC functional; to choose how to approximate the xc functional term in
the Kohn Sham DFT equation

• Simulation box dimensions %block lattice cart

• The atomic positions in Cartesian coordinates, %block positions abs

As can be seen in the example input files, all block keywords must end with
an endblock. All coordinates are in atomic units. They can be specified in
Angstroms i.e.

%block p o s i t i o n s a b s
ang
C 16.521413 15.320039 23.535776
O 16.498729 15.308934 24.717249
. . .

%endblock p o s i t i o n s a b s

The format keywords specify the output type. The species and species pot
blocks detail the parameters of the atoms. Non-orthogonal Generalised Wan-
nier Functions (NGWFs) are used to model the atoms instead of conventional
atomic orbitals. Under the keyword species, the name we give to each atom of
the system is given first, followed by the element of the atom, the number of
electrons, the number of NGWFs used to model the atom (typically 4 for any
atom, and 1 for hydrogen) and the radius of each NGWF (typically between 8.0
and 10.0 for an accurate calculation).

4

onetep.org/Main/Keywords

e . g . C C 6 4 8 .0

The species pot specifies the path location of the pseudopotential used for
each element of the system. .recpot files exclude core electrons, the standard
for ONETEP. .paw files include core electrons. Some of these can be found in
your repository’s pseudo directory. For more, please ask Chris.

To continue a calculation if it has run out of computation time, use the
keywords below. The original input must have the write keywords, but no read
keywords because the files aren’t available to read at this stage. Any continuing
input files must include all four. If the input file name isn’t changed upon
continuation, the output file will overwrite with only the new energy iterations
performed, so make sure to back up files before continuing.

wr i t e denske rn T
wr i t e t i gh tbox ngwf s T
read denskern T
read t i ghtbox ngwf s F

On Desktop

Once the modules have been loaded and the code has been compiled, ONETEP
can be run in parallel, across a few processes e.g. less than 5 for a few atoms,
using the command below. Try varying the number of processes. The & sends
the job into the background so that the terminal can still be used.

mpirun −np <number o f p roce s s e s> <path to your repo>/
u t i l s / onetep launcher <input >. dat > <output >. out &

To check the jobs, type jobs.

On IRIDIS 5

Ask the group for the submission script for IRIDIS. There is one for running
the QC tests and one for running your own calculations. A few variables will
need changing in this script:

• Change the number of cores relevant to the size of the system. e.g.

. . . ntasks=40
nodes=1
ntasks−per−node 40
cpus−per−task <any number>

ntasks = nodes×ntasks− per−node. There are 40 tasks, or processors,
available per node. Less than 5 processors are needed for a system con-
taining a few atoms, whereas 200 is need for 2000 atoms, and the above is

5

adequate for tens of atoms. When choosing the number of processes, use
a multiple of 40 for efficiency or parallelism (MPI). The cpus− per− task
allows for OMP threading and may be preferable.

• Change the executable path to < repo− name > /utils/onetep launcher

• Change the input filename to your input

The submission script must load the latest compilers on IRIDIS. Use the the
IRIDIS5 pages for help with submitting your jobs, https://southampton.ac.
uk/isolutions/staff/iridis.page. To submit the submission script to the
job queue, use:

sbatch <name o f s c r i p t >. slurm

The input file must be in the same directory as the submission script unless you
have specified its path. It is recommended that you submit all jobs from your
Scratch account, /scratch/ < username >, which has more storage, rather
than your home directory, although your Scratch account is not backed up by
the university.

6

https://southampton.ac.uk/isolutions/staff/iridis.page
https://southampton.ac.uk/isolutions/staff/iridis.page

