
Software 

 Sparsify  Version 0.5 

sparsify is a set of Matlab m-files implementing a range of different algorithms to calculate sparse 

signal approximations. Currently sparsify contains two main sets of algorithms, greedy methods 

(collected under the name of GreedLab) and hard thresholding algorithms (collected in HardLab). 

See ALGORITHMS below for a list of  available algorithms. 

 

Installation 

1) Download files. 

 2) Unpack files. 

 3) Copy the folder sparsify wherever you like.  

 4) Include the folder sparsify and all sub-folders in the Matlab search path. 

 

 Compatibility 

 sparsify was tested with Matlab 7.2 and 7.4. 

 sparsify does not require any additional toolboxes. 

 

 All functions are designed to work with different input formats. 

 The specific formatting instructions can be found in function_format.m and object_format.m 

 

 The function format is compatible to the l1-magic toolbox [1] and with the GPSR software [4]. The 

object format is compatible with the l1_ls.m algorithm [3]. 

 Unfortunately, SparseLab [5] uses a different function format, however, this can easily be converted 

into the format required for sparsify using:  

 D  =@(z) P(1, m, n, z, I, dim) 

 and 

 Dt =@(z) P(2, m, n, z, I, dim) 

 where P is the function used in SparseLab. D and Dt are then the functions required for sparsify. See 

function_format.m for more information.  

 



Structure 

 sparsify contains four sub-folders with the following contents: 

 GreedLab   : A range of greedy algorithms (see ALGORITHMS FOR DETAIL) 

 HardLab    : A range of iterative hard-thresholding algorithms 

 Examples   : Example code demonstrating the use of the algorithms 

 TestMethod : A function to test the available algorithms 

The folder GreedLab contains: 

greed_omp.m 

 greed_ols.m 

 greed_mp.m 

 greed_gp.m 

 greed_nomp.m 

 greed_nomppgc.m 

 nonlin_gg.m 

 The subfolder OMP_algos containing: 

      greed_omp_qr.m 

      greed_omp_chol.m 

      greed_omp_cg.m 

      greed_omp_cgp.m 

      greed_omp_pinv.m 

      greed_omp_linsolve.m 

   

 The folder HardLab contains: 

 

 AIHT 

 hard_l0_reg 

 hard_lo_Mterm 



   

 The folder Examples contains: 

 

 Example_object,m 

 Example_function.m 

 Example_matrix.m 

 MyOp_witharg.m 

 MyOpTranspose_witharg.m 

 The subfolder @MyObjectName containing: 

      mtimes.m 

      MyObjectName.m 

      ctranspose.m  

 

The folder TestMethod contains: 

 

 Testsparsify.m  

 

Algorithms 

For more information on each algorithm type "help ALGORITHMNAME.m" 

greed_omp.m    Orthogonal matching Pursuit algorithm. Different implementations are accessible 

through greed_omp.m. These are also available directly: 

      greed_omp_qr.m            OMP using QR factorisation (Fastest algorithm but requires most storage.) 

      greed_omp_chol.m         OMP using Cholesky factorisation (Slower than QR in some cases but less 

storage required. Useful up to around 10 000 non-zero coefficients) 

      greed_omp_cg.m            OMP using full conjugate gradient solver in each iteration (Only option if 

everything else fails. But can be slow.) 

      greed_omp_cgp.m          OMP using Conjugate Gradient Pursuit algorithm [1] (Similar to QR based 

method) 

      greed_omp_pinv.m         OMP using pinv command (NOT RECOMMENDED, for reference only.)     



      greed_omp_linsolve.m    OMP using linsolve command (NOT RECOMMENDED, for reference only.) 

 greed_ols.m    Orthogonal Least Squares Algorithm (similar to OMP but with a different element 

selection rule) see [6]. (Requires storage of Dictionary as matrix, so only applicable for small 

problems.) 

 

 greed_mp.m    Matching Pursuit algorithm 

 

 greed_gp.m     Gradient Pursuit algorithm from [1] (Can be used if OMP is too costly.) 

 

 greed_nomp.m  Approximate Conjugate Gradient Pursuit (ACGP) from [1]. Also allows more than a 

single element to be selected using stagewise weak       

                         strategy [9], [10]. [13] and [14]. 

 

 greed_pcgp.m     Nearly Orthogonal Matching Pursuit with partial Conjugate Gradients (NOMPpCG) 

a mixture between Gradient Pursuit and Approximate Conjugate Gradient Pursuit using a gradient 

step when a new element is selected and an ACGP step when no new element is selected. This 

guarantees convergence in a finite number of steps but can give worse results in practice than ACGP.  

 

 nonlin_gg Greedy gradient based algorithm to solve non-linear sparse inverse problems [8]. 

 

 AIHT Accelerated version of hard_lo_Mterm [15], recomended. 

hard_l0_reg    Iterative hard thresholding algorithm keeping elements larger than fixed threshold in 

each iteration [7]. 

 hard_lo_Mterm Iterative hard thresholding algorithm keeping elements larger M elements in each 

iteration [7], [11] and [12].  

 

Naming Convention 

All algorithm names are preceded by the identifiers greed_ or hard_ (see above).  This ensures that 

conflicts with other toolboxes implementing the same algorithm are avoided.  
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Links 

l1-magic 

l1_ls.m 

Gradient Projection  for Sparse Reconstruction (GPSR) 

SparseLab 

The Matching Pursuit ToolKit 

SPGL1 : A solver for large-scale sparse reconstruction 

FPC 

SPARCO: A toolbox for testing sparse reconstruction algorithms  

 

Bug fixes and changes 

 Two bugs have been fixed in the latest version of sparsify: 

 1) In the original version, starting some of the algorithms with a non-zero solution vector did not 

work correctly. 

 2) In greed_nomp, the calculated update direction was not exactly conjugate to the previously used 

direction due to an error in the code. 

 3) In greed_nomp, fixed error in new recursion. 

 4) Included a weakness parameter into greed_nomp so that the algorithm can select all elements 

for which |P'r| > alpha max |P'r|. 

 5) Greedy algorithms do no longer stop when dictionary is not normalised but give a warning 

instead. 

 6) Included the non-linear greedy gradient algorithm into greedLab.  

 7) Used the union command to combine newly selected elements with already selected set.   

http://www.cms.caltech.edu/
http://web.stanford.edu/~boyd/l1_ls/
http://www.lx.it.pt/~mtf/GPSR/
http://sparselab.stanford.edu/
http://mptk.irisa.fr/
http://www.cs.ubc.ca/labs/scl/index.php/Main/Spgl1
http://www.caam.rice.edu/~optimization/L1/fpc/
http://www.cs.ubc.ca/labs/scl/sparco/

