Holographic DIS

String theory regime

String theory regime

< □ > < 同 > < E > < E > E < OQ @</p>

Final remarks 000

A holographic description of hadronic structure

Nicolás Kovensky - IFLP-UNLP/CONICET & IPhT-CEA/Saclay

Southampton U. 10/01/2019.

Based on JHEP 1810 (2018) 084 and JHEP 1804 (2018) 118

(with G. Michalski and M. Schvellinger)

Motivation: Deep Inelastic Scattering in QCD	Holographic DIS 00000000	String theory regime I	String theory regime II	Final remarks 000
ldea of the talk				

- 2 Holographic DIS
- String theory regime I
- 4 String theory regime II

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Motivation: Deep Inelastic Scattering in QCD	Holographic DIS	String theory regime I	String theory regime II	
•••••••	0000000	0000000	000000	000

Deep Inelastic Scattering in QCD

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Theory of gluons + quarks (strong interactions).
- SU(3) gauge symmetry + fundamental matter.
- The coupling *constant* runs with momentum transfer (q):

UV: Asymptotic freedom (partons)

IR: Confinement (hadrons)

Sac

A D > A P > A B > A B >

Holographic DIS

String theory regime

String theory regim

Final remarks

Deep Inelastic Scattering

Goal: Exploring the internal structure of baryons and mesons.

- DIS regime: $q \gg P$.
- Inclusive process $\rightarrow \sum_{\rm final}$

• Bjorken:
$$x = \frac{-q^2}{2P \cdot q}$$

Differential cross section $(y \equiv E^{-1}\Delta E \text{ of the lepton})$ $\frac{d\sigma}{dxdy} = \frac{e^4}{8\pi q^4} y l_{\mu\nu} W^{\mu\nu} , \text{ (Physical range: } 0 < x, y < 1)$

Leptonic tensor $l_{\mu\nu}$: computed easily in pQED. What about $W^{\mu\nu}$??

 $W^{\mu\nu}$ is defined from the EV of two em currents between hadronic states:

$$(W_{\mu\nu})_{\lambda\lambda'} = \frac{1}{4\pi} \int d^4x e^{iP \cdot x} \langle P, \lambda' | [J_{\mu}(x), J_{\nu}(0)] | P, \lambda \rangle$$

• Difficult in pQCD.

• Tensor structure fixed by symmetries:

Symmetries of W

1)**Parity** 2)**Time reversal** 3)**Hermiticity** 4)**Translations**

from
$$g_{\mu\nu}$$
, $\varepsilon_{\mu\nu\rho\sigma}$, P^{μ} , q^{μ} , (S^{μ}, ζ^{μ}) .

<u>Unknown scalar functions</u> (x, q^2) :

Spin 0

2 Functions: F_1 , F_2 .

Spin 1/2

4 Functions: $F_{1,2}$ and $g_{1,2}$.

Spin 1

8 Functions: $F_{1,2}$, $g_{1,2}$ and $b_{1,2,\ldots}$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Holographic DIS

String theory regime

String theory regime II

Final remarks

Form of $W^{\mu\nu}$ for spin-0 and spin-1/2

A general $W^{\mu\nu}$ is decomposed as

$$W^{\mu\nu} = W^{\mu\nu}_{\rm sym} + iW^{\mu\nu}_{\rm asym}$$

where

$$W_{\text{sym}}^{\mu\nu} = F_1(x, q^2) \left(\eta^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2} \right) + F_2(x, q^2) \frac{2x}{q^2} \left(P^{\mu} + \frac{q^{\mu}}{2x} \right) \left(P^{\nu} + \frac{q^{\nu}}{2x} \right) + [b_i - \text{terms}]$$
$$W_{\text{asym}}^{\mu\nu} = \epsilon^{\mu\nu\alpha\beta} \frac{q_\alpha}{P \cdot q} \left[S_\beta g_1(x, q^2) + \left(S_\beta - \frac{S \cdot q}{P \cdot q} P_\beta \right) g_2(x, q^2) \right]$$

Interpretation - Parton model

 $F_i(x) \leftrightarrow \text{Distribution functions of partons with momentum } xP$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Holographic DIS

tring theory regime |

String theory regime I

Final remarks 000

Why is the small-x region interesting?

Distribution Functions:

For *moderate values* of *x*:

- Large q DIS.
- Low parton densities.
- \Rightarrow weak coupling $\alpha_s(q)$
- \Rightarrow See asymptotic freedom

For small values of x:

- Exp. constraint: $q_{\max}^2 \approx E_{\text{lep}} x (2 M_{\text{had}}) \Rightarrow$ only lower q.
- Higher parton densities (lots of gluons!).

 \Rightarrow probably strongly coupled physics involved!

Optical theorem and Forward Compton Scattering

Since $S = S^{\dagger}$, DIS is related to another process, the **FCS**:

The $W^{\mu\nu}(F_i)$ DIS and the $T^{\mu\nu}(\tilde{F}_i)$ of FCS are similar:

DIS vs FCS

$$W^{\mu\nu} \sim \operatorname{Im}\left(T^{\mu\nu}\right) \Rightarrow F_i(x,q^2) = 2\pi \operatorname{Im}\left(\tilde{F}_i(x,q^2)\right)$$

In practice, we work with the *holographic dual* of the FCS process.

Note that $s \equiv -(P+q)^2$ so

Small-x DIS \Rightarrow high CM energy $(s \approx q^2/x)$ for the FCS.

Sac

Motivation:	Deep In	elastic	Scattering	in	QCD	
0000000	000					

Regge theory

- One of the first attempts to describe hadronic physics.
- Based only on the **basics properties** of any S-matrix

 $S_{ab} = \langle b_{\text{out}} | a_{\text{in}} \rangle.$

Postulates for S:

Lorentz (4pt: s,t) Unitarity "Analyticity" (Analytic cont.)

At $s \gg t$: t-channel exchange and factorization

We get $\mathcal{A}(s \gg t) \approx \beta(t) s^{\alpha(t)} \rightarrow$ exchange of an effective spin $\alpha(t)$ mode.

< □ > < 同 > < E > < E > E < OQ @</p>

Holographic DIS

String theory regime I

String theory regime

Final remarks 000

t = 0 case (DIS) from pQFT ¹

The amplitude can be written from a Kernel and two impact factors:

$$\mathcal{A} \sim \int \frac{dp_{\rm tr}}{p_{\rm tr}} \int \frac{dp'_{\rm tr}}{p'_{\rm tr}} \gamma_{ac}(p_{\rm tr}) \gamma_{bd}(p'_{\rm tr}) \, \mathcal{K}(s, p_{\rm tr}, p'_{\rm tr}),$$

where for large N and weak 't Hooft coupling $\lambda = g_{\rm YM}^2 N$

$$\mathcal{K}(s, p_{\rm tr}, p_{\rm tr}') \approx s^{j_0} \times \frac{1}{\sqrt{4\pi D \log s}} \exp\left[\frac{-1}{4D \log s} (\log p_{\rm tr}/p_{\rm tr}')^2\right]$$

with

$$j_0 = 1 + \frac{\log 2}{\pi^2} \lambda \text{ y } D = \frac{7\zeta(3)}{8\pi^2} \lambda.$$

Thus, we see a Regge-type factor s^{j_0} but also **diffusion** in the *transverse* momentum (with a characteristic scale D).

Comparison with experimental data for $F_2^p(x,q^2)$

The functional form fits very well, but with

$$j_0 \approx 1.25 \Rightarrow 1 < \lambda < 10 \Rightarrow ???$$

Motivation: Deep Inelastic Scattering in QCD	Holographic DIS 00000000	String theory regime I	String theory regime II 000000	Final remarks 000
Our methods and g	goal			

 ${\sf Holography}^2$ provides an analytic tool for studying strongly-coupled phenomena.

I want to...

- Recall how it can describe DIS in a strong coupling scenario.
- Describe how the full string theory (and not only supergravity) plays an important role in the most interesting parametric regime.
- Briefly review the Pomeron from the ST perspective.
- Give a precision test by fitting the recent data for the proton's structure function g_1 at small-x.

Motivation: Deep Inelastic Scattering in QCD	Holographic DIS	String theory regime I	String theory regime II	
000000000	0000000	0000000	000000	

Holography and DIS

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

Motivation: Deep Inelastic Scattering in QCD	Holographic DIS	String theory regime I	String theory regime II	Final remarks 000
The AdS/CFT conj	ecture			

- $\bullet\,$ Based on the large N expansion of gauge theories and on the holographic principle.
- Equates gravity (string theory) theories on AdS backgrounds and conformal gauge theories on their conformal boundary.

Most studied example:		
$\mathcal{N}=4$ SYM in 4d with $U(N)$ gauge group	\leftrightarrow	Type IIB String Theory on an $\operatorname{AdS}_5 imes S^5$ background

- Global symmetries of the QFT are associated with isometries of the gravity background.
- It is a Weak/Strong duality:

$$(\lambda, N) ~~ \leftrightarrow ~~ (lpha' \sim R_{
m AdS}^2/\sqrt{\lambda},~g_s \sim g_{
m YM}^2)$$

Thus, for $N\gg\lambda\gg1$ we have a classical gravity description.

Holographic DIS

String theory regime I

String theory regime

Final remarks 000

The AdS/CFT conjecture

• The radial direction $(r \sim 1/z)$ of AdS is identified with the RG scale.

- Relevant deformations of the QFT will change the bulk interior (IR).
- The W-GKP *Ansatz* gives a prescription to compute CFT correlation functions from the bulk perspective:

$$Z_{\rm CFT}\left[\phi_0(x)\right] = \left\langle \exp \int \phi_0(x)\mathcal{O}(x)\right\rangle \equiv Z_{\rm grav}\left[\phi(x,z)|_{\rm bdy} = \phi_0(x)\right]$$

DQC

$$\mathcal{N} = 4$$
 SYM (UV, $\beta_g = 0$) $\rightarrow_m \mathcal{N} = 1$ SYM (IR, confines at Λ)

- $m \gg \Lambda \Rightarrow pQFT$ in the UV.
- $m \sim \Lambda \Rightarrow$ strong coupling in the UV, but perturbative dual description from ST. The geometry is $\sim \text{AdS}$ only up to $r \sim \Lambda R^2$.

Sac

Holographic DIS

tring theory regime I

String theory regime

Final remarks

AdS/CFT dictionary for the dual FCS³

Confinement at characteristic scale Λ

Implemented through an IR deformation: Hard-wall, soft-wall, etc.

Conserved "em" current

Obtained by gauging a $U(1) \subset SU(4)_R$.

Boundary theory vs AdS modes

Virtual photon $\leftrightarrow \delta g^{MN} \propto A^m K^a$ (non-normalizable)

 $\mathsf{Hadronic\ states}\leftrightarrow\mathsf{on-shell\ modes}$

Finite λ corrections \leftrightarrow Stringy contributions (α')

Non-planar corrections (1/N) \leftrightarrow Quantum corrections (\star)

Mesonic targets \leftrightarrow modes from flavor *probe* D-branes (*).

Holographic DIS

tring theory regime

String theory regime I

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト … ヨ

Final remarks

Sac

The idea of the holographic DIS (FCS) model

Motivation: Deep Inelastic Scattering in QCD Holographic DIS String theory regime I

String theory regime

Final remarks

3 distinct parametric regimes

Center-of-Mass energy in the 10d scattering process:

$$\tilde{s} = g^{MN}(P+q)_M(P+q)_N \sim \frac{1}{\sqrt{\lambda}} \left(\frac{1}{x} - 1\right) \times \frac{1}{\alpha'}$$

Thus, we have to be careful with the actual physics involved:

Supergravity regime: $\underline{\tilde{s}} \ll \alpha'$

• Valid for $1/\sqrt{\lambda} \ll x < 1$.

String theory regimes I and II

- Valid for $x \ll 1/\sqrt{\lambda}$.
- The subdivision is associated to whether or not the process is effectively local (\sim 4pt-scattering) in the radial direction.

Motivation: Deep Inelastic Scattering in QCD	Holographic DIS	String theory regime I	String theory regime II	
000000000	00000000	0000000	000000	

First regime: Supergravity.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

 Motivation:
 Deep Inelastic Scattering in QCD
 Holographic DIS

 0000000000
 00000000
 00000000

String theory regime I

String theory regime

Final remarks 000

Solutions, planar limit and SUGRA structure functions

$$W^{\mu\nu} \propto \operatorname{Im} T^{\mu\nu} \propto \sum_{X \text{ on-shell}} \langle h, P | \tilde{J}^{\mu}(q) | X, P + q \rangle \langle X, P + q | J^{\nu}(0) | h, P \rangle$$

We use AdS/CFT to compute the current 1pt-functions.

Computing $S_{A\phi\phi}$ on-shell y comparing with $W_{\mu\nu}$ we get

$$F_2 \sim \left(\frac{\Lambda^2}{q^2}\right)^{\Delta - 1} x^{\Delta + 1} (1 - x)^{\Delta - 2}$$

- Interaction: $z_{int} = 1/q$.
- Full Hadron.

<ロ> <団> < 団> < 三> < 三> < 三</p>

Motivation: Deep Inelastic Scattering in QCD	Holographic DIS	String theory regime I	String theory regime II	
000000000	0000000	0000000	000000	000

Second regime: string theory.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Holographic DIS

String theory regime I

String theory regime

Final remarks

Toy example: the scalar target case

We need to include the exchange of stringy states since

$$x \ll \lambda^{-1/2} \Rightarrow \tilde{s} > 1/\alpha'$$

$$n_{\mu}n_{\nu}W^{\mu\nu} \sim \int_{\text{AdS}} \text{Im}\mathcal{A}_{\text{flat}}^{\text{cl.st.}}(2h, 2\phi)$$

Modus Operandi (t-channel)

- Compute $\mathcal{A}_{\mathrm{flat}} = \mathcal{G} \times \mathcal{K}.$
- Take $\tilde{s} \propto s$ and $\tilde{t} \rightarrow 0$.
- Take the Im. part.
- Use local approx. $S_{\rm eff}(4pt)$.
- Insert AdS sol's and integrate.

String theory regime I

Details of the local approximation

Idea: superposition of local processes

• Separate:
$$X^M(\tau, \sigma) = x^M + \tilde{X}^M(\tau, \sigma).$$

• $\alpha'/R^2 \sim 1/\sqrt{\lambda}$ plays the role of \hbar

 \Rightarrow the path integral for \tilde{X}^M is approximately gaussian.

$$\Rightarrow S \approx i \int d^4x d^6y \sqrt{-G} \mathcal{A}_{loc}^{4p} \approx i (2\pi)^4 \delta(\sum p) \int d^6y \sqrt{-G} \mathcal{A}_{loc}^{4p}$$

$$\mathcal{A} = \mathcal{G}(\alpha') \times \mathcal{K} \ , \ \operatorname{Im} \mathcal{G} \sim \sum_{m=1}^{\infty} \delta\left(m - \frac{\alpha'\tilde{s}}{4}\right) \left(\frac{\alpha'\tilde{s}}{4}\right)^{\alpha'\tilde{t}/2} \sim \sum_{\operatorname{exc}}$$

Mandelstam invariants in AdS

$$\alpha'\tilde{s}\approx \frac{\alpha'R^2}{r^2}s+\mathcal{O}(\lambda^{-1/2})\ ,\ \alpha'\tilde{t}\approx 0+\mathcal{O}(\lambda^{-1/2})$$

Holographic DIS

String theory regime I

String theory regime II

A D > A P > A D > A D >

Final remarks

Heuristic interpretation of the effective action

• High energies $\Rightarrow \mathcal{A} \propto s^j$ (spin-*j* exchange).

Leading process at small-x

t-channel exchange of a (reggeized) graviton.

 $L_{eff} \sim T_A G_{\rm grav} T_\phi \sim F^{\mu m} F^\nu_{\ n} \partial_\mu \phi \partial_\nu \phi$

- This can be seen from the field theory OPE $JJ \sim T$.
- The Im part comes from $\tilde{s}^2/\tilde{t} \to \operatorname{Im} \mathcal{G}(\alpha', \tilde{s} \gg \tilde{t}) \sim \frac{\pi \alpha'}{4} \sum_{\operatorname{exc}}$.

э

Motivation: Deep Inelastic Scattering in QCD	Holographic DIS 00000000	String theory regime I	String theory regime II	Final remarks 000
Small- x : results for	scalar tar	gets		

Inserting the AdS solutions and integrating over the full 10d space:

$$F_1(x,q^2) \sim \frac{1}{\sqrt{\lambda}} \left(\frac{\Lambda^2}{q^2}\right)^{\Delta-1} \left(\frac{1}{x}\right)^2 , \ F_2(x,q^2) = \left(\frac{2\Delta+3}{\Delta+2}\right) 2xF_1(x,q^2)$$

- Power-like growth x^{-2} for $x \to 0$ (from $\mathcal{A} \sim s^2$).
- Still the same suppression factor from Λ^2/q^2 .
- Callan-Gross type relations: $F_2 \propto 2xF_1$. (~ partons s = 1/2)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• What about spin-1/2 targets? ($\mathcal{A}(h,h,\psi,\psi)$?)

Motivation: Deep Inelastic Scattering in QCD	Holographic DIS 00000000	String theory regime I ○○○○○●○○	String theory regime II	Final remarks 000
Where is g_1 at small	-x? ⁵			

- The amplitude $\mathcal{A}(h, h, \psi, \psi)$ should include all possible processes. It gives similar results for $F_{1,2}$ but no contribution to $g_{1,2}$.
- $\bullet\,$ The effect from the chirality of the ψ solution is sub-leading in this regime.

However, the explicit reduction of 10d type IIB SUGRA on S^5 shows that (at the linear level) A_m is a combination of modes from the graviton and from the RR 4-form⁴:

$$h_{ma} \sim A_{(m}K_{a)}$$
, $a_{mabc} \sim A_{[m}Z_{abc]}$,

with K^a the Killing vectors on S^5 and $Z_{abc} \propto \epsilon_{abcde} \nabla^d K^e$.

New amplitudes

We must consider amplitudes with in/out-going modes from the \mathcal{F}_5 .

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

⁴[Kim, Romans & van Nieuwenhuizen, 1985]
⁵[Hatta, Hueda & Xiao, 2009]

Motivation: Deep Inelastic Scattering in QCD	Holographic DIS	String theory regime I	String theory regime II	Final remarks
	00000000	○○○○○○●○	000000	000
g_1 : heuristic analysis	S			

Is there some hint for extra contributions from the SUGRA point of view?

•
$$\mathcal{A} \sim s^j \Rightarrow \text{after } h \ (j=2), \text{ look for } j=1.$$

 ϕ_{mt}

 A_m^3

 ϕ_{in}

 A_n^C

This process is possible due to the Chern-Simons term in 5d!

$$S_{CS} = \frac{i\kappa}{96\pi^2} \int d^5x \, d_{ABC} \, \varepsilon^{mnopq} A^A_m \partial_n A^B_o \partial_p A^C_q + \cdots$$

•
$$\mathcal{J}_{\text{DIS}}^{m(A)} \sim d_{ABC} \varepsilon^{mnopq} \partial_n A_o^B \partial_p A_q^C.$$

• Effective charge:
$$Q \equiv d_{33C}Q^C$$
.

This can be seen from the QFT OPE term $J^{\mu}(q)J^{\nu}(0) \sim \varepsilon^{\mu\nu\rho\sigma}q_{\rho}J_{\sigma}(0).$

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● ● ● ● ● ●

This same $S_{\rm eff}$ is obtained from first principles. **MO**:

- Compute the 4pt amplitude $\mathcal{A}_{\mathrm{flat}}(\mathcal{F}_5, \mathcal{F}_5, \psi, \psi)$.
- **2** Take $\tilde{s} \gg \tilde{t}$ and construct the effective action S_{eff} as before.
- **③** Reduce to 5d to compare with the previous expression for $S_{\rm eff}[\rm CS]$.

Results for ψ :

$$g_1(x,q^2)\sim \left(rac{\Lambda^2}{q^2}
ight)^{\Delta-1}rac{1}{x} ext{ and } g_2=0$$

Note that we find...

- The expected x^{-1} growth of g_1 as $x \to 0$.
- BUT the same suppression factor Λ^2/q^2 .
- AdS/CFT Burkhardt-Cottingham sum rule for g_2 .

Motivation: Deep Inelastic Scattering in QCD	Holographic DIS	String theory regime I	String theory regime II	Final remarks
000000000	0000000	0000000	00000	000

Third regime: Pomeron physics.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Motivation:
 Deep Inelastic Scattering in QCD
 Holographic DIS
 String theory regime I
 String theory regime II
 Final remarks

 000000000
 00000000
 0000000
 0000000
 000000
 000000
 000000

 Breakdown of the local approximation
 Image: Comparison
 String theory regime II
 String theory regime II
 String theory regime II
 Final remarks

As we saw, the relevant ST amplitudes factorize as $\mathcal{A}=\mathcal{G}\times\mathcal{K}$ with

$$\mathcal{G}(\alpha',\tilde{s},\tilde{t},\tilde{u}) = -\frac{\alpha'^3}{64} \frac{\Gamma\left(-\alpha'\tilde{s}/4\right)\Gamma\left(-\alpha'\tilde{t}/4\right)\Gamma\left(-\alpha'\tilde{u}/4\right)}{\Gamma\left(1+\alpha'\tilde{s}/4\right)\Gamma\left(1+\alpha'\tilde{t}/4\right)\Gamma\left(1+\alpha'\tilde{u}/4\right)}$$

Remember that

Im
$$\mathcal{G} \propto \sum_{\text{exc}} (\alpha' \tilde{s})^{\alpha' t}$$
 with $\tilde{s} \propto s \sim q^2/x$ and $\alpha' \tilde{t} \approx 0 + \mathcal{O}(\lambda^{-1/2})$

Thus, the local approximation breaks down at large but finite coupling,

$$\lambda \to \infty \;,\; s \to \infty \text{ with } rac{\log s}{\sqrt{\lambda}} \text{ constant.}$$

Here, \tilde{t} acts as a differential operator: the *t*-channel laplacian.

$$j \approx 2 \Rightarrow \alpha' \,\tilde{t} = \alpha' \,\nabla_t^2(h) \approx (\alpha'/R^2) \,\Delta_2$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation: Deep Inelastic Scattering in QCD	Holographic DIS	String theory regime I	String theory regime II 00●000	Final remarks 000
Pomeron exchange ⁶				

In this context, the amplitude can be expressed as $(u \equiv -\log z)$

Im
$$\mathcal{A}(s,t=0) \sim \int du \int du' P_A(u) P_\phi(u') \mathcal{K}(u,u',s) , \ \mathcal{K} \sim s^{2-2/\sqrt{\lambda}}$$

- The Kernel is $\mathcal{K}(u, u', s) \sim s^{2-2/\sqrt{\lambda}} \times \exp\left[-(u-u')^2/4\tau\right]$.
- x-dependence: $F_1 \sim (1/x)^{2-2/\sqrt{\lambda}}$ y $F_2 \sim (1/x)^{1-2/\sqrt{\lambda}}$.
- Including confinement modifies the form of $\mathcal{K}(u, u', s, z_{hard-wall})$.
- Multi-Pomeron exchange (loops) can be addressed through the *Eikonal* (important for unitarity/saturation effects).

Another way of getting this:

Directly taking the OPE on the products of the vertex operators inserted on the worldsheet.

⁶[Polchinski, Brower, Strassler & Tan, 2006]

 Motivation: Deep Inelastic Scattering in QCD
 Holographic DIS
 String theory regime I
 String theory regime II
 Final remaria

 00000000
 0000000
 0000000
 0000000
 000
 000

 Phenomenology the proton F_2 (ZEUS-HERA) 7
 7

- Comparison with F_2 for protons.
- Approximation for the impact factors.
- Fitted with free $\lambda, q' \neq \Lambda$.
- They get fixed on reasonable values.

They also included loop corrections.

⁷[Brower, Durić, Sarcević and Tan, 2010]

Motivation: Deep Inelastic Scattering in QCD	Holographic DIS 00000000	String theory regime I	String theory regime II	Final remarks 000
New contribution to	$g_1: j \approx 1$	1		

In this case differential operator changes

$$\alpha' \tilde{t} = \alpha' \nabla_t^2(A) \approx (\alpha'/R^2)(\Delta_1 + 3)$$

and the Kernel becomes

$$\rho \equiv -2\log z)$$

・ロト ・ 雪 ト ・ ヨ ト

3

Sac

$$\mathcal{K}(\rho,\rho',t=0,j=1) = (\alpha'\tilde{s})^{1-\frac{1}{2\sqrt{\lambda}}} e^{-\frac{1}{2}(\rho+\rho')} \sqrt{\frac{\lambda^{1/2}}{2\pi\tau}} e^{-\frac{\sqrt{\lambda}}{8\tau}(\rho-\rho')^2}$$

• Confinement effects (and loops?) can be included as before.

Comparison of the results

The exponent correction is different:

$$F_2 \sim \left(\frac{1}{x}\right)^{1-\frac{2}{\sqrt{\lambda}}}$$
 while $g_1 \sim \left(\frac{1}{x}\right)^{1-\frac{1}{2\sqrt{\lambda}}}$.

Holographic DIS

tring theory regime

String theory regime II

A D > A P > A B > A B >

э

Sac

Final remarks 000

Phenomenology for g_1 (COMPASS LHC-CERN 2017)

Motivation: Deep Inelastic Scattering in QCD		String theory regime I	String theory regime II	Final remarks
000000000	00000000	0000000	000000	000
Summary and outlo	ok			

Holography is very useful, but as a tool for describing **real world** experiments has pros and cons:

- $\bullet\,$ It provides an analytic approach to strongly coupled physics (mainly at large N).
- The easiest cases we know have supersymmetry and conformal symmetry. They can be deformed, but the holographic dual to QCD is not known.

We can only describe real-world scenarios where the physics involved is fairly universal.

In this talk I have ...

- Presented an example of such a scenario: **Deep Inelastic** Scattering in the small-*x* regime.
- Shown how to obtain both **qualitative insights** and **quantitative results**, focusing on the case of the spin-dependent structure function g_1 of spin-1/2 targets.

Motivation: Deep Inelastic Scattering in QCD	Holographic DIS 00000000	String theory regime I	String theory regime II 000000	Final remarks O●O
Summary and outlo	ok			

Future work:

• Analyze mesonic-DIS with it's polarized structure functions. (*)

- Study other "small-x" processes.
- Include non-planar corrections. (*)
- Consider more realistic targets (instantons).

Motivation: Deep Inelastic Scattering in QCD	Holographic DIS	String theory regime I	String theory regime II	Final remarks
000000000	0000000	0000000	000000	000

Thank you for your time! Any questions?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��