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Role of Hall-MHD
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Figure 10. P–Ṗ diagram for all known radio pulsars (grey or blue dots as indicated), XINSs (yellow squares), and magnetars (red stars).
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Figure 11. Photon index Γ (left) and blackbody temperature kT (right) versus magnetic field B. The correlation coefficient r and
associated null-hypothesis probability p are shown in the upper right of each plot. The open circles represent points which were excluded
from the calculation of r due to their large uncertainties (SGR 1627−41 in Γ and SGR 0501+4516 in kT ).

support the idea that there is a continuum in the X-
ray luminosities of high-B radio pulsars and magnetars
(see An et al. 2012 for further discussion) as expected on
physical grounds based on magnetic dissipation and ex-
pected magnetothermal evolution (Thompson & Duncan
1996; Pons et al. 2009).
In the middle panel of Figure 13 we show a plot of LX

versus spin-down luminosity Ė. The panel shows little
more than a scatter plot, as borne out by the correlation

coefficient (r = 0.38 for N = 21, p = 0.087; r = 0.095,
p = 0.70 with SGRs 0418+5729 and 1806−20 removed).
This result is expected in the magnetar model, since the
X-ray emission is not powered by the rotational energy.
The rightmost panel of Figure 13 presents LX vs. charac-
teristic age, and like the previous graph there is no visual
sign of a strong trend. Naively calculating the correla-
tion coefficient, however, does show evidence for a rela-
tion (r = −0.56 for N = 21, p = 0.0078), but it is carried

The McGill Magnetar Catalog 11
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Figure 12. Quiescent 2–10 keV X-ray luminosity LX vs. Γ (left) and kT (right). The correlation coefficient r and null-hypothesis
probability p are shown in the upper right or left of each plot, and the open circles are the same as in Figure 11.
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Figure 13. Left panel: Quiescent 2–10 keV X-ray luminosity LX vs. B for the magnetars (solid and open circles) and select high-B radio
pulsars (open diamonds). Data for the radio pulsars was taken from Table 3 in An et al. (2012). The solid and dashed lines show fits to
the data for the relations LX ∝ B4.4 and LX ∝ B2, respectively. Middle panel: LX vs. Ė. The dotted line marks LX/Ė = 1. Right panel:
LX vs. τc. All panels: The open circles mark SGRs 0418+5729 and 1806−20. Because these two magnetars lie at opposite corners of each
graph, they were excluded from the calculation of the correlation coefficient r, shown together with the null-hypothesis probability p in the
upper left or right of each plot, to ensure that a correlation did not depend on their presence.

entirely by SGRs 0418+5729 and 1806−20 (r = −0.32,
p = 0.18 with those two points removed). Again, this
is unsurprising because not only are the characteristic
ages of magnetars not necessarily good measures of their
true ages as discussed above, but the 2–10keV luminos-
ity is dominated by the non-thermal emission so we do
not expect to detect a cooling trend anyway.
Figure 14 shows a plot of kT versus characteristic age

for magnetars, XINSs, and select radio pulsars, with
high-B (≥ 1013G) sources shown in red and yellow
(with the exception that the low-field magnetar, SGR
0418+5729, is also shown in yellow). This is an updated
version of Figure 5 in Olausen et al. (2013) using the
magnetar data from this work; data for other sources re-
mains unchanged. As such, our observations and conclu-
sions remain largely unchanged from the aforementioned
paper: there is a general trend for higher-B sources — of

course the magnetars, but also high-B radio pulsars —
to display greater blackbody temperatures than low-B
pulsars of similar age, suggesting that the magnetic field
plays a role in the observed thermal properties of pul-
sars. For a more detailed discussion, see Olausen et al.
(2013). Finally, note that SGR 0418+5729, despite hav-
ing B < 1013 G, is set apart from the other low-B sources
by its much greater kT .

3.4. Multiwavelength Properties

Figure 15 shows a P–Ṗ diagram with radio pulsars,
XINSs, and the magnetars indicated, as well as their de-
tection status in soft X-rays, hard X-rays, and the radio
band. From the plot it is clear that sources detected per-
sistently in hard X-rays tend to be those with the high-
est B fields (1014.5–1015G and above) unless they are
particularly distant, e.g. in the Magellanic Clouds. 4U

Olausen & Kaspi 

Lx vs kT: thermal radiation originates from 
hotspots (~ km).  

Decay must be more efficient than Ohmic.  
 
Bursts: strong localised magnetic field 
(especially in magnetars with weaker 
dipole magnetic field).

Can the Hall effect speed up 
magnetic field decay and create 
strong localised magnetic fields?

• Secular Evolution 
• Turbulent Cascade 
• Instabilities



Hall Drift - Electron MHD
A magnetic field perpendicular 
to a conductor, deflects 
electrons towards one edge of 
the conductor, leading to the 
appearance of a voltage. 

• Only electrons can move. 
• The field is advected by the electron fluid 

and gets dissipated due to resistivity. 
• The conductor is strong enough to 

balance Lorentz forces.
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Hall-MHD in Neutron Star 
Crusts

Hall term dominates 
over Ohmic if

c
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Appropriate combination 
of B, σ, ne

Potekhin et al. 1999, 
Cumming et al. 2004

For B>1012G a significant part 
of the crust has RH>>1.

Does stronger magnetic field 
mean that the crust will be 
dominated by Hall-MHD?

Yes, up to a point. If the 
magnetic field is too strong 
the crust yields: 

ne: 1031-1036 cm-3

σ: 1021-1024 s-1

B2
cr

8⇡
⇡ 10�3Pe

Horowitz & Kadau 2009, Chugunov & Horowitz 2010, 
Beloborodov & Levin 2014, Gourgouliatos & Cumming 2015, 
Lander et al. 2015, Lander 2016, Li et al. 2016

Bcr~1015G (intermediate depth)



Hall Instability
Condition for instability: 

 
Energy from the background equilibrium 
state B0 is transferred to the perturbation b. 

r⇥
✓
r⇥B0

ne
⇥B0

◆
= 0

Z
(B0 + b)2dV = const.

d

dt

Z
b2dV > 0

• This exchange of energy may lead to 
severe deformation of the background field.  

• Formation of smaller structures will speed 
up Ohmic decay.  

dEB

dt
=

1

4⇡

Z
B · dB

dt
dV = � 1

4⇡

Z
(j ·E)dV = 0

Rheinhard & Geppert 2002  
Rheinhardt et al. 2004,  
Pons & Geppert 2010



Density-Shear Instability 
(Ideal)

Plane parallel background field and electron density
@B
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Wood et al. 2014     



Slight modification: 
1. Superposition of a weak uniform 

magnetic field (10-2). 
2. Small base electron density (10-2).  
3. Additional weak perturbation (10-4).

Simulation

Gourgouliatos et al. 2015
01

 growth rate proportional to B



Summary of Evolution
• Adjustment of the perturbing field. 
• Exponential growth of perturbation. 
• Deformation of the background field.

• Insensitive to small resistivity. 
• Dependence on magnetic field strength. 
• Dependence on the scale-height. 
• Strong resistivity may lead to saturation.

• Wavenumber - growth rate in accordance 
with analytical expectations within a few 
percent.



Toroidal initial field, no poloidal 
Enax/Etot=10-7

Northward drift  
as in axially symmetric case,  

non-axisymmetric zones. 

toroidal l=1, no poloidal

Gourgouliatos et al. 2016



Implications

Equipartition of poloidal and toroidal field 
is sufficient to generate non-axisymmetric 
structure.  

Spontaneous formation and long term 
survival of localised magnetic field ~10 
times stronger than the dipole. 

Faster magnetic field decay. The required 
magnetic energy to power magnetars 
~30 times smaller compared to the 
axisymmetric model.

4x1014G

18 D. Viganò et al.

Figure 11. Comparison between observational data and theoretical cooling curves. Models A with B = 0, 3×1014, 3×1015 G are shown
for Fe envelopes (solid) and light-element envelopes (dashed).

magnetosphere. In such scenarios, this group of most ex-
treme magnetars would be born with B0

p ! 1015 G, but
they would experience extra torque and luminosity due to
temporary effects.

6 SUMMARY

We have presented a comprehensive study of the magneto-
thermal evolution of isolated NSs, exploring the influence
of their initial magnetic field strength and geometry, their
mass, envelope composition, and relevant microphysical pa-
rameters such as the impurity content of the innermost
part of the crust (the pasta region). Our state-of-the-art,
2D magneto-thermal code, is the first able to work with
large magnetic field strengths, while consistently including
the Hall term throughout the full evolution. The Hall term
plays a very important role in the overall magnetic field evo-
lution, strongly enhancing the dissipation of energy over the
first ∼ 106 yr of NS life, with respect to the purely resis-
tive case. This is due to two main effects: the generation
of smaller structures and currents sheets, and the gradual
compression of currents and toroidal magnetic field towards
the crust/core interface. Hence, the rate of magnetic field
dissipation strongly depends on the resistivity given by the
amount of impurities in the innermost region of the crust. A
highly impure or amorphous inner crust produces a signifi-
cant increase in the magnetic field dissipation on timescales
" 105 yr.

We also found that, while for weakly magnetized objects
low mass stars (M ! 1.4M⊙) are systematically brighter
than high mass stars, this separation is smeared out for
highly magnetized stars. We confirm that light-element en-
velopes are able to maintain a higher luminosity (up to an

order of magnitude) than iron envelopes for a long period of
time, " 104 yr, regardless of the magnetic field strength.

The initial magnetic field configuration plays an impor-
tant role in the observational properties of the NS. If the
currents sustaining the magnetic field flow in the core, their
dissipation is negliglible, comparable with models in which
(most of) currents flow in the crust. In particular, the pres-
ence of an initial strong dipolar, toroidal component in the
crust breaks the symmetry with respect to the equator, re-
sulting in a warmer hemisphere, and a characteristic hot ring
replaces the traditional hot polar cap. If the magnetic field
is allowed to penetrate into the core (rather than remaining
confined within the crust), then the reduced heat deposition
in the crust results in a much cooler surface compared to
the case in which the magnetic field lives in the crust only.

The estimated outburst rate, resulting from breaking
of the crust by the strong magnetic stresses, is found to be
an increasing function of the initial magnetic field strength
and a decreasing function of age (in agreement with the re-
sults of Perna & Pons 2011; Pons & Perna 2011). While this
qualitative trend is consistent with the data (younger and
more strongly magnetized objects tend to have more fre-
quent outbursts), a more quantitative comparison between
the simulations and the observations is not possible at this
stage, due to the lack of sufficient statistics in the data.

For a given choice of the model parameters summarized
above, our simulations allow us to predict, for any age of the
NS, the distribution of surface temperature, luminosity, or
timing parameters. In order to compare theoretical models
with observations, we have studied all currently known iso-
lated NSs with a detected surface thermal emission. These
objects are representative of different observational classes,
including the classical magnetars (AXPs and SGRs), high-

Vigano et al. 2013

3x1015G



Resistive Tearing Instability
Motivation:
 
Natural boundaries with sharp 
changes of physical parameters 
(crust-core, crust-magnetosphere). 

Formation of current sheets is a 
common feature in Hall simulations 
both axisymmetric and 3-D. 
Practically they are limited by 
resolution.

Wood and Hollerbach 2015

Hollerbach and Rudiger 2004
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Figure 3. Poloidal magnetic fields in a star with a superconducting core and normal crust, with the boundary between the two located
at a dimensionless radius r = 0.9 and the surface at r = 1.0. We choose MN (u) = κu. Unlike the normal-matter case in figure 2,
the equilibria here are qualitatively different for different field strengths, depending on the average ratio of B to Hc1 at the crust-core
boundary. The value of this quantity ⟨Bcc⟩/Hcc

c1 = 5.7, 0.7, 0.4 for the left, middle and right panels, respectively. As this ratio is decreased
the field lines become sharper across the boundary and the closed-field region is pushed out into the crust.
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Figure 4. To check our results from figure 3 are not specific to the choice of flux function used there, we plot the corresponding
sequence of equilibria for the case MN (u) = κu2 here. The left, middle and right panels represent the cases ⟨Bcc⟩ > Hcc

c1, ⟨B
cc⟩ ∼ Hcc

c1
and ⟨Bcc⟩ < Hcc

c1, respectively. Although the core field distributions are different from figure 3, we again find that decreasing the field
strength B tends to push the closed-field line region outwards into the crust.

the distortion of the star’s mass distribution, we now de-
fine the ellipticity of the star through the components of the
quadrupole moment at the equator Qxx and pole Qzz:

ϵ =
Qxx −Qzz

Qxx
. (41)

We expect the ellipticity to scale with the magnetic en-
ergy, i.e. ϵ ∼ Hc1B, as opposed to ϵ ∼ B2 for normal matter
(Jones 1975; Easson & Pethick 1977). In figure 7 we plot
the ellipticity against field strength B for a variety of mod-
els, all with MN = κu but different central critical fields,
Hc1(0) = 1, 2, 5× 1016 G. The field strengths are very high,
as we need the distortion to be sufficiently large to resolve
on our numerical grid. Most of our models are in the ‘high-
field’ regime, with B > Hc1 at the crust-core boundary,
but the data point for Hc1(0) = 5 × 1016 G represents a
‘medium-field’ model. We use this point to fix the gradient
of line (c), and plot lines (a) and (b) at 1

5
and 2

5
of this gra-

dient. These are seen to agree well with the data points for
Hc1(0) = 1 × 1016 G and Hc1(0) = 2 × 1016 G, so we con-
clude that our results do indeed have the correct ellipticity
scaling.

Using figure 7 and a similar plot for MN (u) = κu2, we
find the following ellipticity relations for a neutron star with
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Figure 5. Poloidal field in a star with composition-gradient strat-
ification in the core. This is a ‘low-field’ model, with ⟨B⟩ < Hc1

at the crust-core boundary. The neutron and proton polytropic
indices are Nn = 0.6 and Np = 1.5.

a superconducting core:

ϵ = 3.1× 10−8

(

Bpole

1012 G

)(

Hc1(0)
1016 G

)

(42)

c⃝ 0000 RAS, MNRAS 000, 1–14

Lander 2014



Setup
(Hall equilibrium)

Perturbation:

Resistive Tearing Instability in E-MHD 3

r · b = 0, thus bz = ik�1
z b0x�kyk�1

z by where prime denotes derivative
with respect to x. Thus the perturbation becomes:

b = exp
⇣

�t + ikyy + ikzz
⌘ h
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⇣
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Substituting into equation (1) and keeping only the linear terms in
b we obtain the following equations:
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We first explore numerically the eigenvalue problem. To model the
structure of a current sheet we have chosen the following profile for
the background field:

By = By,0sech
 

x
x0

!

,

Bz = Bz,0 tanh
 

x
x0

!

,

(7)

assuming x0 > 0 and Bz,0 > 0. The field becomes uniform along
the z direction for |x| � x0. A choice of amplitudes By,0 = ±Bz,0

corresponds to a Bloch wall (Bloch 1932): a magnetic field that
changes direction from the �z to the +z keeping its magnitude con-
stant, within a layer of thickness scaling with x0 centred at x = 0.
This case has been of particular interest in MHD simulations as it
is a force-free magnetic field (Low 1973), making it an appropri-
ate choice for studies of resistive instabilities. However, this is an
unnecessary constraint for Electron-MHD studies as any choice of
By,0 amplitude is a Hall equilibrium since equation (2) is identically
satisfied.

The configuration extends from �xb to xb. We impose vacuum
boundary conditions at x boundaries, demanding that no currents
exist outside the domain. We ensure that x0 is su�ciently smaller
than xb for the results to be physically meaningful, and the back-
ground field Bb is essentially uniform and current free close to the
boundaries. Demanding vacuum boundary conditions r ⇥ b = 0
for these equations at |x| > xb we obtain the following equa-
tions: b0x ± k2

z

⇣

k2
y + k2

z

⌘�1/2
bx + ikyby = 0 and ikyb0x �

⇣

k2
y + k2

z

⌘

by =

0. We consider an appropriate system of units so that xb = 1,
cBz,0/(4⇡ene) = 1 where the growth rate is measured in units of
inverse Hall times ⌧H = 4⇡ene x2

b/(cBz,0), with the characteristic
Ohmic timescale being ⌧O = 4⇡�x2

b/c
2. We define the Hall param-

eter RH = �Bz,0/(cene), the ratio of the Ohmic timescale over the
Hall timescale. Larger RH correspond to systems where the Hall
e↵ect dominates. In the systems we studied we have set Bz,0 = 1,
combining it with By,0 = 0 and By,0 = 1. We have varied the thick-
ness of the current sheet from x0 = 0.1 to x0 = 0.5, and the Hall
parameter from RH = 100 to RH = 2000, by changing the conduc-
tivity, see Tables 1 and 2 for the range of parameters used. Then
we solve the linear problem to determine the fastest growing eigen-
modes of bx and by and the corresponding eigenvalues. We do so
by discretising the system of ordinary di↵erential equations (5) and

(6) and constructing the relevant matrix, whose eigenvalues allow
us to determine � and the eigenmodes. We have implemented this
using a finite di↵erence and a spectral calculation finding identi-
cal results. We used up to a 1000 Chebyshev polynomial expansion
in the highest RH and thinner x0 simulated for convergence, see
chapter 7 of Boyd (2001). The results were tested against the finite
di↵erence calculation to ensure their validity.

Studying the plane parallel perturbations with ky = 0, we find
that both the eigenvalues and eigenfunctions for By,0 = 0 are real,
while if By,0 6= 0 the eigenvalues are still real but the eigenfunc-
tions become complex indicative of phase shifting in z. Allowing
the instability to have ky 6= 0 leads to complex eigenvalues and
slower growing eigenmodes for the same background field and RH ,
Figures 1 and 2. Hereafter we will focus on the ky = 0 case.

The maximum growth rate of the instability scales as � /
R�1/3

H , Fig. 3. The wave numbers at which the maximum growth
rate occurs are plotted in Fig. 4, and scales as R�0.15

H . These scal-
ing laws hold for narrow current sheets and high enough Hall pa-
rameters. Thus, the corresponding minimum growth timescale for
the tearing instability becomes ⌧I = ��1 / ⌧2/3

H ⌧
1/3
O and in terms

of the physical quantities appearing � / B2/3
z,0 �

�1/3, assuming that
the thickness of the reversal area remains unchanged. This quasi-
stationarity assumption holds as as long as ⌧I ⌧ ⌧O which corre-
sponds to R2/3

H � 1.
The maximum growth rate and the corresponding wave num-

ber are higher for thinner current sheets, with the growth rate scal-
ing approximately as x�2

0 and the wave number as x�1
0 . Thus, the

growth time of the tearing instability ⌧I in the linear regime can be
summarised in the following expression:

⌧I =
⌧H(10x0/xb)2(RH/100)1/3

�Z01�1
, (8)

where �Z01�1 is the dimensionless growth rate of a system with
RH = 100 and x0 = 0.1xb, note that ⌧I is measured in natural units
and is not rescaled.

The inclusion of By has a mild stabilising e↵ect, reducing
the growth rate for given wave number and pushing the maximum
growth rate to a higher wave number, as shown in Fig. 5 where the
dispersion relation is plotted. The eigenfunctions bx and by for the
fastest growing mode with parameters x0 = 0.1 and RH = 1000
are plotted in Fig. 6, showing that the fastest growing eigenmode
consists of oppositely directing by components on either side of the
current sheet and a bx component with a local minimum at x = 0.

3.2 Non-linear evolution

Following the rapid exponential growth of the instability and once
the perturbing field becomes comparable to the background one,
the instability evolves non-linearly. Furthermore, the background
field evolves as well, given the dissipation in the current sheet.
Given these limitations that cannot be assessed by the linear model,
we explore the full non-linear evolution of the plane-parallel prob-
lem. We integrate numerically the full non-linear equation (1) using
a second order Runge-Kutta scheme for the temporal evolution and
a second order finite di↵erence scheme for the spatial derivatives.
We assumed vacuum boundary conditions in x and periodicity in z.
The computational domain extends to ±1 in x and to ±2 in z. The
resolution used for the majority of the runs was 200⇥ 400 points in
x and z, and was tested against higher resolution for some particular
cases with good agreement.

We explore a variety of magnetic field configurations. As ini-
tial condition, we used the background field given in equation (7)
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r · b = 0, thus bz = ik�1
z b0x�kyk�1

z by where prime denotes derivative
with respect to x. Thus the perturbation becomes:

b = exp
⇣
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⇣
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. (4)

Substituting into equation (1) and keeping only the linear terms in
b we obtain the following equations:

(5)
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We first explore numerically the eigenvalue problem. To model the
structure of a current sheet we have chosen the following profile for
the background field:

By = By,0sech
 

x
x0

!

,

Bz = Bz,0 tanh
 

x
x0

!

,

(7)

assuming x0 > 0 and Bz,0 > 0. The field becomes uniform along
the z direction for |x| � x0. A choice of amplitudes By,0 = ±Bz,0

corresponds to a Bloch wall (Bloch 1932): a magnetic field that
changes direction from the �z to the +z keeping its magnitude con-
stant, within a layer of thickness scaling with x0 centred at x = 0.
This case has been of particular interest in MHD simulations as it
is a force-free magnetic field (Low 1973), making it an appropri-
ate choice for studies of resistive instabilities. However, this is an
unnecessary constraint for Electron-MHD studies as any choice of
By,0 amplitude is a Hall equilibrium since equation (2) is identically
satisfied.

The configuration extends from �xb to xb. We impose vacuum
boundary conditions at x boundaries, demanding that no currents
exist outside the domain. We ensure that x0 is su�ciently smaller
than xb for the results to be physically meaningful, and the back-
ground field Bb is essentially uniform and current free close to the
boundaries. Demanding vacuum boundary conditions r ⇥ b = 0
for these equations at |x| > xb we obtain the following equa-
tions: b0x ± k2

z

⇣

k2
y + k2

z

⌘�1/2
bx + ikyby = 0 and ikyb0x �

⇣

k2
y + k2

z

⌘

by =

0. We consider an appropriate system of units so that xb = 1,
cBz,0/(4⇡ene) = 1 where the growth rate is measured in units of
inverse Hall times ⌧H = 4⇡ene x2

b/(cBz,0), with the characteristic
Ohmic timescale being ⌧O = 4⇡�x2

b/c
2. We define the Hall param-

eter RH = �Bz,0/(cene), the ratio of the Ohmic timescale over the
Hall timescale. Larger RH correspond to systems where the Hall
e↵ect dominates. In the systems we studied we have set Bz,0 = 1,
combining it with By,0 = 0 and By,0 = 1. We have varied the thick-
ness of the current sheet from x0 = 0.1 to x0 = 0.5, and the Hall
parameter from RH = 100 to RH = 2000, by changing the conduc-
tivity, see Tables 1 and 2 for the range of parameters used. Then
we solve the linear problem to determine the fastest growing eigen-
modes of bx and by and the corresponding eigenvalues. We do so
by discretising the system of ordinary di↵erential equations (5) and

(6) and constructing the relevant matrix, whose eigenvalues allow
us to determine � and the eigenmodes. We have implemented this
using a finite di↵erence and a spectral calculation finding identi-
cal results. We used up to a 1000 Chebyshev polynomial expansion
in the highest RH and thinner x0 simulated for convergence, see
chapter 7 of Boyd (2001). The results were tested against the finite
di↵erence calculation to ensure their validity.

Studying the plane parallel perturbations with ky = 0, we find
that both the eigenvalues and eigenfunctions for By,0 = 0 are real,
while if By,0 6= 0 the eigenvalues are still real but the eigenfunc-
tions become complex indicative of phase shifting in z. Allowing
the instability to have ky 6= 0 leads to complex eigenvalues and
slower growing eigenmodes for the same background field and RH ,
Figures 1 and 2. Hereafter we will focus on the ky = 0 case.

The maximum growth rate of the instability scales as � /
R�1/3

H , Fig. 3. The wave numbers at which the maximum growth
rate occurs are plotted in Fig. 4, and scales as R�0.15

H . These scal-
ing laws hold for narrow current sheets and high enough Hall pa-
rameters. Thus, the corresponding minimum growth timescale for
the tearing instability becomes ⌧I = ��1 / ⌧2/3

H ⌧
1/3
O and in terms

of the physical quantities appearing � / B2/3
z,0 �

�1/3, assuming that
the thickness of the reversal area remains unchanged. This quasi-
stationarity assumption holds as as long as ⌧I ⌧ ⌧O which corre-
sponds to R2/3

H � 1.
The maximum growth rate and the corresponding wave num-

ber are higher for thinner current sheets, with the growth rate scal-
ing approximately as x�2

0 and the wave number as x�1
0 . Thus, the

growth time of the tearing instability ⌧I in the linear regime can be
summarised in the following expression:

⌧I =
⌧H(10x0/xb)2(RH/100)1/3

�Z01�1
, (8)

where �Z01�1 is the dimensionless growth rate of a system with
RH = 100 and x0 = 0.1xb, note that ⌧I is measured in natural units
and is not rescaled.

The inclusion of By has a mild stabilising e↵ect, reducing
the growth rate for given wave number and pushing the maximum
growth rate to a higher wave number, as shown in Fig. 5 where the
dispersion relation is plotted. The eigenfunctions bx and by for the
fastest growing mode with parameters x0 = 0.1 and RH = 1000
are plotted in Fig. 6, showing that the fastest growing eigenmode
consists of oppositely directing by components on either side of the
current sheet and a bx component with a local minimum at x = 0.

3.2 Non-linear evolution

Following the rapid exponential growth of the instability and once
the perturbing field becomes comparable to the background one,
the instability evolves non-linearly. Furthermore, the background
field evolves as well, given the dissipation in the current sheet.
Given these limitations that cannot be assessed by the linear model,
we explore the full non-linear evolution of the plane-parallel prob-
lem. We integrate numerically the full non-linear equation (1) using
a second order Runge-Kutta scheme for the temporal evolution and
a second order finite di↵erence scheme for the spatial derivatives.
We assumed vacuum boundary conditions in x and periodicity in z.
The computational domain extends to ±1 in x and to ±2 in z. The
resolution used for the majority of the runs was 200⇥ 400 points in
x and z, and was tested against higher resolution for some particular
cases with good agreement.

We explore a variety of magnetic field configurations. As ini-
tial condition, we used the background field given in equation (7)
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Figure 7. The magnetic field for the run using the initial conditions Z01-4 with a superimposed small perturbation in by, at time t = 0 (left), ⌧H (middle)
and 2⌧H (right), the black lines correspond to the Bx and Bz components of the field, and the By component is shown in colour. The magnetic field forms the
characteristic islands in the location of the current sheet. As the system evolves and the current sheet decays, the system adopts longer wavelength modes.

perturbation and the slow decay of the background state. In the ex-
amples simulated we find that for a choice of RH = 400 the decay
rate is clearly enhanced once the instability is close to its saturation
point, with milder e↵ect for a choice of RH = 200. Thus the role of
the instability becomes more evident for higher RH .

Similar to the variants of the MHD tearing instability, the
growth timescale of the E-MHD tearing instability has a mixed
dependence of the Hall and the Ohmic timescales. In the usual
MHD tearing instability the growth rate of the tearing instability
scales with ⌧�3/5

O ⌧�2/5
A , where ⌧O is the resistive and ⌧A the Alfvèn

timescale respectively (Furth et al. 1963). In relativistic magneti-
cally dominated plasmas the growth rate is the geometric mean of
the Alfvèn timescale and the resistive timescale (Komissarov et al.
2007). These di↵erences in the growth rates and consequently on
the wave numbers reflect the di↵erent physical mechanism outlined
above.

The tearing instability in Electron-MHD shares some common
properties with the Hall-drift induced magnetic instability which
was studied in the linear approximation with uniform (Rheinhardt
& Geppert 2002) and non-uniform (Rheinhardt et al. 2004) back-
ground density, and by Pons & Geppert (2010) in the non-linear
regime. Both instabilities require some non-zero resistivity to oper-
ate, as the maximum growth rate of the Hall-drift instability scales
as Bq

0, q < 1, where B0 is the magnitude of the magnetic field, thus
for negligible resistivity the growth rate becomes zero in physical
units. Furthermore both of them are long wavelength instabilities,
having positive eigenvalues for 0 < k < kc where kc is some cut-o↵
wavenumber. They di↵er on that the Hall-drift instability does not
require the presence of a current sheet, even though strong currents
are involved, whereas the current sheet is a key element for the de-
velopment of the tearing instability. Finally, we notice a similarity
on the late evolution where the non-linear e↵ects have taken over:
in both instabilities the system tends to adopt the longest wave-
length permitted by the computational domain leading and the over-
all dissipation is faster Pons & Geppert (2010).

The role of the Hall e↵ect in the development of the tearing in-
stability has been studied by numerous authors, primarily motivated
by experimental results (i.e. Bodin & Newton (1963)). Studies of

Figure 10. Schematic depiction of the instability. We assume a background
field directed to +z on the upper half and to the �z on the lower half. The
by component of the perturbation is shown in colour contours with red used
to point inwards and blue outwards (also denoted with � and ⌦ in black).
The blue arrows show the electron velocity related to the by components,
and the ⌦ blue arrows the electron velocity perpendicular to the plane of
the figure. The electron velocity is higher at the X point compared to the O
point leading to positive feedback and growth of the by component. Please
refer to the text on the Discussion section for a detailed description of the
instability process.

the e↵ect of Hall current on tearing mode in rotating reverse plas-
mas of cylindrical geometry have shown that Hall currents com-
bined with rotation of the fluid can suppress tearing modes (Kap-
pra↵ et al. 1981; Finn et al. 1983; Mirin et al. 1986). Our approach
is di↵erent to these ones in two basic aspects. First, we consider the
evolution under only Electron-MHD, neglecting other terms aris-
ing from Lorentz forces, plasma pressure and inertia, assuming that
they are balanced by the elastic forces of the ion lattice, whereas in
these works the Hall e↵ect is included as an add-on to normal MHD
evolution. Second, the geometry of the system is di↵erent assuming
a rotating cylinder whereas we study a planar system. Our results
are in agreement with those of Fruchtman & Strauss (1993), who
showed that the Hall e↵ect can actually lead to a tearing mode in
an appropriate planar geometry.
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Non-linear evolution:  
Early growth rate reproduces 
the results of linear theory.
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Figure 8. The ratio of magnetic energy in the x and y components over the
total magnetic energy for two runs with initial conditions that of Z01-2 (red)
Z01-4 (green) and a perturbing field containing 2⇥ 10�5 of the total energy.
The time is expressed in units of ⌧H .

Figure 9. The di↵erence of magnetic energy at time t, Et from the initial
magnetic energy E0, for the runs shown in Fig. 8, solid green and red lines.
The same quantity for runs evolving only under the Ohmic dissipation. The
decay for the system evolving only under Ohmic dissipation is slower, and
the di↵erence is more profound for the higher RH .

energy. At very early times (0.2 < t < 0.4⌧H) the instability at
RH = 200 grows marginally faster than the RH = 400 due to
�Z01�4 < �Z01�2, however this lasts for a very short time as the back-
ground field decays swiftly and widens the magnetic field reversal
area. For instance, in a run with RH = 200 and x0 = 0.1 it takes
⇠ 3⌧H for the reversal area to double its size if left to decay Ohmi-
cally. This means that the growth rate will drop by a factor of 4 and
the wave number of the fastest growing mode will be multiplied
by a factor of 2. With respect to the energy decay, the inclusion of
the instability leads to a faster rate compared to a system evolving
solely under Ohmic dissipation with the Hall term switched-o↵, a
result that is more prominent in the case of RH = 400, Fig. 9.

4 DISCUSSION

Following the description of the linear and non-linear evolution, we
conclude that this instability is a resistive tearing mode as it fulfils
the criteria set by Furth et al. (1963). First it is a resistive instabil-
ity with a clear dependence on the value of the resistivity, second
it appears along the current sheet by breaking up the field lines
and third it is a long wavelength instability. We remark though that
the physical mechanism between the tearing instability in Electron-
MHD and the usual MHD evolution is di↵erent. In Electron-MHD,
a sole equation for the evolution of the system needs to be solved,
equation (1), whereas in MHD the momentum equation needs to
be accounted for, as well. Thus, while in the usual MHD case, the
development of the instability results from a sequence of events in-
volving magnetic pressure and tension and plasma pressure, in the
Electron-MHD such a description is irrelevant, as the Lorentz force
is balanced by the ion lattice and the entire evolution is determined
by the magnetic induction equation alone.

In the Hall-MHD case, the key quantity is the electron fluid
velocity advecting the magnetic flux. The electron fluid velocity
is uniquely determined by the magnetic field structure through the
relation:

ve = �
c

4⇡ene
r ⇥ B . (9)

The instability develops through the steps shown in Fig. 10. The by

component is supported by a current corresponding to the motion
of the electron fluid on the plane of the figure with velocity ve, de-
noted by blue arrows shown edge-on. Note that since the current is
carried by electrons, its flow is antiparallel to the ve; hereafter we
are going to refer to the electron motion to avoid confusion from
the oppositely directing current. Considering the x component of
the electron flow near the O and X points, we find that it pushes the
field lines away from the O point and compresses them towards the
X points. Whereas, in the z direction and along the current sheet the
electron velocity is from the X point towards the O point. Thanks
to resistivity the field lines reconnect at the X point; these newly re-
connected field lines shrink around the O point, where they, again
due to resistivity, vanish. The compression of the field lines around
the X point and the dilution around the O point enhance and sup-
press the electron flow that runs normal to the plane of the figure,
respectively (blue arrow shown tail on). This velocity di↵erence
deforms the field lines so that by is enhanced, closing the positive
feedback loop. This is in agreement with the fact that the instability
growth rate depends on both the Hall and the Ohmic timescales.
The Hall time scale controls the rate at which the field lines move,
while the Ohmic times scale set the rate at which the field lines re-
connect and essentially controls the supply of magnetic field lines
that will move from the X point towards the O point.

The results of our linear analysis show that the growth rate
of the instability is proportional to R�1/3

H as opposed to R�1/5
H sug-

gested in the analytical approach of Wood et al. (2014), while the
corresponding wavenumber is proportional to R�0.15

H as opposed to
R�1/5

H suggested there. We find that as long as the boundaries of our
calculations are twice as wide compared to the size of field reversal
area, their e↵ect on the instability is minimal. These discrepancies
are related to the inevitable simplifications made in order to obtain
an analytical expression for this instability and the di↵erent pro-
files of the background magnetic field employed not containing a
current sheet.

Regarding the full non-linear calculations we find that the in-
stability has a considerable e↵ect on the magnetic field decay once
RH is large enough. This is caused by the rapid growth of the initial
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Figure 7. The magnetic field for the run using the initial conditions Z01-4 with a superimposed small perturbation in by, at time t = 0 (left), ⌧H (middle)
and 2⌧H (right), the black lines correspond to the Bx and Bz components of the field, and the By component is shown in colour. The magnetic field forms the
characteristic islands in the location of the current sheet. As the system evolves and the current sheet decays, the system adopts longer wavelength modes.

perturbation and the slow decay of the background state. In the ex-
amples simulated we find that for a choice of RH = 400 the decay
rate is clearly enhanced once the instability is close to its saturation
point, with milder e↵ect for a choice of RH = 200. Thus the role of
the instability becomes more evident for higher RH .

Similar to the variants of the MHD tearing instability, the
growth timescale of the E-MHD tearing instability has a mixed
dependence of the Hall and the Ohmic timescales. In the usual
MHD tearing instability the growth rate of the tearing instability
scales with ⌧�3/5

O ⌧�2/5
A , where ⌧O is the resistive and ⌧A the Alfvèn

timescale respectively (Furth et al. 1963). In relativistic magneti-
cally dominated plasmas the growth rate is the geometric mean of
the Alfvèn timescale and the resistive timescale (Komissarov et al.
2007). These di↵erences in the growth rates and consequently on
the wave numbers reflect the di↵erent physical mechanism outlined
above.

The tearing instability in Electron-MHD shares some common
properties with the Hall-drift induced magnetic instability which
was studied in the linear approximation with uniform (Rheinhardt
& Geppert 2002) and non-uniform (Rheinhardt et al. 2004) back-
ground density, and by Pons & Geppert (2010) in the non-linear
regime. Both instabilities require some non-zero resistivity to oper-
ate, as the maximum growth rate of the Hall-drift instability scales
as Bq

0, q < 1, where B0 is the magnitude of the magnetic field, thus
for negligible resistivity the growth rate becomes zero in physical
units. Furthermore both of them are long wavelength instabilities,
having positive eigenvalues for 0 < k < kc where kc is some cut-o↵
wavenumber. They di↵er on that the Hall-drift instability does not
require the presence of a current sheet, even though strong currents
are involved, whereas the current sheet is a key element for the de-
velopment of the tearing instability. Finally, we notice a similarity
on the late evolution where the non-linear e↵ects have taken over:
in both instabilities the system tends to adopt the longest wave-
length permitted by the computational domain leading and the over-
all dissipation is faster Pons & Geppert (2010).

The role of the Hall e↵ect in the development of the tearing in-
stability has been studied by numerous authors, primarily motivated
by experimental results (i.e. Bodin & Newton (1963)). Studies of

Figure 10. Schematic depiction of the instability. We assume a background
field directed to +z on the upper half and to the �z on the lower half. The
by component of the perturbation is shown in colour contours with red used
to point inwards and blue outwards (also denoted with � and ⌦ in black).
The blue arrows show the electron velocity related to the by components,
and the ⌦ blue arrows the electron velocity perpendicular to the plane of
the figure. The electron velocity is higher at the X point compared to the O
point leading to positive feedback and growth of the by component. Please
refer to the text on the Discussion section for a detailed description of the
instability process.

the e↵ect of Hall current on tearing mode in rotating reverse plas-
mas of cylindrical geometry have shown that Hall currents com-
bined with rotation of the fluid can suppress tearing modes (Kap-
pra↵ et al. 1981; Finn et al. 1983; Mirin et al. 1986). Our approach
is di↵erent to these ones in two basic aspects. First, we consider the
evolution under only Electron-MHD, neglecting other terms aris-
ing from Lorentz forces, plasma pressure and inertia, assuming that
they are balanced by the elastic forces of the ion lattice, whereas in
these works the Hall e↵ect is included as an add-on to normal MHD
evolution. Second, the geometry of the system is di↵erent assuming
a rotating cylinder whereas we study a planar system. Our results
are in agreement with those of Fruchtman & Strauss (1993), who
showed that the Hall e↵ect can actually lead to a tearing mode in
an appropriate planar geometry.
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Effect of tearing instability
• Speed up decay in current sheets. 

• Generate smaller structure. 

• It does NOT generate stronger magnetic fields. 

• It has not been seen noticed in simulations (but…) 

Azimuthal field on the 
equator from an 
axially and equatorally 
symmetric simulation.

B (G)

R/RNS



Summary
• Both ideal and non-ideal instabilities have been confirmed 

in Hall-MHD.  

• Analytical and numerical exploration, agree very well with 
each other. 

• Effect on neutron stars: 

• Ideal: generation of non-axisymmetric strong localised 
fields, hotspots, faster decay. 

• Resistive: speeds up magnetic dissipation in current 
sheets.



Thanks!


