# Compact binaries and the gravitational self-force 

Adam Pound

University of Southampton
11 Oct 2018

## The first detections

Three years ago, LIGO detected the gravitational waves from a black hole binary merger


Several more binaries have since been detected by LIGO and Virgo

## Gravitational waves and binary systems



- waves propagate to detector
- to extract meaningful information from a signal, we require models that relate the waveform to the source

■ compact objects (black holes or neutron stars) strongly curve the spacetime around them

- their motion in a binary generates gravitational waves, small ripples in spacetime



## Many detectors

A multitude of detectors are in various stages of development on the ground and in space


## Many types of binaries

■ different classes of binaries will be observed by different detectors and tell us different things

- share a common structure: emission of energy in gravitational waves drives inspiral and eventual collision
- but they require different modeling methods

[Image credit: Leor Barack]

■ models can be combined in phenomenological effective-one-body (EOB) theory

## Comparable-mass inspirals

## Science



■ the common type of binary observed by ground-based detectors LIGO/Virgo

- observations will
- constrain populations of stellarand intermediate-mass BHs
- constrain NS equation of state
- test alternative theories of gravity


## Modeling

■ early stages modeled by post-Newtonian (PN) theory: expansion in limit of $v / c \rightarrow 0$

- late stages modeled by numerical relativity (NR): numerical solution to nonlinear Einstein equation

- full evolution modeled by EOB


## Extreme-mass-ratio inspirals (EMRIs)

## Science

■ space-based detector LISA will observe extreme-mass ratio inspirals of stellar-mass BHs or neutron stars into massive BH

■ small object spends
$\sim M / m \sim 10^{5}$ orbits near BH
$\Rightarrow$ unparalleled probe of strong-field region around BH

## Modeling

■ PN and NR don't work
■ use black hole perturbation theory/self-force theory


## More on EMRI science

## Fundamental physics

■ measure central BH parameters: mass and spin to $\sim .01 \%$ error, quadrupole moment to $\sim .1 \%$
$\Rightarrow$ measure deviations from the Kerr relationship $M_{l}+i S_{l}=M(i a)^{l}$
$\Rightarrow$ test no-hair theorem
■ measure deviations from Kerr QNMs, presence or absence of event horizon, additional wave polarizations, changes to power spectrum

- constraints on modified gravity will be one or more orders of magnitude better than any other planned experiment


## Astrophysics

- constrain mass function $n(M)$ (number of black holes with given mass)
■ provide information about stellar environment around massive BHs


## Cosmology

■ measure Hubble constant to $\sim 1 \%$

## More on EMRI modeling: why self-force?



■ highly relativistic, strong fields

■ disparate lengthscales

- long timescale: inspiral is slow, produces $\sim \frac{M}{m} \sim 10^{5}$ wave cycles

■ treat $m$ as source of perturbation of $M$ 's metric $g_{\mu \nu}$ :

$$
\mathrm{g}_{\mu \nu}=g_{\mu \nu}+\epsilon h_{\mu \nu}^{1}+\epsilon^{2} h_{\mu \nu}^{2}+\ldots
$$

where $\epsilon \sim m / M$
■ represent motion of $m$ via worldline $z^{\mu}$ satisfying

$$
\frac{D^{2} z^{\mu}}{d \tau^{2}}=\epsilon F_{1}^{\mu}+\epsilon^{2} F_{2}^{\mu}+\ldots
$$

## More on EMRI modeling: why self-force?



- highly relativistic, strong fields $\Rightarrow$ can't use post-Newtonian theory
■ disparate lengthscales
- long timescale: inspiral is slow, produces $\sim \frac{M}{m} \sim 10^{5}$ wave cycles

■ treat $m$ as source of perturbation of $M$ 's metric $g_{\mu \nu}$ :

$$
\mathrm{g}_{\mu \nu}=g_{\mu \nu}+\epsilon h_{\mu \nu}^{1}+\epsilon^{2} h_{\mu \nu}^{2}+\ldots
$$

where $\epsilon \sim m / M$
■ represent motion of $m$ via worldline $z^{\mu}$ satisfying

$$
\frac{D^{2} z^{\mu}}{d \tau^{2}}=\epsilon F_{1}^{\mu}+\epsilon^{2} F_{2}^{\mu}+\ldots
$$

## More on EMRI modeling: why self-force?



■ highly relativistic, strong fields $\Rightarrow$ can't use post-Newtonian theory

■ disparate lengthscales
$\Rightarrow$ can't use numerical relativity

- long timescale: inspiral is slow, produces $\sim \frac{M}{m} \sim 10^{5}$ wave cycles

■ treat $m$ as source of perturbation of $M$ 's metric $g_{\mu \nu}$ :

$$
\mathrm{g}_{\mu \nu}=g_{\mu \nu}+\epsilon h_{\mu \nu}^{1}+\epsilon^{2} h_{\mu \nu}^{2}+\ldots
$$

where $\epsilon \sim m / M$
■ represent motion of $m$ via worldline $z^{\mu}$ satisfying

$$
\frac{D^{2} z^{\mu}}{d \tau^{2}}=\epsilon F_{1}^{\mu}+\epsilon^{2} F_{2}^{\mu}+\ldots
$$

## More on EMRI modeling: why self-force?



- highly relativistic, strong fields $\Rightarrow$ can't use post-Newtonian theory

■ disparate lengthscales
$\Rightarrow$ can't use numerical relativity

- long timescale: inspiral is slow, produces $\sim \frac{M}{m} \sim 10^{5}$ wave cycles $\Rightarrow$ need a model that is accurate to $\ll 1$ radian over those $\sim 10^{5}$ cycles

■ treat $m$ as source of perturbation of $M$ 's metric $g_{\mu \nu}$ :

$$
\mathrm{g}_{\mu \nu}=g_{\mu \nu}+\epsilon h_{\mu \nu}^{1}+\epsilon^{2} h_{\mu \nu}^{2}+\ldots
$$

where $\epsilon \sim m / M$
■ represent motion of $m$ via worldline $z^{\mu}$ satisfying

$$
\frac{D^{2} z^{\mu}}{d \tau^{2}}=\epsilon F_{1}^{\mu}+\epsilon^{2} F_{2}^{\mu}+\ldots
$$

## One more: intermediate-mass-ratio inspirals (IMRIs)



## Science

- observable by ground-based (LIGO/Virgo) and space-based (LISA/DECIGO) detectors



## Outline

(1) Binaries and gravitational waves
(2) EMRI model requirements
(3) Self-force theory: the local problem

4 Self-force theory: the global problem

- First order
- Second order


## Outline

## (1) Binaries and gravitational waves

(2) EMRI model requirements
(3) Self-force theory: the local problem

4 Self-force theory: the global problem

- First order
- Second order


## How high order?

$$
\frac{D^{2} z^{\mu}}{d \tau^{2}}=\epsilon F_{1}^{\mu}+\epsilon^{2} F_{2}^{\mu}+\ldots
$$

- force is small; inspiral occurs very slowly, on time scale $\tau \sim 1 / \epsilon$
- suppose we neglect $F_{2}^{\mu}$; leads to error $\delta\left(\frac{D^{2} z^{\mu}}{d \tau^{2}}\right) \sim \epsilon^{2}$
$\Rightarrow$ error in position $\delta z^{\mu} \sim \epsilon^{2} \tau^{2}$
$\Rightarrow$ after time $\tau \sim 1 / \epsilon$, error $\delta z^{\mu} \sim 1$
accurately describing orbital evolution requires second order


## How high order?

$$
\frac{D^{2} z^{\mu}}{d \tau^{2}}=\epsilon F_{1}^{\mu}+\epsilon^{2} F_{2}^{\mu}+\ldots
$$

- force is small; inspiral occurs very slowly, on time scale $\tau \sim 1 / \epsilon$

■ suppose we neglect $F_{2}^{\mu}$; leads to error $\delta\left(\frac{D^{2} z^{\mu}}{d \tau^{2}}\right) \sim \epsilon^{2}$
$\Rightarrow$ error in position $\delta z^{\mu} \sim \epsilon^{2} \tau^{2}$
$\Rightarrow$ after time $\tau \sim 1 / \epsilon$, error $\delta z^{\mu} \sim 1$
$\therefore$ accurately describing orbital evolution requires second order

## Zeroth-order approximation: geodesics in Kerr



■ geodesic characterized by three constants of motion:

1 energy $E$
2 angular momentum $L_{z}$
3 Carter constant $Q$, related to orbital inclination
[image courtesy of Steve Drasco]

- $E, L_{z}, Q$ related to frequencies of $r, \phi$, and $\theta$ motion
- resonances occur when two frequencies have a rational ratio

[image courtesy of Steve Drasco]


## Hierarchy of self-force models manasum mammen

■ when self-force is accounted for, $E, L_{z}$, and $Q$ evolve with time

- on an inspiral timescale $t \sim 1 / \epsilon$, the phase of the gravitational wave has an expansion (excluding resonances)

$$
\phi=\frac{1}{\epsilon}\left[\phi_{0}+\epsilon \phi_{1}+O\left(\epsilon^{2}\right)\right]
$$

- a model that gets $\phi_{0}$ right should be enough for signal detection

■ a model that gets both $\phi_{0}$ and $\phi_{1}$ should be enough for parameter extraction

## Hierarchy of self-force models minater mamem

## Adiabatic order

determined by

- averaged dissipative piece of $F_{1}^{\mu}$
$E, L_{z}$, and $Q$ evolve with time the phase of the gravitational wave has an expaksion (excluding resonances)

$$
\left.\phi=\frac{1}{\epsilon} \phi_{0}+\epsilon \phi_{1}+O\left(\epsilon^{2}\right)\right]
$$

■ a model that gets $\phi_{0}$ right should be enough for signal detection
■ a model that gets both $\phi_{0}$ and $\phi_{1}$ should be enough for parameter extraction

## Hierarchy of self-force models manate mamamen

## Post-adiabatic order

## Adiabatic order

determined by

- averaged dissipative piece of $F_{1}^{\mu}$ determined by
- averaged dissipative piece of $F_{2}^{\mu}$
- conservative piece of $F_{1}^{\mu}$
- oscillatory dissipative piece of $F_{1}^{\mu}$ has an expaksion (excluding resomames

$$
\left.\phi=\frac{1}{\epsilon}+\phi_{0}+O\left(\epsilon^{2}\right)\right]
$$

■ a model that gets $\phi_{0}$ right should be enough for signal detection
■ a model that gets both $\phi_{0}$ and $\phi_{1}$ should be enough for parameter extraction

## Outline

(1) Binaries and gravitational waves
(2) EMRI model requirements
(3) Self-force theory: the local problem

4 Self-force theory: the global problem

- First order
- Second order


## What is the problem we want to solve?

A small, compact object of mass and size $m \sim l \sim \epsilon$ moves through (and influences) spacetime

■ Option 1: tackle the problem directly, treat the body as finite sized, deal with its internal composition

Need to deal with internal
dynamics and strong fields
near object

## What is the problem we want to solve?

A small, compact object of mass and size $m \sim l \sim \epsilon$ moves through (and influences) spacetime

■ Option 2: restrict the problem to distances $s \gg m$ from the object, treat $m$ as source of perturbation of external background $g_{\mu \nu}$ :

$$
\mathrm{g}_{\mu \nu}=g_{\mu \nu}+\epsilon h_{\mu \nu}^{1}+\epsilon^{2} h_{\mu \nu}^{2}+\ldots
$$

■ This is a free boundary value problem

Metric here must agree with metric outside a small compact object; and "here" moves in response to field

## What is the problem we want to solve?

A small, compact object of mass and size $m \sim l \sim \epsilon$ moves through (and influences) spacetime

■ Option 3: treat the body as a point particle

- takes behavior of fields outside object and extends it down to a fictitious worldline
- so $h_{\mu \nu}^{1} \sim 1 / s(s=$ distance from object $)$
- second-order field equation $\delta G\left[h^{2}\right] \sim-\delta^{2} G\left[h^{1}\right] \sim\left(\partial h^{1}\right)^{2} \sim 1 / s^{4}$ -no solution unless we restrict it to points off worldline, which is equivalent to FBVP

Distributionally ill defined
source appears here!

## What is the problem we want to solve?

A small, compact object of mass and size $m \sim l \sim \epsilon$ moves through (and influences) spacetime

■ Option 4: transform the FBVP into an effective problem using a puncture, a local approximation to the field outside the object

- This will be the method emphasized here
[Mino, Sasaki, Tanaka 1996; Quinn \& Wald 1996; Detweiler \& Whiting 2002-03; Gralla \& Wald 2008-2012; Pound 2009-2017; Harte 2012]


## Matched asymptotic expansions



- outer expansion: in external universe, treat field of $M$ as background

■ inner expansion: in inner region, treat field of $m$ as background

- in buffer region, feed information
 from inner expansion into outer expansion


## The inner expansion

Zoom in on object
■ unperturbed object defines background spacetime $g_{\mu \nu}^{\mathrm{obj}}$ in inner expansion
■ buffer region at asymptotic infinity $s \gg m$
$\Rightarrow$ can define object's multipole moments as those of $g_{\mu \nu}^{\mathrm{obj}}$


## General solution in buffer region

General solution compatible with existence of inner expansion [Pound 2009, 2012]:

## First order

■ $h_{\mu \nu}^{(1)}=h_{\mu \nu}^{S(1)}+h_{\mu \nu}^{R(1)}$
■ $h_{\mu \nu}^{S(1)} \sim 1 / s+O\left(s^{0}\right)$ defined by mass monopole $m$
■ $h_{\mu \nu}^{R(1)}$ is undetermined homogenous solution regular at $s=0$
■ evolution equations: $\dot{m}=0$ and $a_{(0)}^{\mu}=0$
(where $\left.\frac{D^{2} z^{\mu}}{d \tau^{2}}=a_{(0)}^{\mu}+\epsilon a_{(1)}^{\mu}+\ldots\right)$

## Second order

■ $h_{\mu \nu}^{(2)}=h_{\mu \nu}^{S(2)}+h_{\mu \nu}^{R(2)}$

- $h_{\mu \nu}^{S(2)} \sim 1 / s^{2}+O(1 / s)$ defined by

1 monopole correction $\delta m$
2 mass dipole $M^{\mu}$ (set to zero)
3 spin dipole $S^{\mu}$
■ evolution equations: $\dot{S}^{\mu}=0, \dot{\delta m}=\ldots$, and $a_{(1)}^{\mu}=\ldots$

## Self-field and effective field

- we've locally split metric into a "self-field" and an effective metric

full metric $\mathrm{g}_{\mu \nu}$

"self field" $h_{\mu \nu}^{\mathrm{S}}$

effective metric $g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R}}$
- $h_{\mu \nu}^{\mathrm{S}}$ directly determined by object's multipole moments
- $g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R}}$ is a smooth vacuum metric determined by global boundary conditions


## Defining object's position

Reminder: mass dipole moment $M^{i}$ :

- small displacement of center of mass from origin of coordinates
- e.g., Newtonian field $\frac{m}{\left|x^{i}-\delta z^{i}\right|} \approx \frac{m}{\left|x^{i}\right|}+\frac{m \delta z^{j} n_{j}}{\left|x^{i}\right|^{2}} \Rightarrow M^{i}=m \delta z^{i}$


Definition of object's worldline:
■ work in coordinates $\left(t, x^{i}\right)$ centered on a curve $\gamma$
■ equation of motion of $z^{\mu}$ : whatever ensures $M^{\mu} \equiv 0$

## Defining object's position

Reminder: mass dipole moment $M^{i}$ :

- small displacement of center of mass from origin of coordinates
- e.g., Newtonian field $\frac{m}{\left|x^{i}-\delta z^{i}\right|} \approx \frac{m}{\left|x^{i}\right|}+\frac{m \delta z^{j} n_{j}}{\left|x^{i}\right|^{2}} \Rightarrow M^{i}=m \delta z^{i}$


Definition of object's worldline:

- work in coordinates $\left(t, x^{i}\right)$ centered on a curve $\gamma$
- equation of motion of $z^{\mu}$ : whatever ensures $M^{\mu} \equiv 0$


## Where is the worldline?



## Oth-, 1st-, and 2nd-order equations of motion

Oth order, arbitrary object: $\frac{D^{2} z^{\mu}}{d \tau^{2}}=O(m)$ (geodesic motion in $g_{\mu \nu}$ )
1st order, arbitrary compact object [MisaTaquWa 1996]:

(motion of spinning test body in $g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R} 1}$ )
2nd-order, nonspinning, spherical compact object [Pound 2012]:

(geodesic motion in $g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R}}$ )

## Oth-, 1st-, and 2nd-order equations of motion

Oth order, arbitrary object: $\frac{D^{2} z^{\mu}}{d \tau^{2}}=O(m)$ (geodesic motion in $g_{\mu \nu}$ )
1st order, arbitrary compact object [misaTaQuwa 1996]:
$\frac{D^{2} z^{\mu}}{d \tau^{2}}=-\frac{1}{2}\left(g^{\alpha \delta}+u^{\alpha} u^{\delta}\right)\left(2 h_{\delta \beta ; \gamma}^{\mathrm{R} 1}-h_{\beta \gamma ; \delta}^{\mathrm{R} 1}\right) u^{\beta} u^{\gamma}+\frac{1}{2 m} R^{\alpha}{ }_{\beta \gamma \delta} u^{\beta} S^{\gamma \delta}+O\left(m^{2}\right)$
(motion of spinning test body in $g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R} 1}$ )
2nd-order, nonspinning, spherical compact object [Pound 2012]:

(geodesic motion in $g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R}}$ )

## Oth-, 1st-, and 2nd-order equations of motion

Oth order, arbitrary object: $\frac{D^{2} z^{\mu}}{d \tau^{2}}=O(m)$ (geodesic motion in $g_{\mu \nu}$ )
1st order, arbitrary compact object [misaTaQuwa 1996]:

(motion of spinning test body in $g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R} 1}$ )
2nd-order, nonspinning, spherical compact object [Pound 2012]:

$$
\frac{D^{2} z^{\mu}}{d \tau^{2}}=-\frac{1}{2}\left(g^{\mu \nu}+u^{\mu} u^{\nu}\right)\left(g_{\nu}^{\rho}-h_{\nu}^{\mathrm{R} \rho}\right)\left(2 h_{\rho \sigma ; \lambda}^{\mathrm{R}}-h_{\sigma \lambda ; \rho}^{\mathrm{R}}\right) u^{\sigma} u^{\lambda}+O\left(m^{3}\right)
$$

(geodesic motion in $g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R}}$ )

- all these results are derived directly from EFE outside the object; there's no regularization of infinities, and no assumptions about $h_{\mu \nu}^{\mathrm{R}}$


## Oth-, 1st-, and 2nd-order equations of motion

Oth order, arbitrary object: $\frac{D^{2} z^{\mu}}{d \tau^{2}}=O(m)$ (geodesic motion in $g_{\mu \nu}$ )
1st order, arbitrary compact object [misaTaQuwa 1996]:

(motion of spinning test body in $g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R} 1}$ )
2nd-order, nonspinning, spherical compact object [Pound 2012]:

$$
\frac{D^{2} z^{\mu}}{d \tau^{2}}=-\frac{1}{2}\left(g^{\mu \nu}+u^{\mu} u^{\nu}\right)\left(g_{\nu}^{\rho}-h_{\nu}^{\mathrm{R} \rho}\right)\left(2 h_{\rho \sigma ; \lambda}^{\mathrm{R}}-h_{\sigma \lambda ; \rho}^{\mathrm{R}}\right) u^{\sigma} u^{\lambda}+O\left(m^{3}\right)
$$

(geodesic motion in $g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R}}$ )
■ all these results are derived directly from EFE outside the object; there's no regularization of infinities, and no assumptions about $h_{\mu \nu}^{\mathrm{R}}$

## Point particles and punctures [Bacacke tal Dowemier, Grillewald, Panus]

- replace "self-field" with "singular field"

- at 1st order, can use this to replace object with a point particle

$$
T_{\mu \nu}^{1}:=\frac{1}{8 \pi} \delta G_{\mu \nu}\left[h^{1}\right] \sim m \delta(x-z)
$$

■ beyond 1st order, point particles not well defined-but can replace object with a puncture, a local singularity in the field, moving on $\gamma$, equipped with the object's multipole moments

## 

- replace "self-field" with "singular field"

full metric $\mathrm{g}_{\mu \nu}$

"self field" $h_{\mu \nu}^{\mathrm{S}} \quad$ effective metric $\quad g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R}}$
- at 1st order, can use this to replace object with a point particle

$$
T_{\mu \nu}^{1}:=\frac{1}{8 \pi} \delta G_{\mu \nu}\left[h^{1}\right] \sim m \delta(x-z)
$$

■ beyond 1st order, point particles not well defined-but can replace object with a puncture, a local singularity in the field, moving on $\gamma$, equipped with the object's multipole moments

## Point particles and punctures [Bacacke tal Dowemier, Grillewald, Panus]

■ replace "self-field" with "singular field"

singular field $h_{\mu \nu}^{\mathrm{S}}$

effective metric $\quad g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R}}$

- at 1st order, can use this to replace object with a point particle

$$
T_{\mu \nu}^{1}:=\frac{1}{8 \pi} \delta G_{\mu \nu}\left[h^{1}\right] \sim m \delta(x-z)
$$

■ beyond 1st order, point particles not well defined-but can replace object with a puncture, a local singularity in the field, moving on $\gamma$, equipped with the object's multipole moments

## 

■ replace "self-field" with "singular field"


singular field $h_{\mu \nu}^{\mathrm{S}}$

effective metric $g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R}}$

■ at 1st order, can use this to replace object with a point particle

$$
T_{\mu \nu}^{1}:=\frac{1}{8 \pi} \delta G_{\mu \nu}\left[h^{1}\right] \sim m \delta(x-z)
$$

■ beyond 1st order, point particles not well defined-but can replace object with a puncture, a local singularity in the field, moving on $\gamma$, equipped with the object's multipole moments

## How you replace an object with a puncture

■ use a local expansion of $h_{\mu \nu}^{\mathrm{S} n}$ as a puncture $h_{\mu \nu}^{\mathcal{P} n}$ that moves on $\gamma$
■ transition $h_{\mu \nu}^{\mathcal{P} n}$ to zero at some distance from $\gamma$, solve field equations for the residual field

$$
h_{\mu \nu}^{\mathcal{R} n}:=h_{\mu \nu}^{n}-h_{\mu \nu}^{\mathcal{P} n}
$$

■ move the puncture with eqn of motion (using $\left.\partial h_{\mu \nu}^{\mathcal{R} n}\right|_{\gamma}=\left.\partial h_{\mu \nu}^{\mathrm{R} n}\right|_{\gamma}$ )
use $h_{\mu \nu}^{\mathcal{R} n}[\gamma]$ in eqn. of motion to evolve $\gamma$


## More on puncturing

## Actual fields



## Punctured version



■ Note: self-force literature often speaks of "regularizing" singular fields and forces

■ but we introduce the singular field as a tool to compute a specific regular field

■ self-force theory does not involve regularizing divergent quantities

## Outline

## (1) Binaries and gravitational waves

(2) EMRI model requirements
(3) Self-force theory: the local problem

4 Self-force theory: the global problem

- First order
- Second order


## Solving the Einstein equations globally

■ solving the local problem told us how to replace the small object with a moving puncture in the field equations:

$$
\begin{aligned}
\delta G_{\mu \nu}\left[h^{\mathcal{R} 1}\right] & =-\delta G_{\mu \nu}\left[h^{\mathcal{P} 1}\right] \\
\delta G_{\mu \nu}\left[h^{\mathcal{R} 2}\right] & =-\delta^{2} G_{\mu \nu}\left[h^{1}, h^{1}\right]-\delta G_{\mu \nu}\left[h^{\mathcal{P} 2}\right] \\
\frac{D^{2} z^{\mu}}{d \tau^{2}} & =-\frac{1}{2}\left(g^{\mu \nu}+u^{\mu} u^{\nu}\right)\left(g_{\nu}{ }^{\delta}-h_{\nu}^{\mathcal{R} \delta}\right)\left(2 h_{\delta \beta ; \gamma}^{\mathcal{R}}-h_{\beta \gamma ; \delta}^{\mathcal{R}}\right) u^{\beta} u^{\gamma}
\end{aligned}
$$

where $\delta G_{\mu \nu}[h] \sim \square h_{\mu \nu}, \delta^{2} G_{\mu \nu}[h, h] \sim \partial h \partial h+h \partial^{2} h$
■ the global problem: how do we solve these equations in practice?

## Solving the Einstein equations globally

■ solving the local problem told us how to replace the small object with a moving puncture in the field equations:

$$
\begin{aligned}
\delta G_{\mu \nu}\left[h^{\mathcal{R} 1}\right] & =-\delta G_{\mu \nu}\left[h^{\mathcal{P} 1}\right] \\
\delta G_{\mu \nu}\left[h^{\mathcal{R} 2}\right] & =-\delta^{2} G_{\mu \nu}\left[h^{1}, h^{1}\right]-\delta G_{\mu \nu}\left[h^{\mathcal{P} 2}\right] \\
\frac{D^{2} z^{\mu}}{d \tau^{2}} & =-\frac{1}{2}\left(g^{\mu \nu}+u^{\mu} u^{\nu}\right)\left(g_{\nu}{ }^{\delta}-h_{\nu}^{\mathcal{R} \delta}\right)\left(2 h_{\delta \beta ; \gamma}^{\mathcal{R}}-h_{\beta \gamma ; \delta}^{\mathcal{R}}\right) u^{\beta} u^{\gamma}
\end{aligned}
$$

where $\delta G_{\mu \nu}[h] \sim \square h_{\mu \nu}, \delta^{2} G_{\mu \nu}[h, h] \sim \partial h \partial h+h \partial^{2} h$
■ the global problem: how do we solve these equations in practice?

## 



- approximate the source orbit as a bound geodesic

■ impose outgoing-wave BCs at $\mathcal{I}^{+}$and $\mathcal{H}^{+}$

- solve field equation numerically, compute self-force from solution
- system radiates forever; at any given time, BH has already absorbed infinite energy
- but on short sections of time the approximation is accurate
- breaks down on dephasing time $\sim 1 / \sqrt{\epsilon}$, when



## 



■ approximate the source orbit as a bound geodesic

- impose outgoing-wave BCs at $\mathcal{I}^{+}$and $\mathcal{H}^{+}$
- solve field equation numerically, compute self-force from solution
- system radiates forever; at any given time, BH has already absorbed infinite energy

■ but on short sections of time the approximation is accurate

- breaks down on dephasing time $\sim 1 / \sqrt{\epsilon}$, when $\left|z^{\mu}-z_{0}^{\mu}\right| \sim M$


## First-order results: orbital evolution

■ adiabatic evolution schemes in Kerr already devised and implemented (modulo resonances) [Mino, Drasco et al, Sago et al]


- complete inspirals also simulated in Schwarzschild using full $F_{1}^{\mu}$ [Warburton et al]
- and $F_{1}^{\mu}$ has been computed on generic orbits in Kerr [van de Meent]
- but still need $F_{2}^{\mu}$ for accurate post-adiabatic inspiral
- adiabatic evolution schemes in Kerr already devised and implemented (modulo resonances) [Mino, Drasco et al, Sago et all

- complete inspirals also simulated in Schwarzschild using full $F_{1}^{\mu}$ [Warburton et al]
■ and $F_{1}^{\mu}$ has been computed on generic orbits in Kerr [van de

Ment]
■ but still need $F_{2}^{\mu}$ for accurate post-adiabatic inspiral

## First-order results: improving other binary models

PN and EOB models have been improved using data for conservative effects of the self-force (computed by "turning off" dissipation)

- orbital precession [Barack et al., van de Meent]

■ ISCO shift [Barack and Sago, lsoyama et al.]
■ Detweiler's redshift invariant $\frac{d t}{d \tau^{R}}$ on circular orbits [Detweiler, Shah et al., Dolan and Barack]
■ averaged redshift $\left\langle\frac{d t}{d \tau^{R}}\right\rangle$ on eccentric orbits [Barack et al., van de

## Meent \& Shah]

- spin precession [Dolan et al, Bini et all

Binary parameter space


- quadrupolar and octupolar self-tides [Dolan et al, Damour and Bini]


## First-order results: using SF to directly model IMRIs

Comparisons for equal-mass binaries

Orbital precession

[Le Tiec et al]

Gravitational binding energy


- SF results use "mass symmetrized" model: $\frac{m}{M} \rightarrow \frac{m M}{(m+M)^{2}}$
- with mass-symmetrization, second-order self-force might be able to directly model even comparable-mass binaries


## First-order results: using SF to directly model IMRIs

Comparisons for equal-mass binaries

Orbital precession

[Le Tiec et al]

Gravitational binding energy


- SF results use "mass symmetrized" model: $\frac{m}{M} \rightarrow \frac{m M}{(m+M)^{2}}$

■ with mass-symmetrization, second-order self-force might be able to directly model even comparable-mass binaries

## Outline

(1) Binaries and gravitational waves
(2) EMRI model requirements
(3) Self-force theory: the local problem
(4) Self-force theory: the global problem

- First order
- Second order


## Infrared problems at second order panus 2051



■ suppose we try to use "typical" $h_{\mu \nu}^{1}$ to construct source for $h_{\mu \nu}^{2}$

- because $\left|z^{\mu}-z_{0}^{\mu}\right|$ blows up with time, $h_{\mu \nu}^{2}$ does likewise
■ because $h_{\mu \nu}^{1}$ contains outgoing waves at all past times, the source $\delta^{2} R_{\mu \nu}\left[h^{1}\right]$ decays too slowly, and its retarded integral does not exist
■ instead, we must construct a uniform approximation
$\rightarrow h_{\mu \nu}^{1}$ must include evolution of orbit
- radiation must decay to zero in infinite past


## Infrared problems at second order panus 2051



■ suppose we try to use "typical" $h_{\mu \nu}^{1}$ to construct source for $h_{\mu \nu}^{2}$
■ because $\left|z^{\mu}-z_{0}^{\mu}\right|$ blows up with time, $h_{\mu \nu}^{2}$ does likewise
■ because $h_{\mu \nu}^{1}$ contains outgoing waves at all past times, the source $\delta^{2} R_{\mu \nu}\left[h^{1}\right]$ decays too slowly, and its retarded integral does not exist

■ instead, we must construct a uniform approximation

- $h_{\mu \nu}^{1}$ must include evolution of orbit
> radiation must decay to zero in infinite past


## Infrared problems at second order panus 2051



■ suppose we try to use "typical" $h_{\mu \nu}^{1}$ to construct source for $h_{\mu \nu}^{2}$
■ because $\left|z^{\mu}-z_{0}^{\mu}\right|$ blows up with time, $h_{\mu \nu}^{2}$ does likewise
■ because $h_{\mu \nu}^{1}$ contains outgoing waves at all past times, the source $\delta^{2} R_{\mu \nu}\left[h^{1}\right]$ decays too slowly, and its retarded integral does not exist
■ instead, we must construct a uniform approximation

- $h_{\mu \nu}^{1}$ must include evolution of orbit
- radiation must decay to zero in infinite past


## Infrared problems at second order panus 2051



■ suppose we try to use "typical" $h_{\mu \nu}^{1}$ to construct source for $h_{\mu \nu}^{2}$
■ because $\left|z^{\mu}-z_{0}^{\mu}\right|$ blows up with time, $h_{\mu \nu}^{2}$ does likewise
■ because $h_{\mu \nu}^{1}$ contains outgoing waves at all past times, the source $\delta^{2} R_{\mu \nu}\left[h^{1}\right]$ decays too slowly, and its retarded integral does not exist
■ instead, we must construct a uniform approximation

- $h_{\mu \nu}^{1}$ must include evolution of orbit
- radiation must decay to zero in infinite past


## Matched expansions

## Multiscale expansion

- multiscale expansion: expand orbital parameters and fields as

$$
\begin{aligned}
J^{\alpha} & =J_{0}^{\alpha}(\tilde{t})+\epsilon J_{1}^{\alpha}(\tilde{t})+\ldots \\
h_{\mu \nu}^{n} & \sim \sum_{k^{\alpha}} h_{k_{\alpha}}^{n}(\tilde{t}) e^{-i k^{\alpha} q_{\alpha}(\tilde{t})}
\end{aligned}
$$

where ( $J^{\alpha}, q_{\alpha}$ ) are action-angle variables for $z^{\mu}$, and $\tilde{t} \sim \epsilon t$ is a "slow time"

- solve for $h_{k^{\alpha}}^{n}$ at fixed $\tilde{t}$ with standard frequency-domain techniques

Get boundary conditions from

- post-Minkowski expansion: expand $h_{\mu \nu}^{n}$ in powers of $M$
- near-horizon expansion: expand $h_{\mu \nu}^{n}$ in powers of gravitational potential near horizon


## Quasicircular orbits in Schwarzschild pame wean wemmen mens

Multiscale expansion

- expand orbital radius as

$$
r_{p}=r_{0}(\tilde{t})+\epsilon r_{1}(\tilde{t})+\ldots
$$

- expand field as

$$
h_{\mu \nu}^{n}=\sum_{i l m} h_{i l m}^{n}(\tilde{t}, r) e^{-i m \phi_{p}(\tilde{t})} Y_{\mu \nu}^{i l m}
$$

- use post-Minkowski and near-horizon expansions to obtain punctures at $r \gg M$ and $r \sim 2 M$
- solve numerically for $h_{i l m}^{n}$ at fixed $\tilde{t}$ using same frequency-domain methods as at 1st order
- evolve $\tilde{t}$ dependence using equation of motion


## Quasicircular orbits in Schwarzschild pame wasen wemomen mean

Multiscale expansion


■ expand orbital radius as

$$
r_{p}=r_{0}(\tilde{t})+\epsilon r_{1}(\tilde{t})+\ldots
$$

- expand field as

$$
h_{\mu \nu}^{n}=\sum_{i l m} h_{i l m}^{n}(\tilde{t}, r) e^{-i m \phi_{p}(\tilde{t})} Y_{\mu \nu}^{i l m}
$$

■ use post-Minkowski and near-horizon expansions to obtain punctures at $r \gg M$ and $r \sim 2 M$

- solve numerically for $h_{i l m}^{n}$ at fixed $\tilde{t}$ using same frequency-domain methods as at 1st order
- evolve $\tilde{t}$ dependence using equation of motion


## Quasicircular orbits in Schwarzschild pame wasen wemomen mean

Multiscale expansion


- expand orbital radius as

$$
r_{p}=r_{0}(\tilde{t})+\epsilon r_{1}(\tilde{t})+\ldots
$$

- expand field as

$$
h_{\mu \nu}^{n}=\sum_{i l m} h_{i l m}^{n}(\tilde{t}, r) e^{-i m \phi_{p}(\tilde{t})} Y_{\mu \nu}^{i l m}
$$

- use post-Minkowski and near-horizon expansions to obtain punctures at $r \gg M$ and $r \sim 2 M$
- solve numerically for $h_{i l m}^{n}$ at fixed $\tilde{t}$ using same frequency-domain methods as at 1st order
- evolve $\tilde{t}$ dependence using equation of motion


## Quasicircular orbits in Schwarzschild pame wean wemmen mens

Multiscale expansion


- expand orbital radius as

$$
r_{p}=r_{0}(\tilde{t})+\epsilon r_{1}(\tilde{t})+\ldots
$$

- expand field as

$$
h_{\mu \nu}^{n}=\sum_{i l m} h_{i l m}^{n}(\tilde{t}, r) e^{-i m \phi_{p}(\tilde{t})} Y_{\mu \nu}^{i l m}
$$

- use post-Minkowski and near-horizon expansions to obtain punctures at $r \gg M$ and $r \sim 2 M$
- solve numerically for $h_{i l m}^{n}$ at fixed $\tilde{t}$ using same frequency-domain methods as at 1st order
- evolve $\tilde{t}$ dependence using equation of motion


## Quasicircular orbits in Schwarzschild paom waean womenen wend

Multiscale expansion


- expand orbital radius as

$$
r_{p}=r_{0}(\tilde{t})+\epsilon r_{1}(\tilde{t})+\ldots
$$

- expand field as

$$
h_{\mu \nu}^{n}=\sum_{i l m} h_{i l m}^{n}(\tilde{t}, r) e^{-i m \phi_{p}(\tilde{t})} Y_{\mu \nu}^{i l m}
$$

- use post-Minkowski and near-horizon expansions to obtain punctures at $r \gg M$ and $r \sim 2 M$
- solve numerically for $h_{i l m}^{n}$ at fixed $\tilde{t}$ using same frequency-domain methods as at 1st order
- evolve $\tilde{t}$ dependence using equation of motion


## Binding energy for quasicircular orbits

Second-order piece of $E_{\text {bind }}=M_{\text {Bondi }}-m-M_{B H}$


## Calculations performed as of 2005

|  |  | Adiabatic | 1st order | 2nd order |
| :--- | :--- | :---: | :---: | :---: |
| Schwarz. | circular | $\checkmark$ |  |  |
|  | generic | $\checkmark$ |  |  |
|  | circular | $\checkmark$ |  |  |
|  | generic <br> (w/o resonances) |  |  |  |
|  | generic <br> (w/ resonances) |  |  | holy grail |

## Calculations performed as of 2017

|  |  | Adiabatic | 1st order | 2nd order |
| :--- | :--- | :---: | :---: | :---: |
| Schwarz. | circular | $\checkmark$ | $\checkmark$ |  |
|  | generic | $\checkmark$ | $\checkmark$ |  |
|  | circular | $\checkmark$ | $\checkmark$ |  |
|  | generic <br> (w/o resonances) | $\checkmark$ | $\checkmark$ |  |
|  | generic <br> (w/ resonances) | underway | underway | holy grail |

## Calculations performed as of 2018

|  |  | Adiabatic | 1st order | 2nd order |
| :--- | :--- | :---: | :---: | :---: |
| Schwarz. | circular | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|  | generic | $\checkmark$ | $\checkmark$ |  |
|  | circular | $\checkmark$ | $\checkmark$ |  |
|  | generic <br> (w/o resonances) | $\checkmark$ | $\checkmark$ |  |
|  | generic <br> (w/ resonances) | underway | underway | holy grail |

## Conclusion

## Modeling binaries

■ self-force theory required for modeling of EMRIs; could be best model for IMRIs; improves models of comparable-mass binaries

- need second-order accuracy for modeling


## Status of formalism and computations

■ "local problem" solved, but still missing higher-moment effects at second order

■ "global problem" solved in some cases

- wealth of numerical results at first order, computations at second order are underway

For more information, see recent review by Barack and Pound in Reports on Progress in Physics

