### Compact binaries and the gravitational self-force

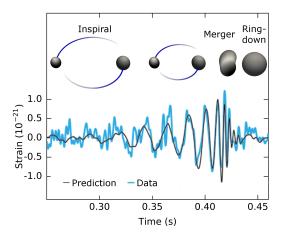
#### Adam Pound

University of Southampton

11 Oct 2018

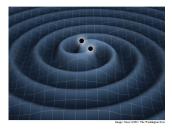
### The first detections

Three years ago, LIGO detected the gravitational waves from a black hole binary merger



Several more binaries have since been detected by LIGO and Virgo

#### Gravitational waves and binary systems



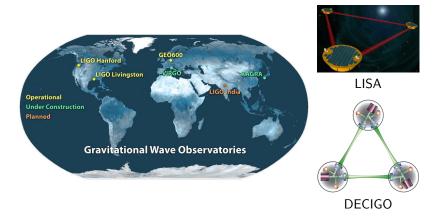
- compact objects (black holes or neutron stars) strongly curve the spacetime around them
- their motion in a binary generates gravitational waves, small ripples in spacetime

- waves propagate to detector
- to extract meaningful information from a signal, we require models that relate the waveform to the source



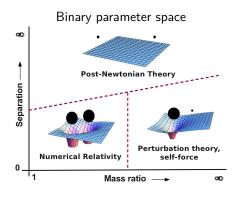
### Many detectors

A multitude of detectors are in various stages of development on the ground and in space



# Many types of binaries

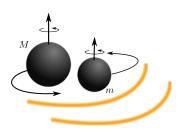
- different classes of binaries will be observed by different detectors and tell us different things
- share a common structure: emission of energy in gravitational waves drives inspiral and eventual collision
- but they require different modeling methods



[Image credit: Leor Barack]

 models can be combined in phenomenological effective-one-body (EOB) theory

### Comparable-mass inspirals



#### Modeling

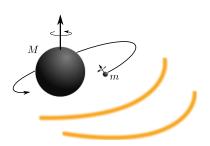
- early stages modeled by post-Newtonian (PN) theory: expansion in limit of  $v/c \rightarrow 0$
- late stages modeled by numerical relativity (NR): numerical solution to nonlinear Einstein equation
- full evolution modeled by EOB

#### Science

- the common type of binary observed by ground-based detectors LIGO/Virgo
- observations will
  - constrain populations of stellarand intermediate-mass BHs
  - constrain NS equation of state
  - test alternative theories of gravity



### Extreme-mass-ratio inspirals (EMRIs)

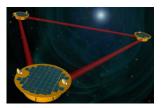


#### Modeling

- PN and NR don't work
- use black hole perturbation theory/self-force theory

#### Science

- space-based detector LISA will observe extreme-mass ratio inspirals of stellar-mass BHs or neutron stars into massive BHs
- small object spends  $\sim M/m \sim 10^5$  orbits near BH  $\Rightarrow$  unparalleled probe of strong-field region around BH



# More on EMRI science

#### **Fundamental physics**

 $\blacksquare$  measure central BH parameters: mass and spin to  $\sim .01\%$  error, quadrupole moment to  $\sim .1\%$ 

 $\Rightarrow$  measure deviations from the Kerr relationship  $M_l + iS_l = M(ia)^l$ 

- $\Rightarrow$  test no-hair theorem
- measure deviations from Kerr QNMs, presence or absence of event horizon, additional wave polarizations, changes to power spectrum
- constraints on modified gravity will be one or more orders of magnitude better than any other planned experiment

#### Astrophysics

- constrain mass function n(M) (number of black holes with given mass)
- provide information about stellar environment around massive BHs

#### Cosmology

 $\blacksquare$  measure Hubble constant to  $\sim 1\%$ 

# More on EMRI modeling: why self-force?



- highly relativistic, strong fields
- disparate lengthscales
- $\blacksquare$  long timescale: inspiral is slow, produces  $\sim \frac{M}{m} \sim 10^5$  wave cycles

• treat m as source of perturbation of M's metric  $g_{\mu\nu}$ :

$$\mathsf{g}_{\mu\nu} = g_{\mu\nu} + \epsilon h^1_{\mu\nu} + \epsilon^2 h^2_{\mu\nu} + \dots$$

where  $\epsilon \sim m/M$ 

represent motion of m via worldline z<sup>µ</sup> satisfying

$$\frac{D^2 z^\mu}{d\tau^2} = \epsilon F_1^\mu + \epsilon^2 F_2^\mu + \dots$$

# More on EMRI modeling: why self-force?



- highly relativistic, strong fields
   ⇒ can't use post-Newtonian theory
- disparate lengthscales
- $\blacksquare$  long timescale: inspiral is slow, produces  $\sim \frac{M}{m} \sim 10^5$  wave cycles

• treat m as source of perturbation of M's metric  $g_{\mu\nu}$ :

$$\mathsf{g}_{\mu\nu} = g_{\mu\nu} + \epsilon h^1_{\mu\nu} + \epsilon^2 h^2_{\mu\nu} + \dots$$

where  $\epsilon \sim m/M$ 

• represent motion of m via worldline  $z^{\mu}$  satisfying

$$\frac{D^2 z^\mu}{d\tau^2} = \epsilon F_1^\mu + \epsilon^2 F_2^\mu + \dots$$

# More on EMRI modeling: why self-force?



- highly relativistic, strong fields
   ⇒ can't use post-Newtonian theory
- disparate lengthscales
   ⇒ can't use numerical relativity
- $\blacksquare$  long timescale: inspiral is slow, produces  $\sim \frac{M}{m} \sim 10^5$  wave cycles

• treat m as source of perturbation of M's metric  $g_{\mu\nu}$ :

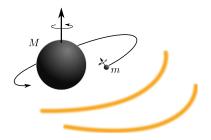
$$\mathsf{g}_{\mu\nu} = g_{\mu\nu} + \epsilon h^1_{\mu\nu} + \epsilon^2 h^2_{\mu\nu} + \dots$$

where  $\epsilon \sim m/M$ 

• represent motion of m via worldline  $z^{\mu}$  satisfying

$$\frac{D^2 z^\mu}{d\tau^2} = \epsilon F_1^\mu + \epsilon^2 F_2^\mu + \dots$$

# More on EMRI modeling: why self-force?



- highly relativistic, strong fields
   ⇒ can't use post-Newtonian theory
- disparate lengthscales
   ⇒ can't use numerical relativity
- long timescale: inspiral is slow, produces  $\sim \frac{M}{m} \sim 10^5$  wave cycles  $\Rightarrow$  need a model that is accurate to  $\ll 1$  radian over those  $\sim 10^5$  cycles

• treat m as source of perturbation of M's metric  $g_{\mu\nu}$ :

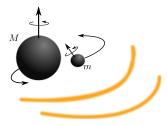
$$\mathsf{g}_{\mu\nu} = g_{\mu\nu} + \epsilon h^1_{\mu\nu} + \epsilon^2 h^2_{\mu\nu} + \dots$$

where  $\epsilon \sim m/M$ 

represent motion of m via worldline z<sup>µ</sup> satisfying

$$\frac{D^2 z^\mu}{d\tau^2} = \epsilon F_1^\mu + \epsilon^2 F_2^\mu + \dots$$

# One more: intermediate-mass-ratio inspirals (IMRIs)

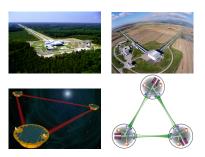


#### Science

 observable by ground-based (LIGO/Virgo) and space-based (LISA/DECIGO) detectors

#### Modeling

- pushes the limits of NR
- pushes the limits of self-force



### Outline

Binaries and gravitational waves

- 2 EMRI model requirements
- 3 Self-force theory: the local problem
- 4 Self-force theory: the global problem
  - First order
  - Second order

# Outline

Binaries and gravitational waves

#### 2 EMRI model requirements

3 Self-force theory: the local problem

Self-force theory: the global problem
 First order

Second order

# How high order?

$$\frac{D^2 z^\mu}{d\tau^2} = \epsilon F_1^\mu + \epsilon^2 F_2^\mu + \dots$$

- $\blacksquare$  force is small; inspiral occurs very slowly, on time scale  $\tau \sim 1/\epsilon$
- suppose we neglect  $F_2^{\mu}$ ; leads to error  $\delta\left(\frac{D^2 z^{\mu}}{d\tau^2}\right) \sim \epsilon^2$ ⇒ error in position  $\delta z^{\mu} \sim \epsilon^2 \tau^2$ ⇒ after time  $\tau \sim 1/\epsilon$ , error  $\delta z^{\mu} \sim 1$

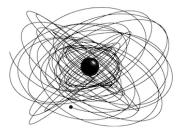
... accurately describing orbital evolution requires second order

# How high order?

$$\frac{D^2 z^\mu}{d\tau^2} = \epsilon F_1^\mu + \epsilon^2 F_2^\mu + \dots$$

- $\blacksquare$  force is small; inspiral occurs very slowly, on time scale  $\tau \sim 1/\epsilon$
- suppose we neglect  $F_2^{\mu}$ ; leads to error  $\delta\left(\frac{D^2 z^{\mu}}{d\tau^2}\right) \sim \epsilon^2$ ⇒ error in position  $\delta z^{\mu} \sim \epsilon^2 \tau^2$ ⇒ after time  $\tau \sim 1/\epsilon$ , error  $\delta z^{\mu} \sim 1$
- $\therefore$  accurately describing orbital evolution requires second order

# Zeroth-order approximation: geodesics in Kerr



[image courtesy of Steve Drasco]

- geodesic characterized by three constants of motion:
  - **1** energy E
  - **2** angular momentum  $L_z$
  - **3** Carter constant *Q*, related to orbital inclination

- $E, L_z, Q$  related to frequencies of  $r, \phi$ , and  $\theta$  motion
- resonances occur when two frequencies have a rational ratio



[image courtesy of Steve Drasco]

#### Hierarchy of self-force models [Hinderer and Flanagan]

- when self-force is accounted for, E,  $L_z$ , and Q evolve with time
- on an inspiral timescale  $t \sim 1/\epsilon$ , the phase of the gravitational wave has an expansion (excluding resonances)

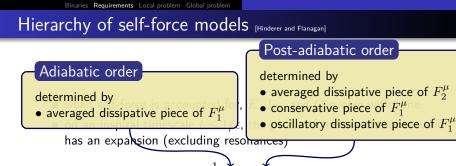
$$\phi = \frac{1}{\epsilon} \left[ \phi_0 + \epsilon \phi_1 + O(\epsilon^2) \right]$$

- a model that gets  $\phi_0$  right should be enough for signal detection
- $\blacksquare$  a model that gets both  $\phi_0$  and  $\phi_1$  should be enough for parameter extraction

### Hierarchy of self-force models [Hinderer and Flanagan]

Adiabatic order determined by • averaged dissipative piece of  $F_1^{\mu}$ , E,  $L_z$ , and Q evolve with time has an expansion (excluding resonances)  $\phi = \frac{1}{\epsilon} \phi_0 + \epsilon \phi_1 + O(\epsilon^2)$ ]

- a model that gets  $\phi_0$  right should be enough for signal detection
- $\blacksquare$  a model that gets both  $\phi_0$  and  $\phi_1$  should be enough for parameter extraction



 $\phi = -\frac{1}{2}$ 

- a model that gets  $\phi_0$  right should be enough for signal detection
- a model that gets both  $\phi_0$  and  $\phi_1$  should be enough for parameter extraction

 $O(\epsilon^2)$ 

# Outline

Binaries and gravitational waves

2 EMRI model requirements

#### 3 Self-force theory: the local problem

Self-force theory: the global problem
 First order

Second order

#### What is the problem we want to solve?

A small, compact object of mass and size  $m\sim l\sim\epsilon$  moves through (and influences) spacetime

 Option 1: tackle the problem directly, treat the body as finite sized, deal with its internal composition

Need to deal with internal dynamics and strong fields near object

#### What is the problem we want to solve?

A small, compact object of mass and size  $m\sim l\sim\epsilon$  moves through (and influences) spacetime

■ Option 2: restrict the problem to distances s ≫ m from the object, treat m as source of perturbation of external background g<sub>µν</sub>:

$$\mathsf{g}_{\mu\nu} = g_{\mu\nu} + \epsilon h^1_{\mu\nu} + \epsilon^2 h^2_{\mu\nu} + \dots$$



Metric here must agree with metric outside a small compact object; and "here" moves in response to field

#### What is the problem we want to solve?

A small, compact object of mass and size  $m\sim l\sim\epsilon$  moves through (and influences) spacetime

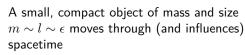
Option 3: treat the body as a point particle

- takes behavior of fields outside object and extends it down to a fictitious worldline
- so  $h^1_{\mu\nu} \sim 1/s$  (s =distance from object)
- ▶ second-order field equation  $\delta G[h^2] \sim -\delta^2 G[h^1] \sim (\partial h^1)^2 \sim 1/s^4$

----no solution unless we restrict it to points off worldline, which is equivalent to FBVP

Distributionally ill defined source appears here!

#### What is the problem we want to solve?



- Option 4: transform the FBVP into an effective problem using a puncture, a local approximation to the field outside the object
- This will be the method emphasized here

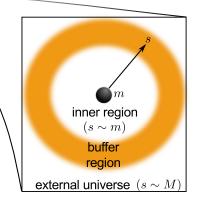
[Mino, Sasaki, Tanaka 1996; Quinn & Wald 1996; Detweiler & Whiting 2002-03; Gralla

& Wald 2008-2012; Pound 2009-2017; Harte 2012]

M

#### Matched asymptotic expansions

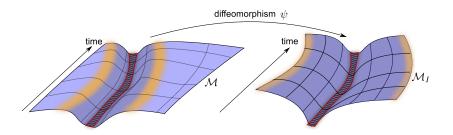
- outer expansion: in external universe, treat field of M as background
- inner expansion: in inner region, treat field of m as background
- in buffer region, feed information from inner expansion into outer expansion



#### The inner expansion

Zoom in on object

- $\blacksquare$  unperturbed object defines background spacetime  $g_{\mu\nu}^{\rm obj}$  in inner expansion
- buffer region at asymptotic infinity  $s \gg m$ ⇒ can define object's multipole moments as those of  $g_{\mu\nu}^{obj}$



### General solution in buffer region

General solution compatible with existence of inner expansion [Pound 2009, 2012]:

First order

$$\bullet h^{(1)}_{\mu\nu} = h^{S(1)}_{\mu\nu} + h^{R(1)}_{\mu\nu}$$

•  $h^{S(1)}_{\mu\nu} \sim 1/s + O(s^0)$  defined by mass monopole m

- $h^{R(1)}_{\mu\nu}$  is undetermined homogenous solution regular at s=0
- ${\scriptstyle \blacksquare}$  evolution equations:  $\dot{m}=0$  and  $a^{\mu}_{(0)}=0$

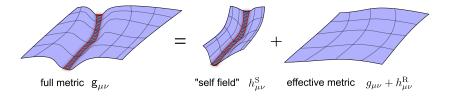
(where 
$$\frac{D^2 z^{\mu}}{d\tau^2} = a^{\mu}_{(0)} + \epsilon a^{\mu}_{(1)} + \ldots$$
)

#### Second order

$$\begin{array}{l} \mathbf{h}_{\mu\nu}^{(2)} = h_{\mu\nu}^{S(2)} + h_{\mu\nu}^{R(2)} \\ \mathbf{h}_{\mu\nu}^{S(2)} \sim 1/s^2 + O(1/s) \text{ defined by} \\ \mathbf{I} \quad \text{monopole correction } \delta m \\ \mathbf{2} \quad \text{mass dipole } M^{\mu} \text{ (set to zero)} \\ \mathbf{3} \quad \text{spin dipole } S^{\mu} \\ \mathbf{e} \text{ evolution equations: } \dot{S}^{\mu} = 0, \ \dot{\delta m} = \dots, \text{ and } a_{(1)}^{\mu} = \dots \end{array}$$

### Self-field and effective field

we've locally split metric into a "self-field" and an effective metric



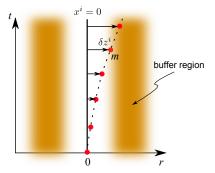
- $h_{\mu\nu}^{\rm S}$  directly determined by object's multipole moments
- $g_{\mu\nu} + h_{\mu\nu}^{\rm R}$  is a *smooth vacuum metric* determined by global boundary conditions

### Defining object's position [Mino et al, Gralla-Wald, Pound]

Reminder: mass dipole moment  $M^i$ :

small displacement of center of mass from origin of coordinates

• e.g., Newtonian field 
$$\frac{m}{|x^i - \delta z^i|} \approx \frac{m}{|x^i|} + \frac{m\delta z^j n_j}{|x^i|^2} \Rightarrow M^i = m\delta z^i$$



Definition of object's worldline:

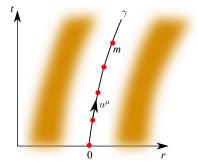
- $\label{eq:condition} \quad \text{work in coordinates } (t,x^i) \\ \text{centered on a curve } \gamma \\ \end{cases}$
- equation of motion of  $z^{\mu}$ : whatever ensures  $M^{\mu} \equiv 0$

### Defining object's position [Mino et al, Gralla-Wald, Pound]

Reminder: mass dipole moment  $M^i$ :

small displacement of center of mass from origin of coordinates

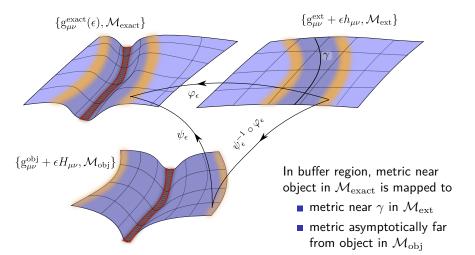
• e.g., Newtonian field 
$$\frac{m}{|x^i - \delta z^i|} \approx \frac{m}{|x^i|} + \frac{m\delta z^j n_j}{|x^i|^2} \Rightarrow M^i = m\delta z^i$$



Definition of object's worldline:

- $\label{eq:condition} \quad \text{work in coordinates } (t,x^i) \\ \text{centered on a curve } \gamma \\ \end{cases}$
- equation of motion of  $z^{\mu}$ : whatever ensures  $M^{\mu} \equiv 0$

#### Where is the worldline?



### 0th-, 1st-, and 2nd-order equations of motion

# Oth order, arbitrary object: $\frac{D^2 z^{\mu}}{d\tau^2} = O(m)$ (geodesic motion in $g_{\mu\nu}$ )

1st order, arbitrary compact object [MISaTaQuWa 1996]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left( g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left( 2h^{\mathrm{R1}}_{\delta\beta;\gamma} - h^{\mathrm{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$$

(motion of spinning test body in  $g_{\mu\nu} + h_{\mu\nu}^{\rm R1}$ )

2nd-order, nonspinning, spherical compact object [Pound 2012]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left( g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left( g_{\nu}{}^{\rho} - h_{\nu}^{\mathrm{R}\rho} \right) \left( 2h_{\rho\sigma;\lambda}^{\mathrm{R}} - h_{\sigma\lambda;\rho}^{\mathrm{R}} \right) u^{\sigma} u^{\lambda} + O(m^3)$$

(geodesic motion in  $g_{\mu\nu} + h^{\rm R}_{\mu\nu}$ )

all these results are derived directly from EFE outside the object; there's no regularization of infinities, and no assumptions about h<sup>R</sup><sub>µν</sub>

### 0th-, 1st-, and 2nd-order equations of motion

Oth order, arbitrary object:  $\frac{D^2 z^{\mu}}{d\tau^2} = O(m)$  (geodesic motion in  $g_{\mu\nu}$ )

1st order, arbitrary compact object [MiSaTaQuWa 1996]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left( g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left( 2h^{\mathrm{R1}}_{\delta\beta;\gamma} - h^{\mathrm{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$$

#### (motion of spinning test body in $g_{\mu\nu} + h_{\mu\nu}^{\rm R1}$ )

2nd-order, nonspinning, spherical compact object [Pound 2012]:  $\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left( g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left( g_{\nu}{}^{\rho} - h_{\nu}^{\mathrm{R}\,\rho} \right) \left( 2h_{\rho\sigma;\lambda}^{\mathrm{R}} - h_{\sigma\lambda;\rho}^{\mathrm{R}} \right) u^{\sigma} u^{\lambda} + O(m)$ 

(geodesic motion in  $g_{\mu\nu} + h_{\mu\nu}^{\rm R}$ )

all these results are derived directly from EFE outside the object; there's no regularization of infinities, and no assumptions about h<sup>R</sup><sub>µν</sub>

### 0th-, 1st-, and 2nd-order equations of motion

Oth order, arbitrary object:  $\frac{D^2 z^{\mu}}{d\tau^2} = O(m)$  (geodesic motion in  $g_{\mu\nu}$ )

1st order, arbitrary compact object [MISaTaQuWa 1996]:

 $\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left( g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left( 2h^{\mathrm{R1}}_{\delta\beta;\gamma} - h^{\mathrm{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$ 

(motion of spinning test body in  $g_{\mu\nu} + h_{\mu\nu}^{\rm R1}$ )

2nd-order, nonspinning, spherical compact object [Pound 2012]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left( g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left( g_{\nu}{}^{\rho} - h_{\nu}^{\mathrm{R}\rho} \right) \left( 2h_{\rho\sigma;\lambda}^{\mathrm{R}} - h_{\sigma\lambda;\rho}^{\mathrm{R}} \right) u^{\sigma} u^{\lambda} + O(m^3)$$

(geodesic motion in  $g_{\mu\nu} + h^{
m R}_{\mu\nu}$ )

 all these results are derived *directly from EFE outside the object*; there's no regularization of infinities, and no assumptions about h<sup>R</sup><sub>μν</sub>

# 0th-, 1st-, and 2nd-order equations of motion

Oth order, arbitrary object:  $\frac{D^2 z^{\mu}}{d\tau^2} = O(m)$  (geodesic motion in  $g_{\mu\nu}$ )

1st order, arbitrary compact object [MISaTaQuWa 1996]:

 $\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left( g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left( 2h^{\mathrm{R1}}_{\delta\beta;\gamma} - h^{\mathrm{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$ 

(motion of spinning test body in  $g_{\mu\nu} + h_{\mu\nu}^{\rm R1}$ )

2nd-order, nonspinning, spherical compact object [Pound 2012]:

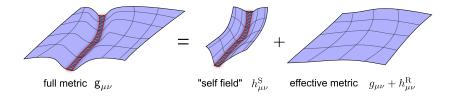
$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left( g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left( g_{\nu}{}^{\rho} - h_{\nu}^{\mathrm{R}\rho} \right) \left( 2h_{\rho\sigma;\lambda}^{\mathrm{R}} - h_{\sigma\lambda;\rho}^{\mathrm{R}} \right) u^{\sigma} u^{\lambda} + O(m^3)$$

(geodesic motion in  $g_{\mu\nu} + h^{
m R}_{\mu\nu}$ )

 all these results are derived *directly from EFE outside the object*; there's no regularization of infinities, and no assumptions about h<sup>R</sup><sub>μν</sub>

### Point particles and punctures [Barack et al, Detweiler, Gralla-Wald, Pound]

replace "self-field" with "singular field"

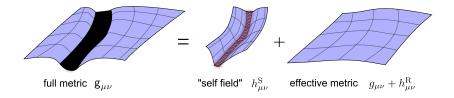


at 1st order, can use this to replace object with a point particle

$$T^1_{\mu\nu} := \frac{1}{8\pi} \delta G_{\mu\nu}[h^1] \sim m\delta(x-z)$$

### Point particles and punctures [Barack et al, Detweiler, Gralla-Wald, Pound]

replace "self-field" with "singular field"

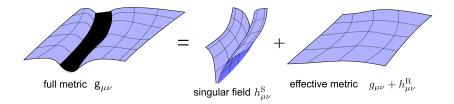


at 1st order, can use this to replace object with a point particle

$$T^1_{\mu\nu} := \frac{1}{8\pi} \delta G_{\mu\nu}[h^1] \sim m\delta(x-z)$$

### Point particles and punctures [Barack et al, Detweiler, Gralla-Wald, Pound]

replace "self-field" with "singular field"

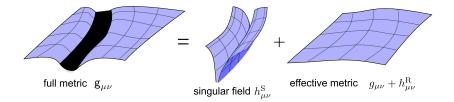


at 1st order, can use this to replace object with a point particle

$$T^1_{\mu\nu} := \frac{1}{8\pi} \delta G_{\mu\nu}[h^1] \sim m\delta(x-z)$$

### Point particles and punctures [Barack et al, Detweiler, Gralla-Wald, Pound]

replace "self-field" with "singular field"



at 1st order, can use this to replace object with a point particle

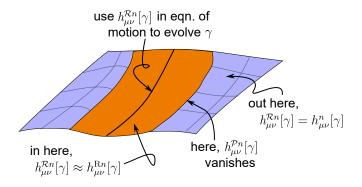
$$T^1_{\mu\nu} := \frac{1}{8\pi} \delta G_{\mu\nu}[h^1] \sim m\delta(x-z)$$

### How you replace an object with a puncture

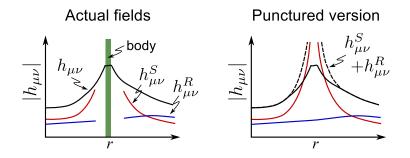
- $\blacksquare$  use a local expansion of  $h^{\rm Sn}_{\mu\nu}$  as a puncture  $h^{\mathcal{P}n}_{\mu\nu}$  that moves on  $\gamma$
- transition  $h_{\mu\nu}^{\mathcal{P}n}$  to zero at some distance from  $\gamma$ , solve field equations for the *residual field*

$$h_{\mu\nu}^{\mathcal{R}n} := h_{\mu\nu}^n - h_{\mu\nu}^{\mathcal{P}n}$$

• move the puncture with eqn of motion (using  $\partial h_{\mu\nu}^{\mathcal{R}n}|_{\gamma} = \partial h_{\mu\nu}^{\mathbb{R}n}|_{\gamma}$ )



### More on puncturing



- Note: self-force literature often speaks of "regularizing" singular fields and forces
- but we *introduce* the singular field as a tool to compute a specific regular field
- self-force theory does not involve regularizing divergent quantities

# Outline

Binaries and gravitational waves

- 2 EMRI model requirements
- 3 Self-force theory: the local problem
- 4 Self-force theory: the global problem
  - First order
  - Second order

### Solving the Einstein equations globally

solving the local problem told us how to replace the small object with a moving puncture in the field equations:

$$\begin{split} \delta G_{\mu\nu}[h^{\mathcal{R}1}] &= -\delta G_{\mu\nu}[h^{\mathcal{P}1}]\\ \delta G_{\mu\nu}[h^{\mathcal{R}2}] &= -\delta^2 G_{\mu\nu}[h^1, h^1] - \delta G_{\mu\nu}[h^{\mathcal{P}2}]\\ \frac{D^2 z^{\mu}}{d\tau^2} &= -\frac{1}{2} (g^{\mu\nu} + u^{\mu}u^{\nu}) (g_{\nu}{}^{\delta} - h_{\nu}^{\mathcal{R}\delta}) (2h^{\mathcal{R}}_{\delta\beta;\gamma} - h^{\mathcal{R}}_{\beta\gamma;\delta}) u^{\beta} u^{\gamma} \end{split}$$

where  $\delta G_{\mu\nu}[h] \sim \Box h_{\mu\nu}$ ,  $\delta^2 G_{\mu\nu}[h,h] \sim \partial h \partial h + h \partial^2 h$ 

the global problem: how do we solve these equations in practice?

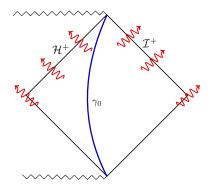
### Solving the Einstein equations globally

solving the local problem told us how to replace the small object with a moving puncture in the field equations:

$$\begin{split} \delta G_{\mu\nu}[h^{\mathcal{R}1}] &= -\delta G_{\mu\nu}[h^{\mathcal{P}1}]\\ \delta G_{\mu\nu}[h^{\mathcal{R}2}] &= -\delta^2 G_{\mu\nu}[h^1, h^1] - \delta G_{\mu\nu}[h^{\mathcal{P}2}]\\ \frac{D^2 z^{\mu}}{d\tau^2} &= -\frac{1}{2} (g^{\mu\nu} + u^{\mu}u^{\nu}) (g_{\nu}{}^{\delta} - h_{\nu}^{\mathcal{R}\delta}) (2h^{\mathcal{R}}_{\delta\beta;\gamma} - h^{\mathcal{R}}_{\beta\gamma;\delta}) u^{\beta} u^{\gamma} \end{split}$$

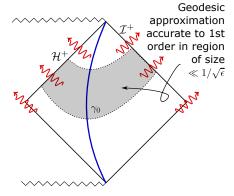
where  $\delta G_{\mu\nu}[h] \sim \Box h_{\mu\nu}$ ,  $\delta^2 G_{\mu\nu}[h,h] \sim \partial h \partial h + h \partial^2 h$ • the global problem: how do we solve these equations in practice?

# Typical calculation at first order [Barack et al, van de Meent, many others]



- approximate the source orbit as a bound geodesic
- $\hfill \$  impose outgoing-wave BCs at  $\mathcal{I}^+$  and  $\mathcal{H}^+$
- solve field equation numerically, compute self-force from solution
- system radiates forever; at any given time, BH has already absorbed infinite energy
- but on short sections of time the approximation is accurate
- breaks down on *dephasing* time  $\sim 1/\sqrt{\epsilon}$ , when  $|z^{\mu} z_{0}^{\mu}| \sim M$

# Typical calculation at first order [Barack et al, van de Meent, many others]



- approximate the source orbit as a bound geodesic
- $\blacksquare$  impose outgoing-wave BCs at  $\mathcal{I}^+$  and  $\mathcal{H}^+$
- solve field equation numerically, compute self-force from solution
- system radiates forever; at any given time, BH has already absorbed infinite energy
- but on short sections of time the approximation is accurate
- breaks down on *dephasing* time  $\sim 1/\sqrt{\epsilon}$ , when  $|z^{\mu} z_0^{\mu}| \sim M$

### First-order results: orbital evolution

- adiabatic evolution schemes in Kerr already devised and implemented (modulo resonances) [Mino, Drasco et al, Sago et al]
  - complete inspirals also simulated in Schwarzschild using full F<sub>1</sub><sup>µ</sup> [Warburton et al]
  - and  $F_1^{\mu}$  has been computed on generic orbits in Kerr [van de

Meent]

 but still need F<sub>2</sub><sup>µ</sup> for accurate post-adiabatic inspiral

[image courtesy of Warburton]

### First-order results: orbital evolution

 adiabatic evolution schemes in Kerr already devised and implemented (modulo resonances) [Mino, Drasco et al, Sago et al]

- complete inspirals also simulated in Schwarzschild using full F<sub>1</sub><sup>µ</sup> [Warburton et al]
- and F<sub>1</sub><sup>µ</sup> has been computed on generic orbits in Kerr [van de

Meent]

 but still need F<sub>2</sub><sup>μ</sup> for accurate post-adiabatic inspiral

[image courtesy of Warburton]

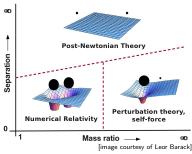
# First-order results: improving other binary models

PN and EOB models have been improved using data for *conservative* effects of the self-force (computed by "turning off" dissipation)

- orbital precession [Barack et al., van de Meent]
   ISCO shift [Barack and Sago, Isoyama et al.]
   Detweiler's redshift invariant  $\frac{dt}{d\tau^R}$  on circular orbits [Detweiler, Shah et al., Dolan and Barack]
  - averaged redshift  $\left< \frac{dt}{d\tau^R} \right>$  on eccentric orbits [Barack et al., van de

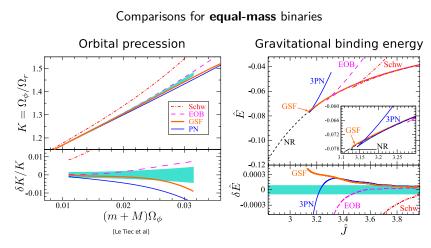
Meent & Shah]

- spin precession [Dolan et al, Bini et al]
- quadrupolar and octupolar self-tides [Dolan et al, Damour and Bini]



Binary parameter space

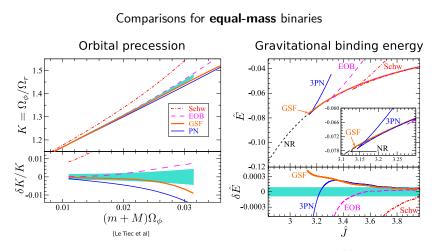
## First-order results: using SF to *directly* model IMRIs



• SF results use "mass symmetrized" model:  $\frac{m}{M} \rightarrow \frac{mM}{(m+M)^2}$ 

with mass-symmetrization, second-order self-force might be able to directly model even comparable-mass binaries

## First-order results: using SF to *directly* model IMRIs



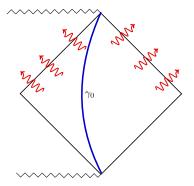
• SF results use "mass symmetrized" model:  $\frac{m}{M} \rightarrow \frac{mM}{(m+M)^2}$ 

 with mass-symmetrization, second-order self-force might be able to directly model even comparable-mass binaries

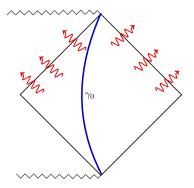
## Outline

Binaries and gravitational waves

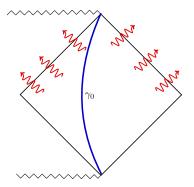
- 2 EMRI model requirements
- 3 Self-force theory: the local problem
- Self-force theory: the global problem
   First order
  - Second order



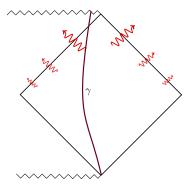
- suppose we try to use "typical"  $h^1_{\mu\nu}$  to construct source for  $h^2_{\mu\nu}$
- because  $|z^{\mu} z_{0}^{\mu}|$  blows up with time,  $h_{\mu\nu}^{2}$  does likewise
- because  $h^1_{\mu\nu}$  contains outgoing waves at all past times, the source  $\delta^2 R_{\mu\nu} [h^1]$  decays too slowly, and *its retarded integral does not exist*
- instead, we must construct a uniform approximation
  - $h^1_{\mu\nu}$  must include evolution of orbit
  - radiation must decay to zero in infinite past



- suppose we try to use "typical"  $h^1_{\mu\nu}$  to construct source for  $h^2_{\mu\nu}$
- because  $|z^{\mu} z_{0}^{\mu}|$  blows up with time,  $h_{\mu\nu}^{2}$  does likewise
- because  $h^1_{\mu\nu}$  contains outgoing waves at all past times, the source  $\delta^2 R_{\mu\nu} [h^1]$  decays too slowly, and *its retarded integral does not exist*
- instead, we must construct a uniform approximation
  - $h^1_{\mu\nu}$  must include evolution of orbit
  - radiation must decay to zero in infinite past

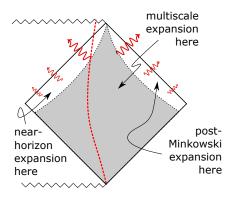


- suppose we try to use "typical"  $h^1_{\mu\nu}$  to construct source for  $h^2_{\mu\nu}$
- because  $|z^{\mu} z_{0}^{\mu}|$  blows up with time,  $h_{\mu\nu}^{2}$  does likewise
- because  $h^1_{\mu\nu}$  contains outgoing waves at all past times, the source  $\delta^2 R_{\mu\nu} [h^1]$  decays too slowly, and *its retarded integral does not exist*
- instead, we must construct a uniform approximation
  - $h^1_{\mu\nu}$  must include evolution of orbit
  - radiation must decay to zero in infinite past



- suppose we try to use "typical"  $h^1_{\mu\nu}$  to construct source for  $h^2_{\mu\nu}$
- because  $|z^{\mu} z_{0}^{\mu}|$  blows up with time,  $h_{\mu\nu}^{2}$  does likewise
- because  $h^1_{\mu\nu}$  contains outgoing waves at all past times, the source  $\delta^2 R_{\mu\nu} [h^1]$  decays too slowly, and *its retarded integral does not exist*
- instead, we must construct a uniform approximation
  - $h^1_{\mu\nu}$  must include evolution of orbit
  - radiation must decay to zero in infinite past

### Matched expansions [Pound, Moxon, Flanagan, Hinderer, Yamada, Isoyama, Tanaka]



Multiscale expansion

 multiscale expansion: expand orbital parameters and fields as

$$J^{\alpha} = J_0^{\alpha}(\tilde{t}) + \epsilon J_1^{\alpha}(\tilde{t}) + \dots$$
$$h_{\mu\nu}^n \sim \sum_{k^{\alpha}} h_{k_{\alpha}}^n(\tilde{t}) e^{-ik^{\alpha}q_{\alpha}(\tilde{t})}$$

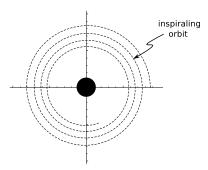
where  $(J^{\alpha},q_{\alpha})$  are action-angle variables for  $z^{\mu},$  and  $\tilde{t}\sim\epsilon t$  is a "slow time"

■ solve for  $h_{k^{\alpha}}^{n}$  at fixed  $\tilde{t}$  with standard frequency-domain techniques

Get boundary conditions from

- post-Minkowski expansion: expand  $h^n_{\mu\nu}$  in powers of M
- $\blacksquare$  near-horizon expansion: expand  $h^n_{\mu\nu}$  in powers of gravitational potential near horizon

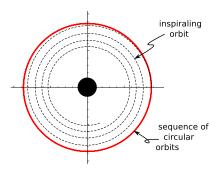
36 / 40



- expand orbital radius as  $r_p = r_0(\tilde{t}) + \epsilon r_1(\tilde{t}) + \dots$
- expand field as

$$h^n_{\mu\nu} = \sum_{ilm} h^n_{ilm}(\tilde{t},r) e^{-im\phi_p(\tilde{t})} Y^{ilm}_{\mu\nu}$$

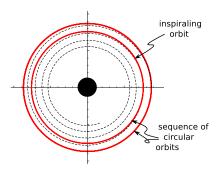
- use post-Minkowski and near-horizon expansions to obtain punctures at  $r\gg M$  and  $r\sim 2M$
- $\blacksquare$  solve numerically for  $h^n_{ilm}$  at fixed  $\tilde{t}$  using same frequency-domain methods as at 1st order
- evolve  $\tilde{t}$  dependence using equation of motion



- expand orbital radius as  $r_p = r_0(\tilde{t}) + \epsilon r_1(\tilde{t}) + \dots$
- expand field as

$$h_{\mu\nu}^{n} = \sum_{ilm} h_{ilm}^{n}(\tilde{t}, r) e^{-im\phi_{p}(\tilde{t})} Y_{\mu\nu}^{ilm}$$

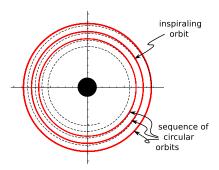
- use post-Minkowski and near-horizon expansions to obtain punctures at  $r\gg M$  and  $r\sim 2M$
- $\blacksquare$  solve numerically for  $h^n_{ilm}$  at fixed  $\tilde{t}$  using same frequency-domain methods as at 1st order
- evolve  $\tilde{t}$  dependence using equation of motion



- expand orbital radius as  $r_p = r_0(\tilde{t}) + \epsilon r_1(\tilde{t}) + \dots$
- expand field as

$$h_{\mu\nu}^{n} = \sum_{ilm} h_{ilm}^{n}(\tilde{t}, r) e^{-im\phi_{p}(\tilde{t})} Y_{\mu\nu}^{ilm}$$

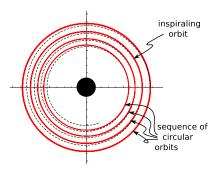
- use post-Minkowski and near-horizon expansions to obtain punctures at  $r\gg M$  and  $r\sim 2M$
- $\blacksquare$  solve numerically for  $h^n_{ilm}$  at fixed  $\tilde{t}$  using same frequency-domain methods as at 1st order
- evolve  $\tilde{t}$  dependence using equation of motion



- expand orbital radius as  $r_p = r_0(\tilde{t}) + \epsilon r_1(\tilde{t}) + \dots$
- expand field as

$$h_{\mu\nu}^{n} = \sum_{ilm} h_{ilm}^{n}(\tilde{t}, r) e^{-im\phi_{p}(\tilde{t})} Y_{\mu\nu}^{ilm}$$

- use post-Minkowski and near-horizon expansions to obtain punctures at  $r\gg M$  and  $r\sim 2M$
- $\blacksquare$  solve numerically for  $h^n_{ilm}$  at fixed  $\tilde{t}$  using same frequency-domain methods as at 1st order
- evolve  $\tilde{t}$  dependence using equation of motion



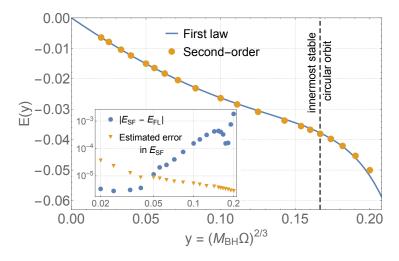
- expand orbital radius as  $r_p = r_0(\tilde{t}) + \epsilon r_1(\tilde{t}) + \dots$
- expand field as

$$h_{\mu\nu}^{n} = \sum_{ilm} h_{ilm}^{n}(\tilde{t}, r) e^{-im\phi_{p}(\tilde{t})} Y_{\mu\nu}^{ilm}$$

- use post-Minkowski and near-horizon expansions to obtain punctures at  $r\gg M$  and  $r\sim 2M$
- $\blacksquare$  solve numerically for  $h^n_{ilm}$  at fixed  $\tilde{t}$  using same frequency-domain methods as at 1st order
- evolve  $\tilde{t}$  dependence using equation of motion

### Binding energy for quasicircular orbits

Second-order piece of  $E_{\text{bind}} = M_{\text{Bondi}} - m - M_{BH}$ 



# Calculations performed as of 2005

|          |                             | Adiabatic    | 1st order | 2nd order  |
|----------|-----------------------------|--------------|-----------|------------|
| Schwarz. | circular                    | $\checkmark$ |           |            |
|          | generic                     | $\checkmark$ |           |            |
| Kerr     | circular                    | $\checkmark$ |           |            |
|          | generic<br>(w/o resonances) |              |           |            |
|          | generic<br>(w/ resonances)  |              |           | holy grail |

# Calculations performed as of 2017

|          |                             | Adiabatic    | 1st order    | 2nd order  |
|----------|-----------------------------|--------------|--------------|------------|
| Schwarz. | circular                    | $\checkmark$ | $\checkmark$ |            |
|          | generic                     | $\checkmark$ | $\checkmark$ |            |
| Kerr     | circular                    | $\checkmark$ | $\checkmark$ |            |
|          | generic<br>(w/o resonances) | $\checkmark$ | $\checkmark$ |            |
|          | generic<br>(w/ resonances)  | underway     | underway     | holy grail |

# Calculations performed as of 2018

|          |                             | Adiabatic    | 1st order    | 2nd order    |
|----------|-----------------------------|--------------|--------------|--------------|
| Schwarz. | circular                    | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|          | generic                     | $\checkmark$ | $\checkmark$ |              |
| Kerr     | circular                    | $\checkmark$ | $\checkmark$ |              |
|          | generic<br>(w/o resonances) | $\checkmark$ | $\checkmark$ |              |
|          | generic<br>(w/ resonances)  | underway     | underway     | holy grail   |

# Conclusion

#### **Modeling binaries**

- self-force theory required for modeling of EMRIs; could be best model for IMRIs; improves models of comparable-mass binaries
- need second-order accuracy for modeling

#### Status of formalism and computations

- "local problem" solved, but still missing higher-moment effects at second order
- "global problem" solved in some cases
- wealth of numerical results at first order, computations at second order are underway

For more information, see recent review by Barack and Pound in Reports on Progress in Physics