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The first detections

Three years ago, LIGO detected the gravitational waves from a black hole
binary merger

Several more binaries have since been detected by LIGO and Virgo
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Gravitational waves and binary systems

compact objects (black holes or
neutron stars) strongly curve the
spacetime around them
their motion in a binary generates
gravitational waves, small ripples in
spacetime

waves propagate to detector
to extract meaningful
information from a signal, we
require models that relate the
waveform to the source
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Many detectors

A multitude of detectors are in various stages of development on the
ground and in space

LISA

DECIGO
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Many types of binaries

different classes of
binaries will be observed
by different detectors
and tell us different
things
share a common
structure: emission of
energy in gravitational
waves drives inspiral and
eventual collision
but they require
different modeling
methods

Binary parameter space

[Image credit: Leor Barack]

models can be combined in phenomenological effective-one-body
(EOB) theory
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Comparable-mass inspirals
Science

the common type of binary observed
by ground-based detectors
LIGO/Virgo
observations will
I constrain populations of stellar-

and intermediate-mass BHs
I constrain NS equation of state
I test alternative theories of gravity

Modeling
early stages modeled by
post-Newtonian (PN) theory:
expansion in limit of v/c→ 0
late stages modeled by numerical
relativity (NR): numerical solution to
nonlinear Einstein equation
full evolution modeled by EOB
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Extreme-mass-ratio inspirals (EMRIs)

Science
space-based detector LISA will
observe extreme-mass ratio
inspirals of stellar-mass BHs or
neutron stars into massive BHs
small object spends
∼M/m ∼ 105 orbits near BH
⇒ unparalleled probe of
strong-field region around BH

Modeling
PN and NR don’t work
use black hole perturbation
theory/self-force theory
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More on EMRI science

Fundamental physics
measure central BH parameters: mass and spin to ∼ .01% error,
quadrupole moment to ∼ .1%
⇒ measure deviations from the Kerr relationship Ml + iSl = M(ia)l
⇒ test no-hair theorem
measure deviations from Kerr QNMs, presence or absence of event
horizon, additional wave polarizations, changes to power spectrum
constraints on modified gravity will be one or more orders of
magnitude better than any other planned experiment

Astrophysics
constrain mass function n(M) (number of black holes with given
mass)
provide information about stellar environment around massive BHs

Cosmology
measure Hubble constant to ∼ 1%
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More on EMRI modeling: why self-force?

highly relativistic, strong fields

⇒ can’t use post-Newtonian theory

disparate lengthscales

⇒ can’t use numerical relativity

long timescale: inspiral is slow,
produces ∼ M

m ∼ 105 wave cycles

⇒ need a model that is accurate to
� 1 radian over those ∼ 105 cycles

treat m as source of perturbation of M ’s metric gµν :

gµν = gµν + εh1
µν + ε2h2

µν + . . .

where ε ∼ m/M
represent motion of m via worldline zµ satisfying

D2zµ

dτ2 = εFµ1 + ε2Fµ2 + . . .
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One more: intermediate-mass-ratio inspirals (IMRIs)

Science
observable by ground-based
(LIGO/Virgo) and space-based
(LISA/DECIGO) detectors

Modeling
pushes the limits of NR
pushes the limits of self-force
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Outline

1 Binaries and gravitational waves

2 EMRI model requirements

3 Self-force theory: the local problem

4 Self-force theory: the global problem
First order
Second order
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How high order?

D2zµ

dτ2 = εFµ1 + ε2Fµ2 + . . .

force is small; inspiral occurs very slowly, on time scale τ ∼ 1/ε

suppose we neglect Fµ2 ; leads to error δ
(
D2zµ

dτ2

)
∼ ε2

⇒ error in position δzµ ∼ ε2τ2

⇒ after time τ ∼ 1/ε, error δzµ ∼ 1
∴ accurately describing orbital evolution requires second order
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Zeroth-order approximation: geodesics in Kerr

[image courtesy of Steve Drasco]

geodesic characterized by three
constants of motion:

1 energy E
2 angular momentum Lz
3 Carter constant Q, related to

orbital inclination

E, Lz, Q related to frequencies
of r, φ, and θ motion
resonances occur when two
frequencies have a rational ratio

[image courtesy of Steve Drasco]
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Hierarchy of self-force models [Hinderer and Flanagan]

when self-force is accounted for, E, Lz, and Q evolve with time
on an inspiral timescale t ∼ 1/ε, the phase of the gravitational wave
has an expansion (excluding resonances)

φ = 1
ε

[
φ0 + εφ1 +O

(
ε2
)]

a model that gets φ0 right should be enough for signal detection
a model that gets both φ0 and φ1 should be enough for parameter
extraction

Adam Pound Compact binaries and the gravitational self-force 15 / 40



Binaries Requirements Local problem Global problem

Hierarchy of self-force models [Hinderer and Flanagan]

when self-force is accounted for, E, Lz, and Q evolve with time
on an inspiral timescale t ∼ 1/ε, the phase of the gravitational wave
has an expansion (excluding resonances)

φ = 1
ε

[
φ0 + εφ1 +O

(
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determined by
• averaged dissipative piece of Fµ1

Adiabatic order
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Hierarchy of self-force models [Hinderer and Flanagan]

when self-force is accounted for, E, Lz, and Q evolve with time
on an inspiral timescale t ∼ 1/ε, the phase of the gravitational wave
has an expansion (excluding resonances)

φ = 1
ε

[
φ0 + εφ1 +O

(
ε2
)]

a model that gets φ0 right should be enough for signal detection
a model that gets both φ0 and φ1 should be enough for parameter
extraction

determined by
• averaged dissipative piece of Fµ1

Adiabatic order determined by
• averaged dissipative piece of Fµ2
• conservative piece of Fµ1
• oscillatory dissipative piece of Fµ1

Post-adiabatic order
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Outline

1 Binaries and gravitational waves

2 EMRI model requirements

3 Self-force theory: the local problem

4 Self-force theory: the global problem
First order
Second order
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What is the problem we want to solve?

Need to deal with internal 

dynamics and strong fields 

near object

A small, compact object of mass and size
m ∼ l ∼ ε moves through (and influences)
spacetime

Option 1: tackle the problem directly, treat
the body as finite sized, deal with its internal
composition
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Binaries Requirements Local problem Global problem

What is the problem we want to solve?

Metric here must agree with 

metric outside a small 

compact object; and "here" 

moves in response to field

A small, compact object of mass and size
m ∼ l ∼ ε moves through (and influences)
spacetime

Option 2: restrict the problem to distances
s� m from the object, treat m as source of
perturbation of external background gµν :

gµν = gµν + εh1
µν + ε2h2

µν + . . .

This is a free boundary value problem
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What is the problem we want to solve?

Distributionally ill defined 

source appears here!

A small, compact object of mass and size
m ∼ l ∼ ε moves through (and influences)
spacetime

Option 3: treat the body as a point particle
I takes behavior of fields outside object and

extends it down to a fictitious worldline
I so h1

µν ∼ 1/s (s =distance from object)
I second-order field equation
δG[h2] ∼ −δ2G[h1] ∼ (∂h1)2 ∼ 1/s4

—no solution unless we restrict it to points
off worldline, which is equivalent to FBVP
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What is the problem we want to solve?

A small, compact object of mass and size
m ∼ l ∼ ε moves through (and influences)
spacetime

Option 4: transform the FBVP into an
effective problem using a puncture, a local
approximation to the field outside the object
This will be the method emphasized here
[Mino, Sasaki, Tanaka 1996; Quinn & Wald 1996; Detweiler & Whiting 2002-03; Gralla

& Wald 2008-2012; Pound 2009-2017; Harte 2012]
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Matched asymptotic expansions

outer expansion: in external
universe, treat field of M as
background
inner expansion: in inner region,
treat field of m as background
in buffer region, feed information
from inner expansion into outer
expansion
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The inner expansion

Zoom in on object
unperturbed object defines background spacetime gobj

µν in inner
expansion
buffer region at asymptotic infinity s� m
⇒ can define object’s multipole moments as those of gobj

µν
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General solution in buffer region

General solution compatible with existence of inner expansion [Pound 2009, 2012]:
First order

h
(1)
µν = h

S(1)
µν + h

R(1)
µν

h
S(1)
µν ∼ 1/s+O(s0) defined by mass monopole m
h
R(1)
µν is undetermined homogenous solution regular at s = 0

evolution equations: ṁ = 0 and aµ(0) = 0
(where D2zµ

dτ2 = aµ(0) + εaµ(1) + . . .)

Second order
h

(2)
µν = h

S(2)
µν + h

R(2)
µν

h
S(2)
µν ∼ 1/s2 +O(1/s) defined by
1 monopole correction δm
2 mass dipole Mµ (set to zero)
3 spin dipole Sµ

evolution equations: Ṡµ = 0, ˙δm = . . ., and aµ(1) = . . .
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Self-field and effective field

we’ve locally split metric into a “self-field” and an effective metric

hS
µν directly determined by object’s multipole moments
gµν + hR

µν is a smooth vacuum metric determined by global
boundary conditions
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Defining object’s position [Mino et al, Gralla-Wald, Pound]

Reminder: mass dipole moment M i:
small displacement of center of mass from origin of coordinates

e.g., Newtonian field m

|xi − δzi|
≈ m

|xi|
+ mδzjnj
|xi|2

⇒ M i = mδzi

buffer region

0

m

r

t Definition of object’s worldline:
work in coordinates (t, xi)
centered on a curve γ
equation of motion of zµ:
whatever ensures Mµ ≡ 0
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Where is the worldline?

  
 

In buffer region, metric near
object in Mexact is mapped to

metric near γ in Mext

metric asymptotically far
from object in Mobj

Adam Pound Compact binaries and the gravitational self-force 23 / 40



Binaries Requirements Local problem Global problem

0th-, 1st-, and 2nd-order equations of motion

0th order, arbitrary object: D
2zµ

dτ2 = O(m) (geodesic motion in gµν)

1st order, arbitrary compact object [MiSaTaQuWa 1996]:

D2zµ

dτ2 = − 1
2
(
gαδ + uαuδ

)(
2hR1

δβ;γ − hR1
βγ;δ

)
uβuγ+ 1

2mR
α
βγδu

βSγδ+O(m2)

(motion of spinning test body in gµν + hR1
µν )

2nd-order, nonspinning, spherical compact object [Pound 2012]:
D2zµ

dτ2 = − 1
2 (gµν + uµuν)

(
gν
ρ − hR

ν
ρ
) (

2hR
ρσ;λ − hR

σλ;ρ
)
uσuλ +O(m3)

(geodesic motion in gµν + hR
µν)

all these results are derived directly from EFE outside the object;
there’s no regularization of infinities, and no assumptions about hR

µν
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Point particles and punctures [Barack et al, Detweiler, Gralla-Wald, Pound]

replace “self-field” with “singular field”

at 1st order, can use this to replace object with a point particle

T 1
µν := 1

8π δGµν [h1] ∼ mδ(x− z)

beyond 1st order, point particles not well defined—but can replace
object with a puncture, a local singularity in the field, moving on γ,
equipped with the object’s multipole moments
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How you replace an object with a puncture
use a local expansion of hSn

µν as a puncture hPnµν that moves on γ
transition hPnµν to zero at some distance from γ, solve field equations
for the residual field

hRnµν := hnµν − hPnµν
move the puncture with eqn of motion (using ∂hRnµν |γ = ∂hRn

µν |γ)

   out here, 

in here, 

use            in eqn. of 
    motion to evolve

here,      
    vanishes 
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More on puncturing

Note: self-force literature often speaks of “regularizing” singular
fields and forces
but we introduce the singular field as a tool to compute a specific
regular field
self-force theory does not involve regularizing divergent quantities
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Outline

1 Binaries and gravitational waves

2 EMRI model requirements

3 Self-force theory: the local problem

4 Self-force theory: the global problem
First order
Second order
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Solving the Einstein equations globally

solving the local problem told us how to replace the small object
with a moving puncture in the field equations:

δGµν [hR1] = −δGµν [hP1]
δGµν [hR2] = −δ2Gµν [h1, h1]− δGµν [hP2]

D2zµ

dτ2 = −1
2(gµν + uµuν)(gνδ − hRν δ)(2hRδβ;γ − hRβγ;δ)uβuγ

where δGµν [h] ∼ �hµν , δ2Gµν [h, h] ∼ ∂h∂h+ h∂2h

the global problem: how do we solve these equations in practice?
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Typical calculation at first order [Barack et al, van de Meent, many others]

 

approximate the source orbit
as a bound geodesic
impose outgoing-wave BCs at
I+ and H+

solve field equation
numerically, compute
self-force from solution
system radiates forever; at
any given time, BH has
already absorbed infinite
energy
but on short sections of time
the approximation is accurate
breaks down on dephasing
time ∼ 1/

√
ε, when

|zµ − zµ0 | ∼M
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accurate to 1st 
order in region 

of size 
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First-order results: orbital evolution

adiabatic evolution schemes in Kerr already devised and
implemented (modulo resonances) [Mino, Drasco et al, Sago et al]

[image courtesy of Warburton]

complete inspirals
also simulated in
Schwarzschild using
full Fµ1 [Warburton et al]

and Fµ1 has been
computed on generic
orbits in Kerr [van de

Meent]

but still need Fµ2 for
accurate
post-adiabatic
inspiral
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accurate
post-adiabatic
inspiral
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First-order results: improving other binary models

PN and EOB models have been improved using data for conservative
effects of the self-force (computed by “turning off” dissipation)

orbital precession [Barack et al., van de

Meent]

ISCO shift [Barack and Sago, Isoyama et al.]

Detweiler’s redshift invariant
dt
dτR

on circular orbits [Detweiler,

Shah et al., Dolan and Barack]

averaged redshift
〈
dt
dτR

〉
on

eccentric orbits [Barack et al., van de

Meent & Shah]

Binary parameter space

[image courtesy of Leor Barack]spin precession [Dolan et al, Bini et al]

quadrupolar and octupolar self-tides [Dolan et al, Damour and Bini]
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First-order results: using SF to directly model IMRIs

Comparisons for equal-mass binaries

SF results use “mass symmetrized” model: m
M →

mM
(m+M)2

with mass-symmetrization, second-order self-force might be able to
directly model even comparable-mass binaries

Adam Pound Compact binaries and the gravitational self-force 33 / 40



Binaries Requirements Local problem Global problem First order Second order

First-order results: using SF to directly model IMRIs

Comparisons for equal-mass binaries

SF results use “mass symmetrized” model: m
M →

mM
(m+M)2

with mass-symmetrization, second-order self-force might be able to
directly model even comparable-mass binaries

Adam Pound Compact binaries and the gravitational self-force 33 / 40



Binaries Requirements Local problem Global problem First order Second order

Outline

1 Binaries and gravitational waves

2 EMRI model requirements

3 Self-force theory: the local problem

4 Self-force theory: the global problem
First order
Second order
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Infrared problems at second order [Pound 2015]

suppose we try to use “typical”
h1
µν to construct source for h2

µν

because |zµ − zµ0 | blows up
with time, h2

µν does likewise
because h1

µν contains outgoing
waves at all past times, the
source δ2Rµν [h1] decays too
slowly, and its retarded integral
does not exist
instead, we must construct a
uniform approximation
I h1

µν must include evolution
of orbit

I radiation must decay to zero
in infinite past
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Matched expansions [Pound, Moxon, Flanagan, Hinderer, Yamada, Isoyama, Tanaka]

multiscale
expansion

here

post-
Minkowski
expansion

here

near-
horizon
expansion
here

Multiscale expansion
multiscale expansion: expand
orbital parameters and fields as

Jα = Jα0 (t̃) + εJα1 (t̃) + . . .

hnµν ∼
∑
kα

hnkα(t̃)e−ik
αqα(t̃)

where (Jα, qα) are action-angle
variables for zµ, and t̃ ∼ εt is a
“slow time”
solve for hnkα at fixed t̃ with
standard frequency-domain
techniques

Get boundary conditions from
post-Minkowski expansion: expand hnµν in powers of M
near-horizon expansion: expand hnµν in powers of gravitational
potential near horizon
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Quasicircular orbits in Schwarzschild [Pound, Wardell, Warburton, Miller]

Multiscale expansion
expand orbital radius as
rp = r0(t̃) + εr1(t̃) + . . .

expand field as

hnµν =
∑
ilm

hnilm(t̃, r)e−imφp(t̃)Y ilmµν

use post-Minkowski and
near-horizon expansions to obtain
punctures at r �M and r ∼ 2M

solve numerically for hnilm at fixed t̃ using same frequency-domain
methods as at 1st order
evolve t̃ dependence using equation of motion
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Binding energy for quasicircular orbits

Second-order piece of Ebind = MBondi −m−MBH

First law

Second-order
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Calculations performed as of 2005

Adiabatic 1st order 2nd order

Schwarz.
circular X

X X

generic X

X

Kerr

circular X

X

generic
(w/o resonances)

X X

generic
(w/ resonances)

underway underway

holy grail
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Calculations performed as of 2017

Adiabatic 1st order 2nd order

Schwarz.
circular X X

X

generic X X

Kerr

circular X X
generic
(w/o resonances) X X
generic
(w/ resonances) underway underway holy grail
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Calculations performed as of 2018

Adiabatic 1st order 2nd order

Schwarz.
circular X X X
generic X X

Kerr

circular X X
generic
(w/o resonances) X X
generic
(w/ resonances) underway underway holy grail
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Conclusion

Modeling binaries
self-force theory required for modeling of EMRIs; could be best
model for IMRIs; improves models of comparable-mass binaries
need second-order accuracy for modeling

Status of formalism and computations
“local problem” solved, but still missing higher-moment effects at
second order
“global problem” solved in some cases
wealth of numerical results at first order, computations at second
order are underway

For more information, see recent review by Barack and Pound in Reports
on Progress in Physics
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