
The Journal of Fourier Analysis and Applications

Iterative Thresholding for
Sparse Approximations

Thomas Blumensath and Mike E. Davies

Communicated by ...

ABSTRACT. Sparse signal expansions are signal expansions that represent

or approximate a signal using a small number of elements from a large col-

lection of elementary waveforms. Finding the optimum sparse expansion is

known to be NP hard in general and non-optimal strategies such as Match-

ing Pursuit, Orthogonal Matching Pursuit, Basis Pursuit and Basis Pursuit

De-noising are often called upon. These methods show good performance in

practical situations, however, they often do not operate on the cost functions

that are at the heart of the problem. In this paper we study two iterative

algorithms that are minimising the cost functions of interest. Furthermore,

these strategies have a comparable computational cost per iteration to a single

Matching Pursuit iteration, making the methods applicable to many real world

problems. However, the non-convexity of the optimisation problem means that

these strategies are only guaranteed to find local solutions and good initial-

isation becomes paramount. To guarantee good performance, we study two

approaches. The first approach uses the proposed algorithms to refine the solu-

tions found with other methods, replacing the typically used conjugate gradient

solver. The second strategy adapts the algorithms and we show that this adap-

tation can be used to achieve results that lie between those obtained with Match-

ing Pursuit and those found with Orthogonal Matching Pursuit, while retaining

the computational complexity of the Matching Pursuit algorithm. Numerical

studies demonstrate the performance of the two approaches.

1. Introduction

Sparse signal approximations have over the last decade gained in popularity
in mathematics, statistics and engineering. For example, a wide range of
engineering applications such as source coding [1], [2], denoising [3], source

Math Subject Classifications. 65D15, 41A45
Keywords and Phrases. Sparse Approximations, Iterative Thresholding, L0 Regu-
larisation, Subset Selection.

c© 2004 Birkhäuser Boston. All rights reserved
ISSN 1069-5869 DOI: ITA-JFAA - April 3, 2007

2 Thomas Blumensath and Mike E. Davies

separation [4] and pattern analysis [5] have benefited from progress made in
this area. A sparse signal approximation is a solution to the linear equation:

x =
∑

i

φiyi + e,

where x is the signal of interest and {φi} a set of elements, commonly
called the dictionary. In this paper we are dealing primarily with sparse
approximations as opposed to sparse representations, i.e. we allow for a
non-zero error e in the above signal model. In this paper we restrict our
attention to finite length vectors1 x. We therefore introduce the matrix Φ
and vector y such that Φy =

∑

i φiyi, i.e. the vectors φi are the column
vectors in Φ. In general, the dimension of y is allowed to be larger than that
of x.

1.1 Useful Dictionary Properties

Before proceeding, we introduce some useful concepts and properties of dic-
tionaries, which will help us in the development below. The spark of a
dictionary is defined in [6] as

Definition 1 spark. spark(Φ) is the size of the smallest subset of columns
of Φ such that the elements in this subset are linearly dependent.

For example if all M dimensional subsets of column vectors from Φ are
linearly independent, but there exist a subset of size M + 1 in which the
columns are dependent, then the spark of Φ is M + 1.

We also need the following definitions:

Definition 2 Cumulative Coherence. The Cumulative Coherence or
Babel function [7] is defined as:

µ1(m) := max
|Γ|=m

max
ω/∈Γ

∑

γ∈Γ

|〈φω , φγ〉|. (1.1)

A useful bound on the cumulative coherence is given in terms of the
coherence:

Definition 3 Coherence.

µ1(1) = µ0 := max
ω 6=γ

|〈φω, φγ〉|. (1.2)

A bound on the Cumulative Coherence is then:

µ1(m) ≤ mµ0. (1.3)

1Many of the results derived in this paper are valid in a more general Hilbert space
and hold for more general operators, however, definitions 1 to 3 below and the
results base on them require a more restrictive setting.

Iterative Thresholding for Sparse Approximations 3

See for example [7]. Note, that contrary to common practice, in the above
definitions and throughout this paper we do not assume that ‖φi‖2 = 1.
However, on occasion we use the weaker condition that ‖φi‖2 = c for all i.

Finally we introduce:

Definition 4 maxcor(x). maxcor(x) = ‖ΦH
x‖∞

‖x‖2
.

1.2 Problem Formulation

In this paper we look at two incarnations of the sparse approximation prob-
lem. The first we call the L0 regularised problem. This problem is defined
as a solution to the following optimisation problem. For a given x and Φ
the L0 regularised sparse approximation problem is to find coefficient vector
y minimising the cost function:

CL0
(y) = ‖x − Φy‖2

2 + λ‖y‖0, (1.4)

where ‖y‖0 is defined as |Γ1(y)| and throughout this paper we use Γ1(y) =
{yi : y1 6= 0} as the set of non-zero coefficients. |Γ1(y)| is the size of this set
so that ‖y‖0 counts the number of non-zero coefficients.

The other problem will be called the M-sparse problem, this is a con-
straint optimisation problem of the form:

min
y

‖x − Φy‖2
2 subject to ‖y‖0 ≤ M, (1.5)

i.e now we constrain the number of non-zero coefficients to be below a certain
value2.

The problem of minimising equation (1.5) for general x and Φ is known
to be an NP-hard optimisation problem [8, 9]. Therefore, two common
themes have been adopted to approximately solve the problem, greedy op-
timisation strategies and relaxation of the cost function. Greedy strategies,
such as Matching Pursuit (MP) type algorithms [10], are iterative proce-
dures, which are often relatively fast and which have therefore been used
extensively in practical applications. The performance of these methods is
however not guaranteed in general and only under very strict conditions can
they be shown to optimise the above cost function [11] [12]. Relaxation
methods replace the ‖y‖0 constraint by an almost everywhere differentiable
and often convex cost function, such as the FOCUSS algorithm [13] or the

2It is worth pointing out that the two problems are related in that there exist a λ,
which depends on x and M , such that the solution to the L0 regularised problem
is the same as that to the M -sparse problem. However, it is also important to
realise that the algorithms derived here can have quite different performance, even
though they have a very similar structure.

4 Thomas Blumensath and Mike E. Davies

Basis Pursuit De-noising method [14]. These often offer better performance,
but are computationally demanding.

Basis Pursuit De-noising relaxes the L0 penalty and replaces it with
the convex L1 penalty. This leads to the convex optimisation problem:

min
y

‖x − Φy‖2
2 + λ‖y‖1. (1.6)

Recently, iterative thresholding algorithms have been proposed to solve
this problem as in [15], [16], [17] and [18]. A similar algorithm to directly
solve the L0 regularised optimisation problem had previously been put for-
ward by Kingsbury in [19] and more recently, a slight variation of this was
used in [20].

1.3 Paper Overview

In section 2 we derive the algorithm used in [20] using ideas from [15]. Impor-
tantly, we present the following novel results with regard to this algorithm.

• We give a simple condition guaranteeing the convergence of the
method to a local optimum of the cost function 1.4.

• We give conditions specifying the fixed points of the algorithm.

• We show that the algorithm is guaranteed not to increase the cost
function 1.4.

• We give bounds on the error and sparsity of the solution.

• We analyse the convergence speed of the method.

In section 3 a novel variation of the algorithm is derived to solve the
M-sparse problem. We show the following properties of this algorithm.

• We give a simple condition guaranteeing the convergence of the
method to a local optimum of the cost function 1.5.

• We give conditions specifying the fixed points of the algorithm.

• We show that the algorithm is guaranteed not to increase the cost
function 1.5.

• We give bounds on the error and sparsity of the solution.

• We analyse the convergence speed of the method.

These two algorithms work directly on the cost functions 1.4 and 1.5.
As these functions are non-convex, we find that the algorithms only con-
verge to local optima. Even worse, we find that the fixed points of the
first algorithm do not have any guarantee of sparsity, in fact, adding any
element from the null-space of Φ to any fixed point will give another fixed
point. Numerical studies also confirm, initialisation of the method is im-
portant and when initialised with zero vectors, the algorithms were found
to perform worse than for example the Matching Pursuit algorithm. We

Iterative Thresholding for Sparse Approximations 5

therefore suggest two strategies for a successful application of the methods.
The first strategy is to use the methods in conjunction with other methods
such as Matching Pursuit or Basis Pursuit De-noising. The solutions found
with these algorithms are in general not even local optimal solutions to the
problems 1.4 and 1.5. In fact, the solutions can always be improved by or-
thogonally projecting the signal onto the space of the non-zero components
chosen with these methods. This projection is typically done using a conju-
gate gradient algorithm. By replacing the conjugate gradient algorithm with
the methods proposed here one does not only calculate such a projection,
more importantly, the proposed algorithms can also change the support set
of the solution, while at the same time guaranteeing to improve the solution.
This is shown numerically in subsections 4.1 and 4.2.

The other suggested approach is a slight modification of the algorithms.
This method varies the number of retained coefficients in each iteration,
starting with a single coefficient and adding additional coefficients as the
algorithm progresses. If the number of non-zero coefficients is increased in
each iteration, the performance is comparable to Matching pursuit, whilst
by increasing the number of non-zero coefficients more slowly allows us to
improve the performance. This approach is studied in subsection 4.3.

This paper can be read on three different levels, the casual reader,
interested in the algorithms and their properties, but less interested in more
formal statements of these properties nor in the exact derivation of the
algorithms can read the digest subsections given at the beginning of the next
two sections. More formal derivations of the algorithms and statements of
the main theorems and lemmata comprise the rest of the next two sections.
The keen reader, interested also in the proofs, is referred to the appendices.

2. An iterative algorithm for the L0 regularised

problem

2.1 Digest: the Iterative Hard-Thresholding Algorithm

To solve the optimisation problem:

min
y

‖x − Φy‖2
2 + λ‖y‖0, (2.1)

we derive the following iterative algorithm:

yn+1 = Hλ0.5(yn + ΦH(x− Φyn)), (2.2)

where Hλ0.5 is the element wise hard thresholding operation:

Hλ0.5(yi)

{

0 if |yi| ≤ λ0.5

yi if |yi| > λ0.5.
(2.3)

6 Thomas Blumensath and Mike E. Davies

This algorithm will be called the iterative hard-thresholding algorithm. We
show that under the assumption that ‖Φ‖2 < 1 the algorithm is guaranteed
not to increase equation (1.4) and in fact converges to a local minimum of
equation (1.4). Furthermore, the asymptotic convergence rate is linear and
at any fixed point y⋆ the error satisfies the bound:

‖x − Φy⋆‖2 ≤ λ0.5. (2.4)

2.2 Optimisation Transfer

Instead of optimising equation (1.4), let us introduce a surrogate objective
function, as proposed in [21]:

CS
L0

(y, z) = ‖x − Φy‖2
2 + λ‖y‖0 − ‖Φy − Φz‖2

2 + ‖y − z‖2
2. (2.5)

Note that CL0
(y) = CS

L0
(y,y). Equation (2.5) can be rewritten as:

CSL0(y, z) =
∑

i

[y2
i − 2yi(zi + φH

i x− φH
i Φz) + λ|yi|0]

+ ‖x‖2
2 + ‖z‖2

2 − ‖Φz‖2
2,

where |yi|0 is one if yi 6= 0 and zero otherwise. Now the yi are decoupled.
Therefore, the minimum of equation (2.5) can be calculated by minimising
with respect to each yi individually. To derive the minimum, we distinguish
two cases, yi = 0 and yi 6= 0. In the first case, the element wise cost
is (ignoring the constant terms) λ. In the second case the cost is (again
ignoring the constant terms):

y2
i − 2yi(zi + φH

i x− φH
i Φz),

the minimum of which is achieved at

y⋆
i = zi + φH

i x− φH
i Φz.

Comparing the cost for both cases (i.e yi = 0 and yi = zi+φH
i x−φH

i Φz)
we see that the minimum of equation (2.5) is attained at:

y = Hλ0.5(z + ΦH(x − Φz)),

where we use the element-wise hard thresholding operator given above in
equation (2.3). Note that the minimum need not be unique whenever zi +
φH

i x − φH
i Φz = λ0.5. However, using a strict inequality in the definition of

the thresholding operator as done here guarantees a unique update.
The iterative hard thresholding algorithm is now defined as:

yn+1 = Hλ0.5(yn + ΦH(x− Φyn)). (2.6)

Iterative Thresholding for Sparse Approximations 7

In the rest of this section we will often simplify the notation and introduce
the non-linear operator Ty = Hθ(y + ΦH(x − Φy)). This is a thresholded
version of the well known Landweber iteration [22]. This is the same al-
gorithm suggested in [20], however, we found that this algorithm is not
stable in general. In this paper we show that a sufficient requirement for the
above algorithm to converge is that the eigenvalues of the linear operator
(I−ΦHΦ) are 0 < eig(I−ΦHΦ) ≤ 1. Using the singular value decomposition
of Φ = USV H we can write (I−ΦHΦ) = (I−V SHSV H) = (V (I−SHS)V H),
so that we can express the above requirement as a restriction on the singular
values σ(Φ) of Φ, i.e. σ(Φ) < 1.

2.3 Relationship Between Optimisation of the Surrogate Func-

tion and the Original Cost Function

In this subsection we give an important lemma:

Lemma 1. Let yn+1 = Hθ(y
n +ΦH(x−Φyn)). The sequences (CL0

(yn))n
and (CS

L0
(yn+1,yn))n are non-increasing.

The proof of this lemma can be found in appendix A.
This lemma states that the cost function 1.4 does not increase from

iteration to iteration, or, more bluntly, using the algorithm cannot lead to
worse results than not using the algorithm.

2.4 Specifying the Fixed Points

As mentioned above, the algorithm does not have a unique solution for
different initialisations. It is therefore important to specify conditions on
the fixed points of the algorithm.

Lemma 2. Let φH
i be the ith row of ΦH and define the sets Γ0 = {i : y⋆

i =
0} and Γ1 = {i : y⋆

i > λ0.5}. Then at a fixed point of algorithm 2.2, i.e at
points such that y⋆ = T (y⋆) we have

|φH
i (x − Φy⋆)|

{

= 0 if i ∈ Γ1

≤ λ0.5 if i ∈ Γ0.

The proof of this result is straight forward and we give it here, as it
has some merit in itself.

Proof. A fixed point is any y⋆ such that y⋆ = T (y⋆). Looking at this
equality element wise and inserting the algorithm we have:

y⋆
i = Hλ0.5(y⋆

i + φH
i (x − Φy⋆)),

If y⋆
i = 0, then |φH

i (x − Φy⋆)| ≤ λ0.5. Similarly for i ∈ Γ1 we have :

y⋆
i = y⋆

i + φH
i (x− Φy⋆),

8 Thomas Blumensath and Mike E. Davies

where we have dropped the thresholding operator, as y⋆
i 6= 0.

One of the main results in this section relates the fixed points with the
cost function 1.4:

Lemma 3. A fixed point y⋆ = Ty⋆ is a local minimum of equation (1.4).

The proof of this lemma is a bit more involved and can be found in
appendix B. By a local minima we mean here that perturbing y⋆ by an
infinitesimal small amount (in any direction) will not decrease the cost func-
tion.

Before proceeding we answer another important question, whether the
set of fixed points includes the optimal solution. To show that this is in fact
true we appeal to theorem 12 in [7], which we enhance here by adding an
additional property.

Theorem 1 (Tropp [7]: Theorem 12). For an input signal x and
a threshold λ0.5, denote by yopt the global minimum of the optimisation
problem 1.4. Define Γ0 = {γ : yopt

γ = 0} and Γ1 = {γ : yopt
γ 6= 0} Then:

• ∀γ ∈ Γ1, |yopt
γ | ≥ λ0.5

• ∀γ ∈ Γ0, φH
γ (x − Φyopt) ≤ λ0.5

• ∀γ ∈ Γ1, φH
γ (x − Φyopt) = 0,

The third condition implies that the error is orthogonal to the atoms φH
i γ

when γ ∈ Γ1. In other words, the signal is projected orthogonally onto the
space spanned by these atoms. This condition is not given in [7] but is easily
verified. For any fixed subset of atoms, the cost function 1.4 is minimised
by orthogonal projection onto these atoms. A formal proof is omitted here.

Comparing the sufficient conditions in theorem 1 to the fixed point
conditions of the algorithm in lemma 2 we have:

Theorem 2. The optimal solution to the optimisation problem 1.4 belongs
to the fixed points of the iterative algorithm defined by equation (2.2).

2.5 Convergence

We have shown in the previous section that the iterative hard threshold-
ing algorithm is guaranteed not to increase the cost function in equation
(1.4). In this subsection we state an even more important property of the
algorithm, namely, the algorithm converges to a local minimum of equation
(1.4).

More formally, we have the following theorem:

Theorem 3. Assume y ∈ H, where H is a Hilbert space. If CL0
(y0) < ∞

and if the eigenvalues of the operator (I−ΦHΦ) obey 0 < eig(I−ΦHΦ) ≤ 1,
then the sequence (yn)n defined by the iterative procedure in equation (2.2)

Iterative Thresholding for Sparse Approximations 9

converges to a local minimum of equation (1.4).

Note that the condition CL0
(y0) < ∞, which we use in lemma C.1

is only really of importance in infinite dimensional spaces, where it implies
that only a finite number of y0

i are non-zero. The proof of the above theorem
is given in appendix C.

2.6 Bounds on error and sparsity

Lemma 2 is a necessary and sufficient condition and the fixed points of the
algorithm do only depend on the inner product between the reconstruction
error and the dictionary elements. Adding any element from the null-space
of Φ to y⋆ will not change the reconstruction error. The overcompletness
of Φ implies the existence of a null-space. Elements of the null-space are in
general not sparse and therefore, the algorithm does not guarantee a sparse
solution.

Note also that the algorithm is guaranteed to find a local minima of
the cost function. This implies that the local minima of the cost function
are not required to be sparse either.

Clearly, having no guarantee on the sparsity of the solution is not in
general a desirable property of an algorithm to find sparse representations.
One would therefore want to modify the algorithm to impose constraints
on the number of non-zero coefficients of the solution. Such an approach is
studied in the next section, however, in the rest of this section we will present
a bound on the reconstruction error achieved with the proposed method.

A bound on the approximation error is stated in

Lemma 4. Assume that ‖φi‖2 ≤ 1, then a tight bound for the approxima-
tion error ‖x − Φy⋆‖2 achieved at a fixed point y⋆ is

‖x − Φy⋆‖2 ≤ λ0.5. (2.7)

The proof can be found in appendix D. Note that the condition on the
norm of the columns of Φ is typically satisfied if we scale a dictionary with
unit norm columns such that it fulfils the condition ‖Φ‖2 < 1 required for
the convergence of the iterative method.

2.7 Speed of convergence

The convergence proof of the algorithm relied on the fact that after a finite
number of iterations, the algorithm does not change the selected subset any-
more. Then, the algorithm simplifies to the standard Landweber iteration
[22]. Therefore the asymptotic convergence speed is the linear convergence
of the Landweber algorithm [22] given by:

‖yn − ym‖2 ≤ ‖1 − ΦH
Γ1

ΦΓ1
‖(n−m)
2 ‖ym‖2 (2.8)

10 Thomas Blumensath and Mike E. Davies

Note that we have expressed this result in terms of the sub-matrices ΦΓ1
.

Assuming that ‖φi‖2 = c for all i and that c − µ1(M − 1) > 0, where M is
the size of the set Γ1, we can use results form [11] to bound the eigenvalues
of 1 − ΦH

Γ1
ΦΓ1

with the cumulative coherence, leading to

‖yn − ym‖2 ≤ [1 − (c − µ1(M − 1))]
n−m

2 ‖ym‖2. (2.9)

Because the cumulative coherence is an increasing function of M , it can be
seen that the bound decreases, the smaller the selected sub-dictionary.

3. An iterative algorithm for the M-sparse

problem

3.1 Digest: the M-Sparse Algorithm

In this section we turn to the M-sparse problem:

min
y

‖x − Φy‖2
2 subject to ‖y‖0 ≤ M, (3.1)

and derive the following iterative algorithm:

yn+1 = HM(yn + ΦH(x − Φyn)), (3.2)

where HM is now a non-linear operator that only retains the M coefficients
with the largest absolute magnitude:

HM (yi)

{

0 if |yi| < λ0.5
M (y)

yi if |yi| ≥ λ0.5
M (y).

(3.3)

The threshold λ0.5
M (y) is set to the M th largest absolute value of yn+ΦH(x−

Φyn), if less than M values are non-zero we define λ0.5
M (y) to be the smallest

absolute value of the non-zero coefficients. We call this algorithm the M-
sparse algorithm.

In addition to the requirement that ‖Φ‖2 < 1 we now also use the
assumption that M <spark(Φ). Under these two assumptions the algorithm
is guaranteed not to increase equation (1.5) and also converges to a local
minimum of equation (1.5). As before, the asymptotic convergence rate is
linear and if ‖φi‖2 = c, for all i, then at the fixed point y⋆ the error satisfies
the bound:

‖x − Φy⋆‖2 ≤ ‖x‖2 maxcor(x)

c2 − µ1(M − 1)
. (3.4)

Iterative Thresholding for Sparse Approximations 11

3.2 Optimisation Transfer

We again use optimisation transfer to derive the iterative algorithm. The
surrogate objective function is now:

CS
M (y, z) = ‖x − Φy‖2

2 − ‖Φy − Φz‖2
2 + ‖y − z‖2

2. (3.5)

Note that we do not use a regularisation term here, however, in the min-
imisation of the surrogate cost function we now require that the constraint
‖y‖0 ≤ M is satisfied. We again have CM (y) = CS

M (y,y). As in the previ-
ous section we write equation (3.5) as:

CS
M (y, z) ∝

∑

i

[y2
i − 2yi(zi + φH

i x − φH
i Φz)].

This again de-couples the yi. If we ignore the constraint on the number
of non-zero coefficients we would get the standard Landweber minimum of:

y⋆
i = zi + φH

i x− φH
i Φz.

At this minimum, the cost function would be

CS
M (y⋆, z) ∝

∑

i

[y⋆2
i − 2y⋆

i (zi + φH
i x − φH

i Φz)] =
∑

i

−y⋆2
i .

The constraint minimum of the surrogate cost function is then acheived by
chosing the M largest (in absolute value) coefficients y⋆

i .
The minimum of equation (2.5) is then attained at:

y = HM (z + ΦH(x − Φz)),

where now the thresholding operator HM choses the threshold depending
on its argument.

The iterative M-sparse algorithm is then:

yn+1 = HM(yn + ΦH(x − Φyn)). (3.6)

Again we show that a sufficient requirement for the above algorithm to
converge is that the eigenvalues of the linear operator (I − ΦHΦ) are 0 <
eig(I − ΦHΦ) ≤ 1 or that the singular values σ(Φ) of Φ, obey σ(Φ) < 1.

3.3 Relationship Between Optimisation of the Surrogate Func-

tion and the Original Cost Function

Again we can show that the algorithm reduces the cost function CM (yn). It
is important to stress that we here require ‖y0‖0 ≤ M , which is guaranteed
by the fact that we choose only the largest M coefficients in each iteration.

12 Thomas Blumensath and Mike E. Davies

(In cases where there are more than one coefficient with equal magnitude,
such that the M largest coefficients are not uniquely defined, we assume
that the algorithm selects randomly from the offending coefficients.) The
equivalent to lemma 1 also holds:

Lemma 5. Let yn+1 = HM(yn+ΦH(x−Φyn)). The sequences (CM (yn))n
and (CS

M (yn+1,yn))n are non-increasing.

The proof to this lemma is exactly the same as that for lemma 1 given
in appendix A, with the cost functions chosen appropriately.

3.4 Specifying the Fixed Points

It is again important to analyse the fixed points of this algorithm. This
again follows a similar approach taken above. Note, however, we have now
a slightly different lemma. First, we have one extra condition, i.e. we have
the restriction ‖y‖0 ≤ M < N , where N is the dimension of x and secondly,
the threshold in the condition is not fixed anymore, but depends on the
smallest non-zero element in y⋆

Lemma 6. Let φH
i be the ith row of ΦH and define the sets Γ0 = {i : y⋆

i =
0} and Γ1 = {i : y⋆

i > λ0.5}. Then at a fixed point of algorithm (3.2), i.e at
points such that y⋆ = T (y⋆) we have

|φH
i (x − Φy⋆)|

{

= 0 if i ∈ Γ1

≤ λ0.5
M (y⋆) if i ∈ Γ0.

and ‖y‖0 ≤ M . We can actually say something more, in fact ‖y⋆‖0 = M
unless x− Φy⋆ = 0, in which case CM (y⋆) = 0.

Again, these are necessary and sufficient conditions.

Proof. A fixed point is defined as y⋆ = T (y⋆) and after insertion of the
algorithm we get:

y⋆
i = HM (y⋆

i + φH
i (x − Φy⋆)),

‖y‖0 ≤ M follows necessarily from the enforcement of the constraint, how-
ever, the threshold λ0.5

M (y) in the algorithm now depends on φH
i (x − Φy⋆).

For y⋆
i = 0 we require |φH

i (x − Φy⋆)| < λ0.5
M (y) whilst for i ∈ Γ1 we have:

y⋆
i = y⋆

i + φH
i (x− Φy⋆).

Also, assume that CM (y⋆) 6= 0 and that ‖y⋆‖0 = M − 1. Then x−Φy 6= 0.
Assuming Φ spans the signal space and assuming M <spark(Φ), then there
must be a φH

i for i ∈ Γ0 such that |φH
i (x − Φy)| > 0. However, then also

λ0.5
M (y) > 0 and the algorithm would have chosen M terms. The proof for

‖y⋆‖0 < M − 1 follows by induction.

We can further show that:

Iterative Thresholding for Sparse Approximations 13

Lemma 7. If M <spark(Φ), then a fixed point y⋆ = Ty⋆ is a local mini-
mum of the constraint cost function 1.5.

The proof can be found in appendix E.

3.5 Convergence

We also have a convergence proof for the M-sparse algorithm:

Theorem 4. Assume y ∈ H, where H is a Hilbert space. If CM (y0) < ∞
and if the eigenvalues of the operator (I − ΦHΦ) obey 0 < eig(I − ΦHΦ) ≤
1, then the sequence (yn)n defined by the iterative M-sparse algorithm 3.2
converges to a local minimum of equation (1.5).

The proof can be found in appendix F.

3.6 Bounds on error and sparsity

The sparsity of the fixed points of the algorithm is naturally given by the
parameter M .

A similar bound on the approximation error as given in lemma 4 can
be found:

Lemma 8. Assume that ‖φγ‖2 ≤ 1, then a tight bound for the approxima-
tion error ‖x − Φy⋆‖2 achieved at a fixed point y⋆ is

‖x − Φy⋆‖ ≤ λ0.5(y⋆). (3.7)

The proof is virtually identical to the proof of lemma 4. The difference
is now that λ0.5(y⋆) is a function of the fixed point itself. We therefore need
a lemma bounding λ0.5(y⋆). This is done in

Lemma 9. Assume that for all i, ‖φi‖2 = c. If µ1(M − 1) < 1, then we
have the following bound:

λ0.5(y⋆) ≤ ‖x‖2 maxcor(x)

c2 − µ1(M − 1)
. (3.8)

The proof of this lemma can be found in appendix G.

3.7 Speed of convergence

Again, appealing to the fact that the algorithm will after a certain number
of iterations (say m), not change the subset (see proof of theorem 4), we
have the same convergence properties as for the algorithm of section 2:

‖yn − ym‖2 ≤ ‖1 − ΦH
Γ1

ΦΓ1
‖(n−m)
2 ‖ym‖2 (3.9)

and, under the same conditions as in subsection 2.7

‖yn − ym‖2 ≤ [1 − (c − µ1(M − 1))]
n−m

2 ‖ym‖2. (3.10)

14 Thomas Blumensath and Mike E. Davies

4. Numerical Studies

4.1 Improving the cost function

In this subsection we study the ability of the algorithms to improve on
results calculated with Matching Pursuit, which is reviewed in appendix H.
We chose this algorithm for comparison as it is relatively fast and therefore
used in many applications. We show that the use of the above algorithms
in conjunction with Matching Pursuit often leads to an improvement in the
results. Note that Matching Pursuit does not give the minimum squared
error solution achievable with the selected subset, which is known to be
achieved by an orthogonal projection of the signal onto the selected elements.
We therefore compare our results here to those found with Matching Pursuit
followed by an orthogonal projection. We here do this projection using the
pseudo-inverse, however, in most situations it would be more efficient to use
conjugate gradient type algorithms.

The results are shown in Figures 1 and 2 for the iterative hard-thresholoding
algorithm and the M-sparse algorithm respectively.

The results in Figure 1 were calculated as follows. We randomly gen-
erate 1 000 dictionaries of size 128 × 256 with elements distributed uni-
formly on the unit sphere. From each of these we randomly selected 128
elements. The coefficients were generated by drawing i.i.d. zero mean
and unit variance Gaussian variables, however, values with a magnitude
below λ0.5 =

√
2 erf−1(M/128) were set to zero. This threshold ensures

that on average, only M of the coefficients were non-zero. We choose
M ∈ {2, 11, 20, 29, 38, 47, 56, 65, 74, 83, 92, 101, 110, 119, 128}. This proce-
dure ensured that we used the same average number of non-zero coefficients
as in the experiment below while ensuring that the coefficients are above
λ0.5 as required by lemma 1. We repeated this procedure four times and
added different levels of zero mean Gaussian noise giving a Signal to Noise
Ratio (SNR) of 120 dB, 80 dB, 40 dB and 0 dB.

We then run the Matching Pursuit algorithm stopping when the mini-
mum in the cost function ‖x−Φy‖2

2 +λ‖y‖0 was reached. These coefficients
were then used to initialise the iterative hard-thresholding algorithm. In
Figure 1 the stars are the cost function averages (averaged over the 1 000
dictionaries) for the cost function after projecting the Matching Pursuit
results. The squares are the results for the iterative hard-thresholding algo-
rithm. The lower panels show the difference between the results. We here
show the cost (as well as the difference in the cost) in dB.

The results in Figure 2 where calculated similarly, the only difference
being that the coefficients were generated by directly choosing M elements
at random using Gaussian coefficients. This time the coefficient values were
not restricted in magnitude. We then run the Matching Pursuit algorithm
stopping after M elements had been selected. We used these results to

Iterative Thresholding for Sparse Approximations 15

0 0.5 1
0

10

20

30

40

50

co
st

 in
 d

B

SNR= 120

0 0.5 1
0

0.5

1

1.5

2

di
ffe

re
nc

e
in

 c
os

t i
n

dB

0 0.5 1
0

10

20

30

40

50
SNR= 80

0 0.5 1
0

0.5

1

1.5

2

 ratio of non−zero coefficients to signal space dimension

0 0.5 1
0

10

20

30

40

50
SNR= 40

0 0.5 1
0

0.5

1

1.5

2

0 0.5 1
0

10

20

30

40

50
SNR= 0

0 0.5 1
0

0.5

1

1.5

2

FIGURE 1 The top panels show a comparison between Matching Pursuit followed by or-
thogonal projection (stars) and additional use of the iterative hard-thresholding algorithm
(squares) for different amounts of noise added to the signal. The y-axis shows the cost
function ‖x − Φy‖2

2 + λ‖y‖0 expressed in dB and the x-axis shows the ratio of non-zero
elements used to generate the signal to the signal dimension. The lower panels show the
difference between the cost functions in the upper panels.

0 0.5 1
0

50

100

co
st

 in
 d

B

SNR= 120

0 0.5 1
0

50

100
SNR= 80

0 0.5 1
0

20

40

60
SNR= 40

0 0.5 1
0

5

10

0 0.5 1
0

10

20

30

40
SNR= 0

0 0.5 1
0

5

10

0 0.5 1
0

20

40

60

80

di
ffe

re
nc

e
in

 c
os

t i
n

dB

0 0.5 1
0

5

10

 ratio of non−zero coefficients to signal space dimension

FIGURE 2 The top panels show a comparison between Matching Pursuit followed by
orthogonal projection (stars) and additional use of the M-sparse algorithm (squares) for
different amounts of noise added to the signal. The y-axis shows the cost function ‖x −
Φy‖2

2 expressed in dB and the x-axis shows the ratio of non-zero elements used to generate
the signal to the signal dimension. The lower panels show the difference between the cost
functions in the upper panels.

initialise the M-sparse algorithm. In Figure 2 the stars are the cost function
averages for the projected Matching Pursuit results. The squares are the
results for the thresholding algorithm. The lower panels again show the
difference between the results. We here show the cost ‖x − Φy‖2

2, again
expressed in dB.

16 Thomas Blumensath and Mike E. Davies

From these results we can draw the following conclusions:

• When working with the regularised cost function we see that the
iterative hard-thresholding algorithm can improve performance only
marginally.

• For the M-sparse problem, we see that the M-sparse algorithms can
lead to significantly better results than using Matching Pursuit.

• In the low noise case, both Matching pursuit and the M-sparse algo-
rithm often recover exactly the elements used to generate the signal
whenever the signal was generated with very few non-zero elements.
Importantly, the M-sparse algorithm is able to find the exact repre-
sentations even in cases in which Matching Pursuit alone fails.

• Apart from the increased ability to find the exact representation, the
M-sparse algorithm also improves the SNR by several dB for only
mildly sparse representations.

4.2 Exact Recovery

In some applications, such as compressive sampling [17], it is desirable to
exactly recover the elements used to construct the observation x. In order
to analyse this we conducted experiments similar to those above. We gener-
ated M-sparse signals with M ∈ {30, 40, 50, 60} using Gaussian coefficients,
however, this time we did not add noise to the signals.

We then repeated the first experiment reported above for a range of
λ0.5 values. The second experiment was also a repetition of the second
experiment in the previous subsection, this time using a range of different
values M for each algorithm.

We then calculated the number of correctly identified elements (True
Positives) and the non-zero elements estimated which were not used to gen-
erate the particular observation (False Positives). These quantities are here
normalised by dividing them by the number of non-zero elements and the
number of zero elements in the original data-generating coefficient vector
respectively.

The averaged results for the two algorithms are shown in Figures 3
and 4 respectively. The solid lines are the results from the iterative algo-
rithms proposed in this paper, while the dotted lines are the results found
with Matching Pursuit alone. The four different lines in each panel are the
results calculated for the signals generated with different numbers of non-
zero coefficients, with lines from top left to bottom right having decreasing
sparsity.

We can draw the following conclusions:

• Both algorithms improve the ability to correctly identify elements
used to generate the signal.

Iterative Thresholding for Sparse Approximations 17

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
s

False Positives

FIGURE 3 Comparison of the iterative hard-thresholding algorithm and matching pursuit
in terms of the number of correctly identified elements used to generate the test signal
and the number of elements identified not used to generate the test signal. We here show
the results for different sparsities, i.e. (from top left to bottom right) M ∈ {30, 40, 50, 60}.
The solid lines are the results for the iterative hard-thresholding algorithm and the dotted
lines are the results for Matching Pursuit.

• For less sparse signals this advantage becomes smaller.

4.3 Stepping through lambda vs. MP

Instead of calculating the pseudo inverse in each iteration in orthogonal
Matching Pursuit, an iterative method could be envisaged to approximate
the pseudo inverse solution. This idea is similar to a strategy suggested
in [23], which can also be used for the Landweber based algorithms of this
paper. The M sparse algorithm can be run for different values of M, starting
from M = 1. After S iterations M is increased by one. If the algorithm is
initialised with a zero vector and if S is large enough such that the algorithm
converges to the minimum error solution for each M, then this strategy is
very similar to orthogonal Matching Pursuit. The difference with orthogonal
Matching Pursuit is that the M sparse algorithm does not necessarily use
the same subset of elements in each stage.

The other extreme would be to set S = 1. Then the algorithm is similar
to Matching Pursuit with a similar computational complexity, however, pre-
viously selected atoms are now updated in subsequent iterations. Another
difference is that if the columns of Φ are not of unit length, then the value
of a newly selected atom is not the same for both algorithms.

18 Thomas Blumensath and Mike E. Davies

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
s

False Positives

FIGURE 4 Comparison of the M-sparse algorithm and matching pursuit in terms of the
number of correctly identified elements used to generate the test signal and the number
of elements identified not used to generate the test signal. We here show the results for
different sparsities, i.e. (from top left to bottom right) M ∈ {30, 40, 50, 60}. The solid
lines are the results for the M-sparse algorithm and the dotted lines are the results for
Matching Pursuit.

One could also use the iterative hard thresholding algorithm with a
threshold depending on the current residual norm. Such a strategy would
be similar to the StOMP algorithm proposed in [24], but again with the
difference that we would not necessarily calculate the exact orthogonal pro-
jection for each threshold and that we allow the set of selected elements to
change from iteration to iteration.

To test these idea we generated 1 000 signals x by randomly choosing
64 elements from Φ generated as above again without added noise. We then
averaged the performance of Matching Pursuit, Orthogonal Matching Pur-
suit and the strategy in which the number of retained elements is increased
by one every S ∈ {1, 2, 5, 10, 50} iterations. The approximation error in dB
is shown in Figure 5 for approximations with varying number of non-zero
coefficients.

The following observations can be made:

• For S = 1 the proposed method shows marginally worse performance
than Matching Pursuit if less than 30 coefficients are non-zero. If
more than 30 coefficients are non-zero, the proposed method outper-
forms Matching Pursuit.

• Increasing S increases the performance and for S = 2 the method
outperformes Matching Pursuit if more than 18 elements are non-

Iterative Thresholding for Sparse Approximations 19

20 40 60 80 100 120
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Number of non−zero elements

E
rr

or
 in

 d
B

MP
1

2

5
10

50

OMP

FIGURE 5 Signal to Noise Ratio in dB for different numbers of non-zero elements. The
dotted line are the results with the matching pursuit algorithm and the dashed line are
the results obtained with orthogonal matching pursuit. The solid lines are the results of
the iterative approach in which the number of retained coefficients is increased stepwise
any S iterations. The numbers in the figure indicate which S was used for each curve. The
results are averaged over 100 randomly generated dictionaries Φ ∈ R

128×256 and signals
with 64 non-zero gaussian coefficients.

zero.

• Using S = 50 we see that the proposed algorithm outperformes even
orthogonal Matching Pursuit if the number of non-zero values is
between 25 and 94. This is a sign that the algorithm is not just an
iterative orthogonal Matching Pursuit implementation.

5. Conclusion

In this paper we derived two algorithms that operate directly on the L0 regu-
larised cost function and the M-sparse constraint cost function respectively.
To our knowledge, these are the only algorithms, (apart from exhaustive
search) that have this property3. We have derived extensive theoretical

3Though it is now well known that under certain conditions, other algorithms can
also find the optimal solutions to the problems studied here.

20 Thomas Blumensath and Mike E. Davies

results for the methods. These results reveal that the algorithms have mul-
tiple fixed points making a straightforward application difficult. However,
we here argued for the use of the algorithms in two contexts. Firstly, the
algorithms can be used to improve the results calculated with other methods
such as Matching Pursuit. In this case we have shown that the algorithms
offer benefits that cannot be explained by orthogonal projection onto the
selected elements alone, i.e. the methods often also discover better sets of
elements to describe the signal. The improved performance was shown to be
both, in terms of the cost function of interest as well as in terms of identi-
fication of the elements that were used to generate the signal. Secondly, by
running the M-sparse algorithm for increasing values of M, we have shown
that the method can be used on its own, with performance ranging from the
performance of Matching pursuit to that of orthogonal Matching Pursuit
and even beating the latter in certain circumstances.

Most importantly, the methods have similar computational require-
ments as Matching Pursuit. Furthermore, many of the fast computational
techniques suggested for Matching Pursuit [25] can be used also for the pro-
posed algorithms. The proposed algorithms are therefore applicable to very
large signals and dictionaries so that they can potentially be used in many
real-world applications.

A. Proof of lemma 1 and lemma 5

Proof. Define the operator L =
√

I − ΦHΦ. Then:

C(yn+1) ≤ C(yn+1) + ‖L(yn+1 − yn)‖2
2

= CS(yn+1,yn)

≤ CS(yn,yn)

= C(yn)

≤ C(yn) + ‖L(yn − yn−1)‖2
2

= CS(yn,yn−1),

where the first equality is the definition of CS and the second inequality is
due the fact the yn+1 is the minimiser of CS(y,yn).

B. Proof of lemma 3

Proof. Given a fixed point y⋆ = Ty⋆ and any small perturbation |∂hi| < ǫ,
for some ǫ > 0. We show that CL0

(y⋆ + ∂h) > CL0
(y⋆). However, we first

Iterative Thresholding for Sparse Approximations 21

show ∃ ǫ > 0 : ∀ ‖∂h‖ < ǫ the following inequality holds:

CS
L0

(y⋆ + ∂h,y⋆) ≥ CS
L0

(y⋆,y⋆) + ‖∂h‖2
2.

CS
L0

(y⋆ + ∂h,y⋆) − CS
L0

(y⋆,y⋆) =
∑

i

(yi + ∂hi)
2 − 2(yi + ∂hi)yi − 2(yi + ∂hi)(Φ

Hx− ΦHΦy⋆)i

− y2
i + 2y2

i + 2yi(Φ
Hx− ΦHΦy⋆)i − λ|yi|0 + λ|yi + ∂hi|0.

After simplification of the above equation, we split the summation into two
parts, one for Γ0 = {i : yi = 0} and one for Γ1 = {i : yi 6= 0}. We get:

CS
L0

(y⋆ + ∂h,y⋆) − CS
L0

(y⋆,y⋆) =

‖∂h‖2
2 +

∑

Γ0

λ|∂hi|0 − 2∂hi(Φ
Hx− ΦHΦy⋆)

+
∑

Γ1

−2∂hi(Φ
Hx− ΦHΦy⋆)

For a fixed point y⋆ the last line is zero as stated in lemma 2. For the
summation over Γ0 we have to consider two cases, if ∂hi = 0, then this
term is zero. If ∂hi 6= 0, then choosing |∂hi| ≤ | λ

2(φH

i
(x−Φy))

| guarantees

the non-negativity of this term. Note that we also need the condition that
|∂hi| ≤ yi for all i ∈ Γ1 such that yi − hi 6= 0. This condition is required
when splitting the cost function |yi − ∂hi|0. Therefore ∃ ǫ : ∀ ∂h, |∂hi| ≤
ǫ, CS

L0
(y⋆ + ∂h,y⋆) ≥ CS

L0
(y⋆,y⋆) + ‖∂h‖2

2. Using this we get:

CL0
(y⋆ + ∂h) = CS(y⋆ + ∂h,y⋆) − ‖L∂h‖2

2

≥ CS
L0

(y⋆ + ∂h,y⋆) − ‖∂h‖2
2 ≥ CS

L0
(y⋆,y⋆) = CL0

(y⋆)

C. Convergence Proof of the Iterative Hard

Thresholding Algorithm

To prove theorem 3 we need one more lemma.

Lemma C.1. ∀ ǫ > 0, ∃ N such that ∀ n > N, ‖yn+1 − yn‖2
2 ≤ ǫ.

Proof. We show that
∑N

n ‖yn+1 − yn‖2
2 converges, which implies the

lemma [26, Theorem 3.23]. This is done by showing that
∑N

n ‖yn+1 − yn‖2
2

is monotonically increasing and bounded. We have monotonicity by:

N−1
∑

n=1

‖yn+1 − yn‖2
2 + ‖yN+1 − yN‖2

2 ≥
N−1
∑

n=1

‖yn+1 − yn‖2
2.

22 Thomas Blumensath and Mike E. Davies

and boundedness follows from:

N
∑

n=0

‖yn+1 − yn‖2
2 ≤ 1

c

N
∑

n=0

‖L(yn+1 − yn)‖2
2 (C.1)

≤ 1

c

N
∑

n=0

[CL0
(yn) − CL0

(yn+1)]

=
1

c
(CL0

(y0) − CL0
(yN+1))

≤ 1

c
CL0

(y0),

(C.2)

where c is a lower bound on the spectrum of the linear operator LHL where
we use L =

√
I − ΦHΦ, which by assumption is strictly greater than zero.

‖L(yn+1 − yn)‖2
2 ≤ CL0

(yn) − CL0
(yn+1) (see proof of Lemma 1) is here

used to derive the second inequality.

Proof of theorem 3. In lemma C.1 take ǫ < λ. If yn
i > λ0.5 and yn+1

i = 0,
then ‖yN+1 − yN‖2

2 ≥ λ, which by lemma C.1 is impossible for n > N for
some N . Therefore, for large N , the set of zero and non-zero coefficients will
not change and |yn

i | > λ0.5,∀i ∈ Γ1, n > N . For yn
i , i ∈ Γ1 the algorithm then

reduces to the standard Landweber algorithm with guaranteed convergence
[22]. Note that the largest (smallest) eigenvalue of (I − ΦHΦ) will not
increase (decrease) if we delete columns from Φ ensuring that the eigenvalue
constraint required for the Landweber convergence is satisfied.

Also, by lemma 3 the fixed point is a local minimum of equation (1.4).

D. Proof of lemma 4

Proof. From lemma 2 we have:

‖ΦH(x − Φy⋆)‖∞ ≤ λ0.5. (D.1)

Define maxcor(x) = ‖ΦH
x‖∞

‖x‖2
, then maxcor(x−Φy⋆)‖(x−Φy⋆)‖2 = ‖ΦH(x−

Φy⋆)‖∞ ≤ λ0.5. The condition on the l2 norm of the columns of Φ ensures
that maxcor(x) ≤ 1, from which the lemma follows.

E. Proof of lemma 7

Proof. Again ‖y⋆‖0 ≤ M due to the constraint. We want to show that:

CM (y⋆ + ∂h) ≥ CM (y⋆),

Iterative Thresholding for Sparse Approximations 23

for any small perturbation |∂hi| < ǫ, for some ǫ > 0. If we restric the solution
to the support of y⋆ then y⋆ is the minimum squared error solution [22].
Now the support of ∂h might contain elements that are not in the support
of y. If |y⋆| < M , then by lemma 6 C(y⋆) = 0, which is obviously the global
minimum. Otherwise |y⋆| = M , therefore, if ∂h contains an element not in
the support of y it also needs to include an element within the support of y⋆

with opposite value to that in y⋆, say y⋆
i . This value is strictly larger than

zero, so we can chose y⋆ > 2iǫ > 0. Therefore, we can always chose ǫ small
enough such that a perturbation of a fixed point with radius smaller than ǫ
does not reach any other fixed point satisfying the constraint on ‖y‖0.

F. Proof of Theorem 4

First note that lemma C.1 also holds for the M-sparse algorithm. We further
need:

Lemma F.1. For all y : ‖y‖0 ≤ M < N,y 6= 0, there exists a λ⋆
M > 0

such that λ⋆
M < λM (y).

Proof. If x 6= 0, and M 6= 0, then y+ΦH(x−Φy) has at least one non-zero
element, for all y and x 6= 0. If y = 0, then we have ΦHx, which by the
assumption of full rank of ΦH cannot be zero for x 6= 0. Also for y 6= 0,
y + ΦH(x − Φy) = 0 would imply that y = −ΦH(x − Φy). This requires
that the null-space of ΦH , null(ΦH) < K − M , where K is the dimension
of y. But null(ΦH) + rank(ΦH) = K, and rank(ΦH) = N > M . Therefore
null(ΦH) = K − N < K − M . Because y + ΦH(x − Φy) has at least one
non-zero element for all y : ‖y‖0 ≤ M , λM (y) cannot be zero.

Proof of theorem 4. Again it is sufficient to show that the algorithm
will converge to a fixed subset. Once the set of non-zero coefficients does
not change anymore, the convergence is guaranteed using the Landweber
convergence proof in the fixed subspace [22]. By lemma F.1, there exists a
λ⋆

M > 0 such that λ⋆
M < λM (y) for all y : ‖y‖0 ≤ M,y 6= 0. For M 6= 0 and

x 6= 0 y = 0 is not a fixed point of the algorithm so we can assume y 6= 0.
Using λ⋆

M we can follow the proof for the hard thresholding algorithm with
fixed λ. In lemma C.1 take ǫ < λ⋆

M . If yn
i > λ0.5 and yn+1

i = 0, then
‖yn+1 − yn‖2

2 ≥ λM (yN), which by lemma C.1 is impossible for n > N for
some N . Therefore, for large N , the set of zero and non-zero coefficients
will not change and |yn

i | > λ⋆
M ,∀i ∈ Γ1, n > N .

24 Thomas Blumensath and Mike E. Davies

G. Proof of lemma 9

Let us first proof

Lemma G.1. Assume that for all i, ‖φi‖2 = c. Let G = ΦH
Γ ΦΓ for

|Γ| ≤ M ≤ N and suppose that µ1(M − 1) < c2. Then:

‖G−1‖∞ ≤ 1

c2 − µ1(M − 1)
. (G.1)

Proof. Write Ĝ = 1
c2

G. Then

‖G−1‖∞ =
1

c2
‖Ĝ−1‖∞ =

1

c2
‖

∞
∑

k=0

(I − Ĝ)k‖∞

≤ 1

c2

∞
∑

k=0

‖(Ĝ − I)‖k
∞ =

1

c2 − c2‖(Ĝ − I)‖∞
. (G.2)

We now recognise that c2‖(Ĝ − I)‖∞ = ‖(G − c2I)‖∞ = µ1(M − 1), com-
pleting the proof.

We can now give

Proof of lemma 9. We have

λ0.5(y⋆) ≤ ‖(ΦH
Γ ΦΓ)−1ΦH

Γ x‖∞ (G.3)

≤ ‖(ΦH
Γ ΦΓ)−1‖∞‖ΦH

Γ x‖∞
≤ ‖(ΦH

Γ ΦΓ)−1‖∞‖x‖2 maxcor(x).

Proposition G.1 then bounds the first term on the right proving the lemma.

H. Matching Pursuit and Orthogonal Matching

Pursuit.

Matching Pursuit (MP) [10] is a greedy iterative algorithm that calculates
a sparse approximation using the following steps:

1. Initialise R0 = x,y0 = 0

2. αi = 〈Rn, φi〉
3. imax = argi max |αi|
4. yn

imax
= yn−1

imax
+ αimax

5. Rn = Rn−1 − φiαimax

6. iterate from 2 until stopping criterion is fulfilled.

Iterative Thresholding for Sparse Approximations 25

Orthogonal Matching Pursuit (OMP) [27] is a variation of MP in which
in each iteration, the coefficient vector is the orthogonal projection of the
signal onto the dictionary elements selected up to this iteration:

1. Initialise R0 = x,y0 = 0,Γ0
1 = ⊘

2. αi = 〈Rn, φi〉
3. imax = argi max |αi|
4. Γn

1 = Γn−1
1 ∪ imax

5. yn = Φ†
Γn

1

x

6. Rn = x− Φyn

7. iterate from 2 until stopping criterion is fulfilled.

Here Φ†
Γn

1

is the pseudo-inverse of the sub-dictionary ΦΓn

1
.

Orthogonal matching pursuit is normally implemented using QR fac-
torisation of the selected subset of elements and is computationally more
demanding than Matching Pursuit. However, the projection ensures that
the algorithm selects a new element in each iteration and that for the cur-
rently selected set of elements, the error is minimal.

Acknowledgments

This research was supported by EPSRC grant D000246/1. MED acknowl-
edges support of his position from the Scottish Funding Council and their
support of the Joint Research Institute with the Heriot-Watt University as
a component part of the Edinburgh Research Partnership.

References

[1] D. L. Donoho, M. Vetterli, R. A. DeVore, and I. Daubechies, “Data compression and
harmonic analysis,” IEEE Transactions on Information Theory, vol. 44, pp. 2435–
2476, Oct. 1998.

[2] S. Mallat and F. Falzon, “Analysis of low bit rate image transform coding,” IEEE
Transactions on Signal Processing, vol. 46, pp. 1027–1042, Apr. 1998.

[3] D. L. Donoho, “De-noising by soft-thresholding,” IEEE Transactions on Information
Theory, vol. 41, no. 3, pp. 613–627, 1995.

[4] M. Davies and N. Mitianoudis, “A simple mixture model for sparse overcomplete
ICA,” IEE Proc.-Vision, Image and Signal Processing, vol. 151, pp. 35–43, August
2004.

[5] T. Blumensath and M. Davies, “Sparse and shift-invariant representations of music,”
IEEE Transactions on Audio, Speech and Language Processing, vol. 14, pp. 50–57,
Jan 2006.

[6] D. L. Donoho and M. Elad, “Optimally-sparse representation in general (non-
orthogonal) dictionaries via l1 minimization,” Proc. Nat. Aca. Sci., vol. 100, pp. 2197–
2202, 2003.

[7] J. Tropp, “Just relax: Convex programming methods for identifying sparse signals

26 Thomas Blumensath and Mike E. Davies

in noise,” IEEE Transactions on Information Theory, vol. 51, no. 3, pp. 1031–1051,
2006.

[8] G. Davis, Adaptive Nonlinear Approximations. PhD thesis, New York University,
1994.

[9] B. K. Nataratjan, “Sparse approximat solutions to linear systems,” SIAM Journal on
Computing, vol. 24, pp. 227–234, Apr 1995.

[10] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE
Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–3415, 1993.

[11] J. A. Tropp, “Greed is good: algorithmic results for sparse approximation,” IEEE
Transactions on Information Theory, vol. 50, no. 10, pp. 2231–2242, 2004.

[12] R. Gribonval and P. Vandergheynst, “On the exponential convergence of matching
pursuits in quasi-incoherent dictionaries,” IEEE Transactions on Information Theory,
vol. 52, no. 1, pp. 255–261, 2006.

[13] J. F. Murray and K. Kreutz-Delgado, “An improved FOCUSS-based learning algo-
rithm for solving sparse linear inverse problems,” in Conf. Record of the Thirty-Fifth
Asilomar Conf. on Signals, Systems and Computers, pp. 347–351, 2001.

[14] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis
pursuit,” SIAM Journal of Scientific Computing, vol. 20, no. 1, pp. 33–61, 1998.

[15] I. Daubechies, M. Defries, and C. De Mol, “An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint,” Pure and applied Mathematics,
vol. 57, pp. 1413–1457, 2004.

[16] M. Elad, “Why simple shrinkage is still relevant for redundant representation,” to
appear in IEEE Transactions on Information Theory.

[17] E. Candes and J. Romberg, “Signal recovery from random projections.” Proceedings
of SPIE, vol. 5674, pp. 76-86, 2005.

[18] K. Bredies and D. A. Lorenz, “Iterated hard shrinkage for minimization problems
with sparsity constraints,” Preprint Nr. 144 of the DFG Schwerpunktprogramm 1114,
June 2006.

[19] N. G. Kingsbury, “Complex wavelets for shift invariant analysis and filtering of sig-
nals,” Journal of Applied and Computational Harmonic Analysis, vol. 10, pp. 234–253,
May 2001.

[20] K. K. Herrity, A. C. Gilbert, and J. A. Tropp, “Sparse approximation via iterative
thresholding.,” in Proceedings of the Int. Conf. on Acoustics, Speech and Signal Pro-
cessing, 2006.

[21] K. Lange, D. R. Hunter, and I. Yang, “Optimization transfer using surrogate objective
functions,” Journal of Computational and Graphical Statistics, vol. 9, pp. 1–20, Mar.
2006.

[22] L. Landwebe, “An iterative formula for fredholm integrals of the first kind,” American
Journal of Mathematics, vol. 73, pp. 615–624, Jul 1951.

[23] N. G. Kingsbury and T. H. Reeves, “Iterative image coding with overcomplete com-
plex wavelet transforms,” in Proc. Conf. on Visual Communications and Image Pro-
cessing, 2003.

[24] D. Donoho, Y. Tsaig, I. Drori, and J. Starck, “Sparse solutions of underdetermined
linear equations by stagewise orthogonal matching pursuit.,” manuscript 2006.

[25] S. Krustulovic and R. Gribonval, “MPTK: Matching pursuit made tractable,” in Proc.
Int. Conf. on Acoustic Speech and Signal Processing, (Toulouse, France), May 2006.

[26] W. Rudin, Principles of Mathematical Analysis. McGraw-Hill, 1976.

[27] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, 1999.

Received ...

Revision received ...

IDCOM & Joint Research Institute for Signal and Image Processing

Iterative Thresholding for Sparse Approximations 27

Edinburgh University, King’s Buildings, Mayfield Road
Edinburgh EH9 3JL, UK

e-mail: thomas.blumensath@ed.ac.uk

IDCOM & Joint Research Institute for Signal and Image Processing
Edinburgh University, King’s Buildings, Mayfield Road

Edinburgh EH9 3JL, UK
e-mail: mike.davies@ed.ac.uk

