Oscialltions of Neutron-Star Merger Remnants

Andreas Bauswein (Heidelberg Institute for Theoretical Studies) with N. Stergioulas, J. Clark, H.-T. Janka NewCompStar Meeting on Oscillations and Instabilities of neutron stars

Southampton, 14/09/2016

Heidelberg Institute for Theoretical Studies

Outline

- Merger remnant as oscillating, rotating neutron star?
- Dominant postmerger oscillation
- Origin of secondary (GW) features
- Classification of postmerger GW emission and dynamics
- Dependencies of frequencies
- Model for postmerger GW emission

Generic GW spectrum

Thin line postmerger only

Note: no unique nomenclature in the literature, e.g. f_{peak} is also called $f_2 \dots$

- Up to three pronounced features in the postmerger spectrum (+ structure at higher frequencies)
- Simulation: 1.35-1.35 M_{sun} DD2 EoS, Smooth Particle Hydro, Conformal Flatness
- Generic in the sense that not all secondary peaks are necessarily present

Dominant oscillation frequency

- Robust feature, which occurs in all models (which don't collapse promptly to BH)
- Fundamental quadrupolar fluid mode of the remnant

Re-excitation of f-mode (I=|m|=2) in late-time remnant (Bauswein et al. 2016) Mode analysis at f=f_{peak} Stergioulas et al. 2011

Lapse function:

Rest-mass density:

Bauswein et al. 2016

Same time steps: double cores are local overdensities of **single** isolated, selfgravitating object

Time of formation of single core

Evolution of central lapse, DD2 1.35-1.35 M_{sun}

Secondary GW features in the postmerger spectrum

Generic GW spectrum

- Up to three pronounced features in the postmerger spectrum (+ structure at higher frequencies)
- 1.35-1.35 Msun DD2 EoS

Quasi-radial mode

Central lapse function shows two frequencies (~500 Hz and ~1100 Hz)

1e-06

-1e-06

-2e-06

-3e-06

-4e-06

-5e-06

-6e-06

50

40

30

n_x

0

- Add quasi-radial perturbation \rightarrow re-excite quasi-radial mode $=> f_0 = 1100 Hz$
- Confirmed by mode analysis \rightarrow radial eigen function at f_0

Could consider also size of the remnant, rhomax, ...

Note: additional low-frequency oscillation (500 Hz) also in GW amplitude (explained later)

Generic GW spectrum

 Interaction between dominant quadrupolar mode and quasiradial oscillation produced peak at f₂₋₀ = f_{peak} – f₀ (see Stergioulas et al. 2011)

DD2 1.35-1.35 Msun, rest-mass density in the equatorial plane

Antipodal bulges (spiral pattern)

Orbital motion of antipodal bulges slower than inner part of the remnant (double-core structure)

Spiral pattern, created during merging lacks behind

Orbital frequency: $1/1ms \rightarrow generates GW$ at 2 kHz !!!

Present for only a few ms / cycles

Bauswein et al. 2015

Generic GW spectrum

Orbital motion of antipodal bulges generate peak at f_{spiral}

Further evidence

- Presence of spiral pattern coincides with presence of peak in GW spectrum
- Mass of bulges (several 0.1 $\rm M_{sun})$ can explain strength of the peak by toy model of point particles the central remnant for a few ms
- Tracing dynamics / GW emission by computing spectra for "outer" and "inner" remnant \rightarrow f_{spiral} emission is produced outside
- (Dynamics of double cores (inner remnant) fail to explain this emission)
- Spectrogram agrees with this picture (length, frequency), no strong time-variation of the dominant frequency
- => orbital motion => f_{spiral} peak

Example: TM1 1.35-1.35 Msun, strong tidal bulges, weak radial oscillation (e.g. from analysis of lapse)

Clark et al. 2016

Note: different ideas about the origin of the peaks, e.g. Kastaun & Galeazzi 2015, Takami et al. 2014, 2015 propose a strongly varying instantaneous frequency that produces side peaks

Classification of postmerger GW spectra and dynamics

Survey of GW spectra

 Considering different models (EoS, M_{tot}): 3 types of spectra depending on presence of secondary features (dominant f_{peak} is always present)

Survey of GW spectra

Type IType IIType III

LS220, DD2, NL3 EoS all with $M_{tot} = 2.7 M_{sun} \rightarrow consider M_{tot}$ relative M_{thres}

Classification scheme

- Type I: 2-0 feature dominates, f_{spiral} hardly visible, radial mode strongly excited, observed for relatively high M_{tot}
- Type II: both secondary features have comparable strength, clearly distinguishable, moderate binary masses
- Type III: f_{spiral} dominates, f₂₋₀ hardly visible, found for relatively low binary masses, (central lapse, GW amplitude, rhomax show low-frequency modulation in addition to radial oscillation)
- Different types show also different dynamical behavior, e.g. in central lapse, rhomax,
- High mass / low mass relative to threshold binary mass for prompt BH collapse (→ EoS dependent)
- Continuous transition between different types

=> Depending on binary model (EoS, M1/2) either one or the other or both features are present / dominant (if you measure a secondary peak you should always think whether it is f_{2-0} or f_{spiral})

Classification scheme

(Continuous transition between types \rightarrow tentative association) For M_{tot} = 2.7 M_{sun} all Types are possible depending on EoS

Classification scheme

Behavior reasonable:

- Type I: compact NSs merge → high impact velocity / violent collision
 => radial oscillation strongly excited (2-0 dominant); higher
 compactness → formation of tidal bulges suppressed (f_{spiral} weaker)
- Type III: less compact NSs merge \rightarrow lower impact velocity / smooth merging => radial mode suppressed (no 2-0); pronounced tidal bulges (strong f_{spiral} feature)

For Type III and Type II low-frequency modulation with $f_{low} = f_{peak} - f_{spiral}$ by orientation of bulge w. r. t. inner double-core/bar

(seen in lapse, GW amp., rhomax, ...)

Dependencies of frequencies

Gravitational waves – EoS survey

characterize EoS by radius of nonrotating NS with 1.6 $\rm M_{sun}$

Bauswein et al. 2012

- Pure TOV/EoS property => Radius measurement via f_{peak}

Important: Simulations for the same binary system, just with varied EoS

Note: R of 1.6 M_{sun} NS scales with f_{peak} from 1.35-1.35 M_{sun} mergers (density regimes comparable)

Binary mass variations

Different total binary masses (symmetric)

Fixed chirp mass (incl. Asymmetric binaries)

Bauswein et al. 2016

Dependencies of secondary frequencies

For fixed $M_{tot} = 2.7 M_{sun}$

Dashed line from Takami et al. 2014

Bauswein et al. 2015

EoS characterized by compactness C=M/R of inspiralling stars (equivalent to radius as before)

All three frequencies scale similarly with compactness (equivalently radius since $M = M_{tot}/2 = fixed$ here)

Here: only temperature-dependent EoS to avoid uncertainties/ambiguities due to approximate treatment of thermal effects (Gamma_th)

For small binary mass asymmetry only small quantitative shifts

Different binary masses

Bauswein et al. 2015

Dashed line from Takami et al. 2014

- for the individual secondary frequencies there are relations between C and the frequency for fixed binary masses (solid lines)

- (binary masses will be known from GW inspiral signal)

- there is no single, universal, mass-independent relation (for a expected range of binary masses), also when choosing the strongest secondary peak

- no conflict with Takami et al.'s data (frequencies agree when comparing same models), but here constant binary mass range for every EoS, more EoSs (larger, more representative parameter range (EoS, M_{tot}))

 \rightarrow secondary frequencies are essentially given by dominant frequency

Universality of GW spectrum

Symmetric binary

Rescaled to reference frequency f_{ref} =2.6 kHz with $a = f_{ref}/f_{peak}$

$$\Rightarrow af_{sec} = f_{ref}f_{sec}/f_{peak} = f_{ref} \cdot const$$

 \rightarrow universal spectrum basis of using PCA for GW data analysis

Principal Component Analysis

Only first component

Excluding the reconstructed waveform from catalogue

Clark et al 2016

Analytical model of postmerger GW emission

$$h_{\times} \propto Q_{xy} = A_{\text{peak}} \exp\left(-(t - t_0)/\tau_{\text{peak}}\right)$$

$$\sin\left(2\pi f_{\text{peak}}(t - t_0) + \phi_{\text{peak}}\right)$$

$$+A_{\text{spiral}} \exp\left(-(t - t_0)/\tau_{\text{spiral}}\right)$$

$$\sin\left(2\pi f_{\text{spiral}}(t - t_0) + \phi_{\text{spiral}}\right)$$

$$+A_{2-0} \exp\left(-(t - t_0)/\tau_{2-0}\right)$$

$$\sin\left(2\pi f_{2-0}(t - t_0) + \phi_{2-0}\right),$$

Bauswein et al. 2016

Summary

- Certain features of postmerger remnant can be described as oscillation modes: f-mode, quasi-radial mode
- Secondary GW peak by tidal bulges
- Classification scheme of postmerger spectra depending on presence of secondary peaks: three different types (depending on mass)
- Dominant frequency scales tightly with NS radius \rightarrow measurements
- Secondary frequencies scale with radii of non-rotating NSs for fixed total mass or with dominant frequency
- Universality of GW spectrum
- Analytic model of postmerger emission

Details: Bauswein & Stergioulas, PRD 91, 124056 (2015) Bauswein, Stergioulas, Janka, EPJA 52, 56 (2016)

Impact of intrinsic rotation

DD2 1.35-1.35 M_{sun} – fastest known pulsar in binary 22 ms !!

Interpretation

Frequency of the fundamental quadrupolar fluid mode:

Mode analysis (Stergioulas et al. 2011)

Comparison H4 1.3-1.3 Msun

Takami et al. 2015

H4-Q10-M12/3

H4-q10-M1300

H/_a10_M1325

1404 1043 2377

1489 1696 2356 1494 1702 2449

Strategy: Different binary masses

- + 1.2-1.2 M_{sun}
- o 1.35-1.35 M_{sun}

Maximum deviation determines error:

2.4 M_{sun}: 300 m 2.7 M_{sun}: 200 m 3.0 M_{sun}: 300 m

(can be further minimized) (very similar relations for unequal masses)

Strategy: \rightarrow Measure binary masses from inspiral GW signal

- \rightarrow Choose relation depending on binary mass
- \rightarrow Invert relation to obtain NS radius

Dependence on total binary mass

(every single line corresponds to a specific EoS \rightarrow only one line can be the true EoS)

Dominant GW frequency monotone function of M_{tot} Threshold to prompt BH collapse shows a clear dependence on M_{tot} (dashed line)
Threshold to prompt BH collapse

Extrapolation procedure

Details in Bauswein et al. 2014

Two f_{peak} measurements at different M_{tot} yield threshold mass and "threshold frequency" !!!

Extrapolation procedure

Details in Bauswein et al. 2014

Two f_{peak} measurements at different M_{tot} yield threshold mass and "threshold frequency" !!!

Extrapolation procedure

Details in Bauswein et al. 2014

Two f_{peak} measurements at different M_{tot} yield threshold mass and "threshold frequency" !!!

Two f_{peak} measurements at most common M_{tot} yield f_{thres} and M_{thres}

M_{thres}: highest binary mass which leads to a NS remnant (instead of direct BH collapse)

f_{thres}: oscillation frequency of this most massive NS merger remnant, so highest possible peak frequency

What can be learned from f_{thres} and M_{thres}?

R_{max} determination via extrapolation

Threshold frequency f_{thres} yields a good estimate of the radius of the TOV maximum mass configuration (a few 100 meters)

Threshold mass

Likely to be related to M_{max} (maximum mass of nonrotating NSs)

M_{max} threshold for static, nonrotating NS

M_{thres} threshold for hot, differentially rotating NS (merger remnant)

 \rightarrow M_{thres} = k * M_{max} (k fractional increase)

Threshold mass – dependence on NS/EoS properties

Likely to be related to M_{max} (maximum mass of nonrotating NSs)

Bauswein et al. 2013

Threshold mass – dependence on NS/EoS properties

Likely to be related to M_{max} (maximum mass of nonrotating NSs)

Bauswein et al. 2013

Threshold mass – dependence on NS/EoS properties

Likely to be related to M_{max} (maximum mass of nonrotating NSs)

Bauswein et al. 2013

Maximum mass via extrapolation

 M_{max} within 0.1 M_{sun} , R_{max} within a few 100 m (from f_{peak} detections at common M_{tot})

from two measurements of f_{peak} at moderate M_{tot}

(final error will depend on EoS and extact systems measured) Note: M_{thres} may also be constrained from prompt collapse directly

Maximum density via extrapolation

Maximum density of nonrotating NS within 10 per cent

Variation of binary parameter

 M_1 and M_2 measurable from GW inspiral signal

Squares: 1.2 - 1.2 Circles: 1.2 - 1.5 Crosses: 1.35 - 1.35 Diamonds: 1.5 - 1.5

Note: for the different total binary masses different radii of nonrotating NSs represent better choice (involved density regimes)

Collapse behavior of NS mergers (prompt vs. delayed/stable) and the maximum mass of nonrotating NSs

Estimates of maximum NS mass

From simulations with different M_{tot}

TOV property of employed EoS

 M_{thres}

 M_{max}

 $k = \cdot$

Two methods to determine M_{max}:

- Determine M_{thres} by direct observations of delayed and prompt collapse for different M_{tot} (Bauswein et al. 2013)
- Extrapolate f_{peak}(M_{tot}) → f_{thres}(M_{thres}) behavior from several events at lower binary masses (most likely range) (Bauswein et al. 2014)

from two measurements of f_{peak} at moderate M_{tot}

Bauswein et al. 2014

(final error will depend on EoS and exact systems measured)