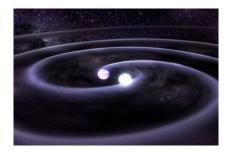
Extended-body effects in general relativity What is possible?

Abraham Harte

(with Michael Gaffney)

Dublin City University

Southampton Gravity Seminar February 4, 2021



How do things fall?

• Newtonian gravity: There's a gravitational potential ϕ and each object accelerates via $\ddot{z} = -\nabla \phi$.

- Onewtonian gravity: There's a gravitational potential φ and each object accelerates via ^z = -∇φ.
- General relativity: There's a metric g_{ab} which determines ∇_a[g]. Each object moves on a geodesic via z^b∇_b[g]z^a = 0.

- Onewtonian gravity: There's a gravitational potential φ and each object accelerates via ^z = -∇φ.
- General relativity: There's a metric g_{ab} which determines ∇_a[g]. Each object moves on a geodesic via z^b∇_b[g]z^a = 0.

Equivalence principle: Free-fall is universal

In Newtonian gravity,

$$\ddot{\boldsymbol{z}} = -\int (\boldsymbol{\rho}/m) \boldsymbol{\nabla} \phi dV.$$

In Newtonian gravity,

$$\ddot{\boldsymbol{z}} = -\int (\boldsymbol{\rho}/m) \boldsymbol{\nabla} \phi dV.$$

When is this *exactly* equal to $-\nabla \phi$?

In Newtonian gravity,

$$\ddot{\boldsymbol{z}} = -\int (\boldsymbol{\rho}/m) \boldsymbol{\nabla} \phi dV.$$

When is this *exactly* equal to $-\nabla \phi$? ... at least when bodies are spherical.

$$\ddot{z}_i = -\nabla_i \phi + (?)$$

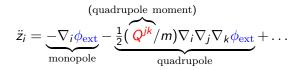
Two types of corrections:

$$\ddot{z}_i = -\nabla_i \phi_{\text{ext}} + (?)$$

Two types of corrections:

① Self-interaction requires that ϕ be replaced by ϕ_{ext} .

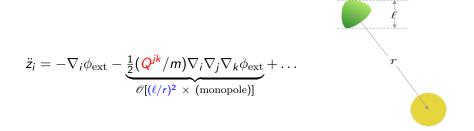
Corrections to spherical-body motion



Two types of corrections:

- Self-interaction requires that ϕ be replaced by ϕ_{ext} .
- Extended-body effects bring in aspects of the internal structure: Free-fall is no longer universal.

Newtonian extended-body effects



At leading nontrivial order, effects of internal structure are determined by the quadrupole moment $Q^{ij} \sim m\ell^2$.

That which is not forbidden is allowed...

That which is not forbidden is allowed...

... and maneuvers are forbidden mainly by symmetries.

● Homogeneous gravitational field: 6 symmetries fix 6 force and torque components ⇒ no maneuvering possible

- O Homogeneous gravitational field: 6 symmetries fix 6 force and torque components ⇒ no maneuvering possible
- ② Spherically-symmetric field: 3 symmetries ⇒ 3 possible force and torque components (L + S = const).

- Homogeneous gravitational field: 6 symmetries fix 6 force and torque components ⇒ no maneuvering possible
- ② Spherically-symmetric field: 3 symmetries ⇒ 3 possible force and torque components (L + S = const).

You need *gradients* to "grab onto..."

Extended-body effects derived in full by Dixon (1974), at least without self-interaction. Self-interaction incorporated later AIH (2012, 2015).

$$\dot{p}_{a} = -\frac{1}{2}R_{abcd}\dot{z}^{b}S^{cd} + (\text{int struct}),$$
$$\dot{S}_{ab} = 2p_{[a}\dot{z}_{b]} + (\text{int struct}).$$

Extended-body effects derived in full by Dixon (1974), at least without self-interaction. Self-interaction incorporated later AIH (2012, 2015).

$$\dot{p}_{a} = -\frac{1}{2}R_{abcd}\dot{z}^{b}S^{cd} + (\text{int struct}),$$
$$\dot{S}_{ab} = 2p_{[a}\dot{z}_{b]} + (\text{int struct}).$$

There can also be a nontrivial momentum-velocity relation:

$$p^a = m\dot{z}^a + (hidden momentum)$$

There are spin effects, but these aren't controllable.

First non-universal contributions to motion are from the quadrupole moment. This has 10 components in vacuum spacetimes.

Not all 10 quadrupole components can affect motion [AIH, 2020]

Not all 10 quadrupole components can affect motion [AIH, 2020]

- Type D spacetimes:
 - At least 4 components are irrelevant.
 - In Schwarzschild, 5 components are irrelevant.

Not all 10 quadrupole components can affect motion [AIH, 2020]

- Type D spacetimes:
 - At least 4 components are irrelevant.
 - In Schwarzschild, 5 components are irrelevant.
- O Type N:
 - At least 6 components are irrelevant.
 - For linearly-polarized plane waves, 9 are irrelevant.

Suppose that:

Suppose that:

- Quadrupole is controlled so torque vanishes.
- ② Remainder of quadrupole is used to control motion

Suppose that:

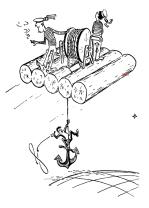
- Quadrupole is controlled so torque vanishes.
- ② Remainder of quadrupole is used to control motion

5 quadrupole components are irrelevant. 4 must be controlled to control the torque. There is 1 left over... What can this do?

Extended-body effects enter *only* via changes in mass:

 $dm = - \mathscr{J} d(M/r^3).$

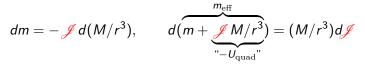
E and \vec{J} are conserved. E/m and \vec{J}/m are not.

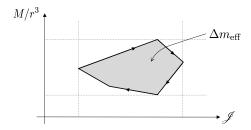


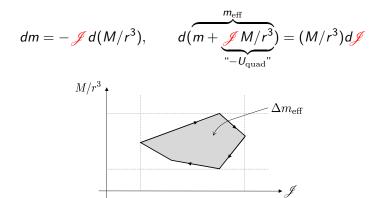
[Beletsky, 2001]

$$dm = - \mathscr{J} d(M/r^3),$$

$$dm = - \mathscr{J} d(M/r^3), \qquad d(\widetilde{m + \mathscr{J} M/r^3}) = (M/r^3)d\mathscr{J}$$

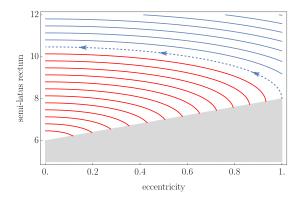




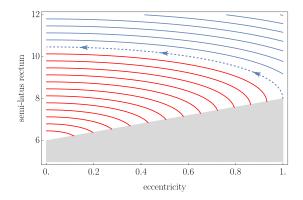


Repeating cycles with nonzero area raises or lowers the mass.

What do mass changes accomplish?

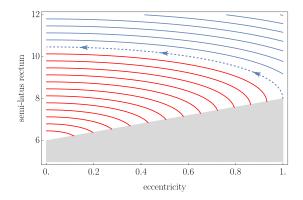


What do mass changes accomplish?



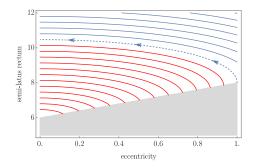
• Increasing mass \Rightarrow circularization

What do mass changes accomplish?



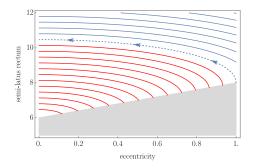
- Increasing mass \Rightarrow circularization
- Decreasing mass is more complicated...

Effect of decreasing mass



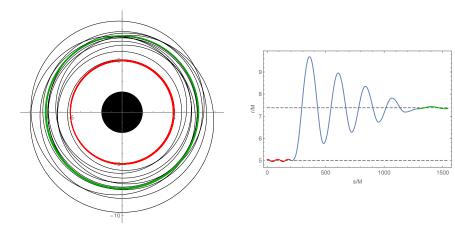
• If $r_i > 2(3 + \sqrt{5})M \approx 10.5M$, you can escape!

Effect of decreasing mass



- If $r_i > 2(3 + \sqrt{5})M \approx 10.5M$, you can escape!
- Otherwise, decreasing mass results in an approach to an unstable circular orbit, or a plunge.

Move between pairs of circular geodesics with 4 < r/M < 10.5.



In the spin-free, torque-free context, they're almost identical:

Concept	Relativistic	Newtonian
Torque-free force	$\nabla(\mathscr{J}M/r^3)$	$\nabla(\mathscr{J}M/r^3)$
Always constant	<mark>E</mark> , <i>Ľ</i>	m _Ν , <i>Ľ</i>
Const when 🖋 jumps	т	$E_{ m pt}$
Const when $\mathscr{J} = \mathrm{const}$	$m_{ m eff}$	$E_{\rm pt} + U_{\rm ext}$

In the spin-free, torque-free context, they're almost identical:

Concept	Relativistic	Newtonian
Torque-free force	$\nabla(\mathscr{J}M/r^3)$	$\nabla(\mathscr{J}M/r^3)$
Always constant	E , <i>L</i>	m _Ν , <i>Ľ</i>
Const when 🖌 jumps	т	$E_{ m pt}$
Const when $\mathscr{J} = \mathrm{const}$	$m_{ m eff}$	$E_{\rm pt} + U_{\rm ext}$

 $E-m \sim E_{\rm pt}, \qquad E-m_{\rm eff} \sim E_{\rm pt}+U_{\rm ext}$

- Extended-body effects allow objects to control their motion.
- They can change mass, allowing for bound orbits to be unbound, for unstable orbits to be stabilized, and more.

Even more is possible with spin and torque. . . There are many options for those who wait!