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ABSTRACT

Developing a realistic agent-based model of human migration requires particular care. Committing too early
to a specific model architecture, design, or language environment can later become costly in terms of the
revisions required. To examine specifically the impact of differences in implementation, we have developed
two instances of the same model in parallel. One model is realized in the programming language Julia,
the underlying execution semantics is of a discrete stepwise stochastic process. The other is realized in
an external domain-specific language ML3, based on a continuous-time Markov chain (CTMC) semantics.
By developing models in pairs in different approaches, important properties of the target model can be
more effectively revealed. In addition, the realization within a programming language and an external
domain-specific modeling language respectively, helped identifying crucial features and trade-offs for the
future implementation of the model and the design of the domain-specific modeling language.

1 INTRODUCTION

Human migration is an ubiquitous, as well as fundamentally important demographic phenomenon. Not
only can migration have substantial cultural, political, economic and demographic effects in all countries
involved (i.e. origin, transit and destination), but it has also always been an important and contentious
political topic (with new, increased relevance in recent years, see Leurs and Smets 2018; Ekman 2018).
Still, for all its importance, migration remains a very complex phenomenon, and one of the most uncertaint
demographic processes, largely evading theoretical attempts to explain it. While there is a body of theory
on migration based on a top-down, economic paradigm, comparatively few attempts have been made to
understand migration from the bottom up (Massey et al. 1993).

In this work, we are interested in explaining a small part of the migration picture, which is how
availability and transfer of information affect the establishment and optimality of migration routes in
a forced migration scenario. During their journey, migrants seeking asylum in safe third countries act
under strong constraints concerning the availability of resources and information (Borkert et al. 2018). It
appears that most individuals base their decisions on information they have received from social contacts
or “unofficial” (as opposed to state- or NGO-sponsored) sources (Dekker et al. 2018). There is therefore
a strong possibility that this information is a) incomplete, b) unreliable and c) self-reinforcing. This could
lead to “self-organized” migration routes that are sub-optimal for the asylum seekers on one hand and hard
to predict and/or control for authorities on the other hand.

To test this hypotheses, an agent-based model of a population of migrants needs to be developed, in
which agents base their decisions on their knowledge of the world. At a high level of abstraction, this
knowledge is acquired by exploring the environment and by communicating between agents.

Such modeling effort typically involves translating a non-formal description of a system into concrete
program code. Due to the ambiguity of the description, this might results in different implementations.
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In addition, the medium of implementation, that is, the specific formalism into which a model description
is translated can have a substantial influence on the modeling decisions. Therefore, two independent
implementations of the same model description can differ considerably and might or might not give the
same results. Since we also know that finding implementation errors in simulation code is notoriously
hard, a good case can be made for independent implementations of the same model description.

Therefore, instead of focusing on a single model, we followed the pairs-of-models approach suggested
recently (Zeigler 2017b). However, instead of aiming at multi-resolution modeling, and formally relating
the models’ properties by morphisms (Zeigler 2017a), here the pairs-of-models approach is aimed at
avoiding too early commitments in our development process of the simulation model and elucidating
central properties of the targeted simulation model. To capture the causal mechanisms behind such complex
social processes as migration, an agent- or individual-base modeling approach is necessary (Willekens
et al. 2018). Hence, we develop two agent-based models, rather than following a non-agent (e.g., systems
dynamics) and an agent-based model (Morecroft and Robinson 2014). One will be implemented in a
general purpose language (GPL) and will be on a discrete step-wise systems semantics. The other will be
implemented in an external domain specific language (DSL) for agent-based models with continuous-time
Markov chain (CTMC) semantics. Here, "external" means that the DSL defined independently of any other
language, as opposed to an internal DSL, which makes use of the syntax of a host language into which it
is embedded (van Deursen et al. 2000).

The code for both implementations is publicly available at https://github.com/mhinsch/RRGraphs_mini
and https://github.com/oreindt/routes-rumours-ml3, respectively.

2 MODEL DESCRIPTION

The model consists of a population of agents migrating through a network of cities and transport links
towards a target. Agents start out with no or very little knowledge about the world but can acquire knowledge
either from their local environment or by communicating with other agents. Based on the information they
have collected, they attempt to find the best path to one of the targets. In the following sections, we give
a high-level overview of the model. Specifics of the implementations and their differences are discussed
separately.

2.1 Environment

The simulated world consists of a random geometric graph (Gilbert 1961) of cities connected by transport
links (see Figure 1). In addition there is a small number of entry and exit locations, respectively, representing
border crossings. Entries and exits are connected by "in-official" and thus slow transport links to the nearest
cities. Fast and slow transport links differ in their specific friction, which influences the resource costs
associated with a link.

Cities have an inherent quality that represents how easy it is for refugees to stay in that city. This could
include for example frequency of police controls, general safety, or availability of cheap accommodation.
In addition, each city has an abstract resource availability (representing how easy it is to acquire food,
money, clothes, etc.).

2.2 Agents

Agents at all times are either located in a city or transiting between cities. They enter the world by appearing
at one of the entry points. They leave the world as soon as they arrive at an exit point, representing the
destination countries. Agents have and collect information about the world. For each city and transport
link they have either no information or estimates of the corresponding entity’s properties together with trust
values that indicate the assumed quality of each estimate. Agents keep in contact with a number of other
agents, enabling them to exchange information. An agent’s contacts can be active or inactive and can be

https://github.com/mhinsch/RRGraphs_mini
https://github.com/oreindt/routes-rumours-ml3
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Figure 1: Sketch of the model environment.

located anywhere (i.e. not necessarily at the same location as the agent). During their journey agents use
and replenish resources (money, food, etc.).

2.3 Agent Behavior

Agents explore their surroundings, move between locations and exchange information with their contacts.
Ultimately, they attempt to find their way to one of the exit locations. They do that by comparing the
desirability of their location and all adjacent cities (based on their current knowledge). The desirability of
a city is a function of its specific quality, resource availability, proximity to the target and time required
to reach it, all of it discounted by the agent’s trust in the respective information. Then they preferentially
move to the most desirable location (which might mean staying where they are).

Agents can exchange some of their information with their contacts. Information on locations or links
that only one of two interacting agent is aware of is transferred directly. If both agents have information on
a given feature they adapt their knowledge based on their respective beliefs and confidence. While staying
in a city or traveling along a transport link, agents improve their knowledge about the respective location
or link by increasing the accuracy of their estimates of the its properties as well as the corresponding trust
values and by "discovering" geographically connected locations and links.

While staying in a city agents can increase their level of resources dependent on a city’s resource
availability. Traveling on a transport link on the other hand uses resources according to the link’s friction.

3 IMPLEMENTATION

We have implemented the model in the general purpose language Julia (Bezanson et al. 2017) as well as
in the Modeling Language for Linked Lives (ML3), a domain-specific language for agent-based modeling
(Warnke et al. 2017).

Julia is a relatively new language designed specifically with applications in simulation and numerical
computing in mind. Semantically it is close to the LISP language family, while at the same time attempting
to be familiar to users of languages such as Matlab or Python in terms of syntax. Due to type inference and
just-in-time compilation it can in many cases be as or nearly as efficient as C or C++. The language generally
favors imperative over functional programming but provides very little support for object-orientation. It
features an expressive type system, multiple dispatch, generic programming, and a powerful macro system.
Of special interest for model development are Julia’s optional typing and its REPL (read-eval-print loop)
that enable rapid prototyping.
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1 # model logic:
2 function step_agent_move!(agent, world, par)
3 agent.in_transit = true
4

5 loc = next_step(agent, world, par)
6 link = find_link(agent.loc, loc)
7 link.count += 1 # update traffic counter
8

9 costs_move!(agent, link, par)
10 explore_move!(agent, world, loc, par)
11 move!(world, agent, loc)
12 end
13

14 # corresponding scheduling logic:
15 function step_agent!(agent, model, par)
16 if decide_stay(agent, par) # model logic
17 step_agent_stay!(agent, model.world, par)
18 else
19 step_agent_move!(agent, model.world, par)
20 end
21 step_agent_info!(agent, model, par)
22

23 agent.steps += 1 # update the agent’s step counter
24 end

Figure 2: An excerpt of the Julia implementation of the model of migration routes showing the migrant’s
decision to move to another location. The function step_agent_move contains the consequences of that
decision. The migrant will now be in transit, decides for a destination, has some costs deducted, explores,
and is then moved. The decision to move happens (decide_stay) at a different place, in the function
step_agent that determines the events happening to the agents, and their order (scheduling of events). In
lines 8 and 24 the events are logged to observe the traffic on the link and the duration of the agent’s travel.

ML3 is an external domain-specific modeling language built for agent-based demographic models. It is
designed around the central concept of linked agents and their behavior. Agents’ actions are described either
as stochastic rules with CTMC semantics or as deterministically scheduled events. Common features of
demographic models, such as age-dependent behavior and dynamic social networks, are directly supported
by the language. ML3 models are interpreted by a Java-based simulator (Reinhardt and Uhrmacher 2017)
using a variation of Gillespie’s Stochastic Simulation Algorithm (Gillespie 1976). The language has been
successfully applied to models of human migration and decision processes (Warnke et al. 2017; Reinhardt
et al. 2018). However, the collection and adaptation of knowledge, a central part of this model, was not
part of previous models.

3.1 Simulation Model 1: Julia

The Julia version of the model (see Figure 2 for an excerpt) handles all model processes (movement,
exploration, information exchange) in discrete time steps. For events that do not happen in every time step
(such as information exchange), fixed probabilities per time step were assumed. Building the model around
events in continuous time would have been possible, but would have required more implementation effort.

Agents, cities, links and items of information are implemented as simple records (mutable struct in
Julia) that are stored in arrays as part of a global model record. Each agent stores an item of information
for each city and link in the world in an array, using the same order as the global storage. While this
implementation scales very badly with number of cities and/or links, it is trivial to implement and does not
present a performance issue for the type of scenarios we were interested in. In addition it allows for fast
constant-time access to information items given a city’s or link’s global index. Each agent also maintains
a list of references of agents it keeps in contact and is able to exchange information with.
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1 Migrant
2 | ego.capital >= 0 && !ego.in_transit
3 @ ego.move_rate()
4 -> ego.in_transit := true
5 ego.destination := ego.decide_destination()
6 ego.capital -= ego.move_cost(ego.destination)

Figure 3: An excerpt of the ML3 implementation of the model showing the rule for deciding to move to
another location. The guard (line 2) determines that only migrants with non-negative capital who are not
already in transit to another location might decide to move. The rate of the rule (line 3) is calculated by
a function, that takes the subjective quality of the current location and potential destinations into account.
Lines 4–6 show the effect of the rule. The migrant is now in transit, decides for a destination, and has
some cost deducted (compare with step_agent_move in Figure 2). The exploration during the move is
implemented in a separate rule that might fire when the migrant is in transit.

The simulation engine iterates through all agents in each time step and executes their behavior. Actions
that are performed at a rate lower than 1 are executed with a specific probability. Similarly, if two agents
exchange information, we iterate through all items of information (i.e. a full list of all cities and links) and
determine for each if one of the agents has knowledge about that part of the world and if so, whether an
exchange happens.

To observe the model behavior, data is gathered during and at the end of the simulation. Most of the
data is recorded by iterating through all agents/cities/links after each time step and once after the model run
is finished. For some measurements (e.g. number of steps an agent needs to finish its itinerary, total number
of visitors a city/link has during the runtime of the model), however, keeping track of them independently
would have duplicated substantial parts of the model’s data structures. In these cases we therefore added
variables directly to the entity records and updated them during model execution (see Figure 2 line 24).
The parameters of the simulation model are stored in an immutable record that is threaded as an argument
through all function calls in the model code that need access to parameter values (par in Figure 2).

3.2 Simulation Model 2: ML3

As an agent-based formalism, the basic entities of ML3 models are agents. Hence, we implemented the
migrants and cities as such. For relations between agents, ML3 uses the concept of links: bidirectional
connections between agents, where the directions are distinguished by the role of the agents in the connection.
These could be used to model the social network between the migrants, and for linking migrants to the
city where they are currently located. However, the transport network between cities could not be realized
using these features, as transport links are attributed, which ML3s links do not support. As a workaround,
transport links are represented by "transport-agents", which carry the attributes, and are linked to the two
endpoints of the transport link. The representation as agents would allow to equip transport links with a
behavior of their own. However, in this version of the model this is not required.

ML3 does not distinguish between state and beliefs of an agent. Similar to the Julia model, we store a
migrant’s knowledge as a collection of information items. However, as ML3 does not support structured
types or data structures apart from sets (which form the basis for ML3s links), these information items must
be represented as separate agents, albeit without any behavior of their own. These "information-agents"
contain the believed values and the agent’s trust in that values as attributes, and are linked to the subject
city or transport agent and to the migrating agent the beliefs belong to. The knowledge of a migrating
agent is the set of information-agents it is linked to.

To model the agents’ behavior, ML3 uses stochastic rules. Such a rule is a guard-rate-effect triplet,
that is associated with a certain type of agents (see Figure 3). The guard is a condition that determines
which agents of the given type have this behavior. The rate determines when the rule is fired, by giving the
parameter of an exponential waiting time distribution. Finally, the effect determines what happens, when
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Figure 4: Number of agents passing through each exit city over the course of 100 time units for ten replicate
runs (Julia model on the left, ML3 on the right).

the rule fires. In the example, migrants who have any capital left and are currently not in transit between
two cities may decide to move to a neighboring city. The rate is determined by the function move_rate. In
the effect, the migrant changes its state to be in transit, decides for a destination, and has the cost of that
move deducted from their capital.

All other behavioral options are modeled similarly, resulting in a set of stochastic rules. The agents’
decision between these options is then handled stochastically via a "competing risk" approach (see Klabunde
et al. (2017)). Prioritization between the options is realized using the rates, so that more attractive options
are given a higher rate. These options are therefore more likely to have the smallest waiting time, and
are more likely to fire. However, this approach to decision making is rather limited, as the details of
decision-making can not be modeled directly. In particular, the timing of decisions and the probabilities
of deciding for the different options can not be decoupled, as the stochastic rates describe both timing (via
the waiting times) and probability (as the probability of a certain rule firing first is determined by its rate
in relation to the rates of all other rules).

3.3 Selected Results

To compare the behaviour and the runtime characteristics (see below) of the two implementations we ran
the same scenarios over several replications in both simulation models. We found that the output differed
significantly (see Figure 4). While in the ML3 model most of the migrants arrive at a few exits, with
the specific exits varying between replications, in the Julia model, the migrants are spread more evenly
between exits.

4 EVALUATION

We compare the two model implementations according to a few selected criteria. We start each paragraph
arguing why we consider this aspect relevant before assessing the two implementations.

4.1 Separation of Model and Simulator

Strictly separating model and simulation logic provides significant advantages to many aspects of a simulation
study (Zeigler et al. 2000). A clear separation between model and simulator makes the model implementation
more succinct, and therefore more accessible and maintainability. As there is less implementation effort
for the modeler, there is less room for errors. Additionally, as the simulation logic is now independent of
the model, it can be reused for multiple models. This allows for putting more effort into implementing
and maintaining the simulation algorithms, improving software quality and enabling the implementation
of advanced simulation algorithms.
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Due to its more ad-hoc nature, in the Julia implementation, model and execution are tightly interwoven
(see Figure 2). In ML3 they are strictly separated by design. The modeler only describes the model behavior
declaratively in terms of stochastic rules. The model is executed by the ML3 simulator, which implements
the actual scheduling and execution of events.

4.2 Developing Models by Composition and Extension

Building and validating more complex models is usually done iteratively (Cioffi-Revilla 2010), by succes-
sively composing or extending simpler models. Easy extension or composition of models should therefore
be supported by the implementation language.

In ML3, although no black box composition, as e.g. provided by the DEVS formalism (Zeigler
et al. 2000), is supported, models can easily be composed or extended in a white box manner by adding
behavioral rules. The extension of models realized in Julia requires more care as the changes to be done
are not as localized as in ML3: A consequence of model and simulation code being closely intertwined.
Furthermore Julia’s type system makes it difficult to separate model components into independent modules
- required to build models by composing them from simpler models - without resorting to expensive runtime
polymorphism.

If the models are composed (irrespective of the manner of composition) typically each model component
is validated independently. Simulation experiments can then be reused to validate the composed model
(Peng et al. 2017). In our case we might, for example, develop a component model concerning the
departure of migrants from their home country and validate the produced rate of departures over time.
After composing it with the routes model - replacing the simple arrival process introducing new migrants to
entries - the rate of departures should remain the same and could be re-validated with the same experiment.
If successively extending a model, old simulation experiments can therefore be reused in a manner similar to
regression testing to test whether the newly extended model still fulfils the validation experiments conducted
previously. For this a clear separation of concerns is beneficial as well.

4.3 Flexibility for Adding Model Features

An iterative extension-based model requires a considerable amount of flexibility and expressiveness of the
chosen simulation environment. It must allow for including model features that were initially not planned.
The latter is usually not an issue when using a general purpose language. Domain-specific modeling
languages, especially external ones, however, are by design limited in their expressiveness.

It is, of course, inherently difficult to make predictions about future model extensions. One extension
we have in mind is to have migrants make plans about their future path, which might affect how stable routes
form. While we can add this to the Julia implementation, the lack of structured types and data structures
might make that impossible or at least cumbersome in ML3, similarly as the knowledge representation as
agents in our example.

4.4 Language Infrastructure

Infrastructure surrounding a language plays an important role for the language’s usability. Established
general purpose languages typically come with a variety of software tools like IDEs and debuggers to
support development, as well as ample documentation, libraries that solve common problems, and a large
community of users to exchange experience.

As an established, albeit relatively young, language, Julia and its ecosystem offer many of these. The
possibility to execute parts of the Julia code via the command line proved invaluable for testing purposes.
Julias built-in documentation system helps creating an accessible documentation of the implementation.
Jupyter (Ragan-Kelley et al. 2014) enables literate programming with Julia.

In terms of tool support, ML3 only offers an editor with syntax highlighting. Documentation about
the language is available in form of publications and existing models.
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4.5 Simulation Infrastructure

A simulation model has little use without the means to perform simulation experiments with it. Such
experimentation consists of a wide range of different interdependent tasks, e.g., parameterization of the
model, making observations, and storing and analyzing results. In addition, for the purpose of reproducibility,
simulation experiments must be comprehensible and repeatable by different people on a different machine.
To support a systematic successive refinement intertwined by phases of validation, it is also essential to
separate the different aspects of simulation software, i.e., model, execution and simulation experiments,
to enable a reuse of simulation experiments (Peng et al. 2017). Consequently, software solutions are
necessary.

As a general purpose language Julia offers no specific support for simulation infrastructure. The
language proved versatile enough, however, that ad-hoc solutions could easily and quickly be implemented.
We simply let the source file that contains the definition of the parameters record (see above) double as a
configuration file for the simulation. Due to Julia’s just-in-time compilation model this does not reduce
(run time) performance. Furthermore the Parameters.jl package provides a compact syntax to add default
values to record fields so that the syntactical overhead compared to a dedicated configuration file is minimal.
We further used Julia’s meta-programming and reflection capabilities (in combination with the ArgParse.jl

package) to optionally read the value of any parameter from the command line (again with no performance
costs). This allowed us to run simulations on an HPC cluster using a simple, pre-existing Ruby package
by one of the authors (MH) that reads parameter combinations from a description file and generates the
necessary shell scripts for a cluster environment.

Due to the language’s focus on scientific computing and the existing infrastructure for interactive
development it was furthermore straightforward to perform the analysis of the model results including the
generation of figures for this publication in Julia as well (using the Jupyter notebook interface). As the
language is intended for the use in scientific computing, the Julia ecosystem can be conveniently exploited
for conducting simulation studies.

In ML3, simulation experimentation is realized via a binding to SESSL (Ewald and Uhrmacher 2014), a
domain specific language for specification of simulation experiments embedded into the GPL Scala. SESSL,
allows to specify simulation experiments in a declarative and executive manner, including, e.g., parallel
execution of replications, parameterization and experimental design, some methods for statistical analysis,
and export of simulation results for analysis with external tools (Reinhardt et al. 2018). Experiments
specified in SESSL are directly executable Scala code. Observation of model behavior can be specified
declaratively in SESSL as well. Therefore, observation logic, e.g., counting the number of arrivals, is not
mixed with the model logic itself (compare Figures 2 and 3).

4.6 Runtime

Execution time is a significant limiting factor for many simulation efforts, in particular with agent-based
models (Collier and North 2013). Agents’ behavior is complex, and to see effects emerging from interactions,
a sufficiently large population of agents and a sufficiently large environment are necessary. As complex
models tend to have many parameters the number of combinations that must be tested can be substantial.
In addition to that, agent-based models usually involve stochastic processes, so that replications will be
needed for each of these parameter combinations. For the calculation of replications, parallel computing
infrastructures can be easily exploited. The number of parameter configurations to be calculated can be
significantly reduced by relying on appropriate experimental designs and statistical techniques (Kleijnen
2015). However, the issue of executing simulations efficiently will always remain relevant.

We compared runtime of the two model implementations by running both with identical parameter
values on the same machine (Intel I7 8550U, Ubuntu 18.4). For a small world with only 50 cities and with
10 new agents entering the world per time unit, running the model for 100 time units took about 10s for
the Julia version (8s of which were spent JIT compiling the code) and 4450s for the ML3 version.
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Some of this difference can be attributed to the execution model of the respective languages. ML3 code
is directly interpreted by the simulator while Julia code is compiled to machine binary before execution. It
has been shown that even the compilation of only critical pieces of a model at runtime can yield significant
efficiency gains (Meyer et al. 2018).

However, the main problem lies in the realization of the knowledge gathering and analysis in the two
modeling approaches. A majority of the simulation time is spent on the information exchange between
migrants. In Julia we were able to chose appropriate data structures to solve this efficiently (albeit at the
cost of greater implementation effort). In ML3, however, the modeler lacks this level of control. Here, all
collections of agents (or in this case pieces of information) are simple sets. Consequently, the implementation
scales very badly with the amount of knowledge agents have. E.g., specific items of information can only
be selected in linear time by iterating over these sets.

4.7 Simulation results

The simulation results produced by the two implementations differ significantly. It raises concerns that
the origin of these differences it is not immediately evident. E.g., they might be a result of the different
underlying execution semantics or the result of divergences in the implementation of the model logic itself.

Closer analysis and comparison of the formal models implemented by the two simulation models
is required to gain further insight. The formal semantics of the ML3 implementation is quite clear, as
the language is based on a CTMC semantics, or more generally, if all language features were used, a
Generalized Semi-Markov Process (Glynn 1989). The Julia version on the other hand, as most ad hoc
model implementations, lacks a formally defined semantics. It can formally be seen as a discrete-time
Markov chain (DTMC), however, the precise DTMC described is not immediately obvious. While in
principle approximating one with the other is possible (Doytchinov and Irby 2010), the lack of explicit
formalization on the Julia side makes a comparison very difficult. As an alternative, the semantics of the
implementations can be brought closer together by lowering the step-size and transition probabilities of
the Julia implementation, matching the transition rates of the ML3 implementation. This should lead to
convergence of the behavior of both versions if they indeed implement the same abstract model.

In addition to these static analyses, additional simulation experiments are needed to elucidate behavioral
properties and possible idiosyncrasies of the two models. It should be tested whether and how fast in
both models optimal paths within the environment will be found by perfect communication, or perfect
exploration; whether in an environment where little differences in routes exist, a uniform distribution of
migration routes emerges; and how sensitive the models react to changes in communication and exploration.

5 DISCUSSION

We have implemented an agent-based model of migration route formation twice: Once in the GPL Julia
and once in the external DSL ML3.

In direct comparison, there are clear trade-offs between both approaches, each of which has their own
advantages and limitations. The ML3 implementation demonstrates that especially the strict separation
of different simulation concerns – model, execution, experimentation – is advantageous. Having model
and simulator separated not only eases the implementation of the former, the increased accessibility and
maintainability facilitate further development of the model. Furthermore, we can easily take advantage
of existing simulation infrastructure surrounding the language. Having a language with a strict paradigm
(here the continuous-time stochastic rule approach) that must be followed does aid – or force – the modeler
to formalize the model precisely.

However, these advantages over implementing the model from scratch come at a cost. Firstly, we have
found a significant runtime cost. It should be noted this is not a consequence of using a DSL instead of a
GPL. However, as soon as a feature that is not directly supported in the DSL is expressed by other means,
this will come at significant performance cost. Secondly, we have no access to the extensive software
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ecosystem surrounding an established GPL, which is a significant practical disadvantage. Finally, using a
GPL results in greater flexibility, especially for extending the model with new features. All considered,
neither of the approaches is ideal. While the advantages in methodology of applying a DSL are considerable,
the limitations of the language at hand make its application impractical for a model that relies heavily
on complex data structures. Human decision-making processes are complex, and a sufficiently expressive
language is necessary to model them.

An extension of ML3 for the inclusion of additional features for data structures would result in the
necessary expressiveness. This additional control would also allow the modeler to chose an implementation
that is more runtime efficient. Although there exist methods that support the evolution of domain-specific
languages (Thanhofer-Pilisch et al. 2017), the adaptation of an external DSL to new requirements implies
larger efforts. A language workbench (Erdweg et al. 2013), a software framework for developing DSLs
and tool support for DSLs, could be employed to successively evolve the language. This would require
a re-implementation of parts of ML3, but techniques for migrating custom DSL implementations to a
language workbench exist (Denkers et al. 2018). Most of the simulator implementation might even be
reused as is, as it is mostly independent of the surrounding infrastructure for, e.g. parsing and type checking.
However, this extension of ML3 would mostly consist of adding features typically found in GPLs.

Therefore, an alternative approach would be to continue the development as an internal DSL, i.e., to
embed the DSL into a host language (van Deursen et al. 2000). Thereby the DSL, and by extension the user,
has access to host language features. In addition, host language tools, e.g., compiler, debugger, or IDEs, can
be reused. It has been demonstrated (Warnke et al. 2016) by embedding a simplified rule-based language
for agent-based models into the GPL Scala, that it is feasible to have a compact declarative description,
while having access to GPL features. For ML3 this might be especially suitable, as the syntax and semantics
of ML3 is already close to many object-oriented languages, making the embedding potentially very natural.

Either way, integrating support for decision making and learning might be desirable, as this part of the
model is conceptually challenging, and difficult to implement efficiently. The representation of knowledge
we chose was as much driven by the practicalities of model implementation as by the requirements of the
model. Replacing the ad-hoc solution with a formal model also has an epistemological advantage. A wide
variety of formal approaches for modeling decision making exist (Balke and Gilbert 2014), that could form
the foundation for including decision making into the language.

Going beyond the specifics of the two versions of the model, implementing it in parallel in two
different languages based on two different paradigms has proven a valuable exercise. First, comparing
both implementations gives a clear indication of the advantages and disadvantages of either approach.
Furthermore it becomes obvious that different paradigms lead to different modeling decisions. Finally,
whether the differences in results can be traced back to the different paradigms of the two implementations
or to subtle differences in the implemented abstract models - in either case assumptions that clearly affect
the model behavior and that would have remained implicit for a single implementation will have become
explicit. Thereby, simulation results are put into question, motivating additional efforts to explore and
analyse the behavior of the respective models to explain these differences.
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