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Fundamental prediction from the theory: Due to its 
asymptotic freedom, at high enough energy 
densities one enters the deconfined phase, with 
quarks and gluons as the degrees of freedom
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Fundamental prediction from the structure of QCD: 
Due to asymptotic freedom, at high enough energy 
densities one enters the deconfined phase, with 
quarks and gluons as the degrees of freedom
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Some lessons from heavy ion experiments & lattice studies:
1) Crossover deconf. transition at 𝑇~150 MeV, 𝜖~400 MeV/fm3

2) Soon thereafter rapid but smooth approach towards conformal 

behavior: 𝛾 ≡
𝑑 ln 𝑝

𝑑 ln 𝜖
≈ 1, 𝑐𝑠

2 ≲ 1/3, 𝑝/𝑇4~𝑁dof
3) Although strong coupling machinery useful in understanding 

transport & thermalization, bulk thermo of hot QGP consistent 
with resummed perturbation theory from 𝑇~2-3𝑇𝑐 onwards



Main question for the remainder of this talk: how does all 
this generalize to neutron stars
• How to remedy for the absence of lattice methods (Sign 

Problem) at high density?
• How to optimally exploit observational info on NSs?
• Do QM cores exist inside NSs, and if so, in which stars?



Neutron stars: goals and challenges
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When a hydrogen burning star runs out of fuel:
•M ≲ 9𝑀sun ⇒ White dwarf
•M ≳ 9𝑀sun ⇒ Supernova explosion

oM ≳ 20𝑀sun ⇒ Gravitational collapse into BH
oM ≲ 20𝑀sun ⇒ Gravitational collapse into…
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Underlying challenge:
Can we determine the 
properties of cold & dense 
QCD matter using only first 
principles field theory tools 
and robust observational 
data on neutron stars?

10

Link between micro and macro
from GR (non-rotating TOV-eqs.):

Ozel et al., ApJ 820 (2016)
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Clear need for a systematic and model-independent 
approach to the microphysics of neutron stars



NS matter EoS – robust theoretical limits
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Proceeding inwards from the crust: 
• 𝜇𝐵 increases gradually, starting from 𝜇Fe
• Baryon/mass density increase from 0 to beyond 

𝑛𝑠 ≡ 𝜌0 ≈ 0.16/fm3 ≈ 2 × 1014g/cm3

• Composition of matter changes dramatically
14
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Low-density behavior of EoS well known from nuclear 
theory side. Challenges begin close to saturation density:
• At 1.1𝑛𝑠, current errors in Chiral Effective Theory EoS ±24% -

mostly due to uncertainties in effective theory parameters
• State-of-the-art EoS NNNLO in chiral perturbation theory power 

counting [Tews et al., PRL 110 (2013), Hebeler et al., ApJ 772 (2013)]
15



Asymptotic freedom of QCD ⇒ High-density limit from a 
non-interacting theory. However,…
• At interesting densities (1 − 10)𝑛𝑠 system strongly interacting 

but no nonperturbative methods available
• Naïve expectation: Weak coupling methods only useful at very 

high densities
16
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Recent improvement: First part of four-loop 𝑇 = 0 pressure 

derived: 𝑝4−loop ∋ −
11
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𝑁𝑐𝑑𝐴

2𝜋 3 𝛼𝑠𝑚∞
4 ln2𝛼𝑠 [Gorda, Kurkela, Romatschke, 

Säppi, AV, PRL 121 (2018), 1807.04120]

Linear log term also almost there and full 𝛼𝑠
3 order underway [work 

with Gorda, Kurkela, Paatelainen, Säppi; recently also Schicho, Seppänen, Österman]



Three-loop result with nonzero quark masses [Kurkela, 

Romatschke, Vuorinen, PRD 81 (2009)]

• Uncertainty of result at ±24% level around 40𝑛𝑠
• Main uncertainty from renormalization scale dependence
• Pairing contributions to EoS subdominant at relevant densities 

(see, however, also: Cherman, Sen, Yaffe, PRD 100 (2019))
18



Conclusion: Sizable no man’s land extending from outer 
core to densities not realized inside physical neutron stars

Options: Use models, novel nonperturbative techniques, 
or interpolate between the limits using observational data
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What do we know from observations?
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By now, two accurate 
Shapiro delay 
measurements of two-
solar-mass stars:
Demorest et al., Nature 467 (2010)
Antoniadis et al., Science 340 
(2013)

∴ 𝑀max > 2𝑀⊙
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Radius measurements more problematic, but progress
through observation of X-ray emission: 
• Cooling of thermonuclear X-ray bursts provide radii to 

~ ± 400m [Nättilä et al., Astronomy & Astrophysics 608 (2017), …]

• Pulse profiling (NICER) has provided a robust radius 
measurem. for one NS so far [Raaijmakers et al., Astr.J.Lett. 887 (2019)]
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Gravitational wave breakthrough: 
First observed NS merger by LIGO & 
Virgo in 2017 (any many since then)

Three types of potential inputs:
1) Tidal deformabilities of the NSs 

during inspiral – good measure   
of stellar compactness

2) EM signatures – present if no 
immediate collapse to a BH

3) Ringdown pattern – sensitive to 
EoS (also at 𝑇 ≠ 0), but freq. 
too high for LIGO/Virgo
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Tidal deformability: How large of a quadrupolar moment
a star’s gravitational field develops due to an external
quadrupolar field

𝑄𝑖𝑗 = −Λℰ𝑖𝑗

Substantial effect on observed GW waveform during 
inspiral phase

Tidal deformability: How large of a quadrupolar moment
a star’s gravitational field develops due to an external
quadrupolar field

𝑄𝑖𝑗 = −Λℰ𝑖𝑗
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Tidal deformability: How large of a quadrupolar moment
a star’s gravitational field develops due to an external
quadrupolar field

𝑄𝑖𝑗 = −Λℰ𝑖𝑗

LIGO & Virgo bound 70 < Λ(1.4𝑀⊙) < 580 at 90% 
credence using low spin prior [LIGO and Virgo, PRL 121 (2018)]
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Interpolation – or how to optimally 
combine theoretical and observational 

insights
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Allow all possible EoS 
behaviors by interpolating it 
over the no man’s land using 
one’s favorite (often 
piecewise) basis functions

Require:
1) Smooth matching to 

nuclear and quark 
matter EoSs

2) Continuity of 𝑝 and 𝑛 –
with at most one 
exception (1st order 
transition)

3) Subluminality
4) Optional: astrophysical 

constraints
28

[Kurkela et al., ApJ 789 (2014)]



Using polytropes, generate en-
semble of 200.000 viable EoSs.
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[Annala, Gorda, Kurkela, AV, PRL 120 (2018), 
1711.02644]
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Using polytropes, generate en-
semble of 200.000 viable EoSs.

Additionally take into account: 

• Existence of 2𝑀⊙ NSs ⇒
Very soft EoSs ruled out, 

𝑅 1.4𝑀⊙ ≥ 10km

• Tidal deformability limits ⇒
EoS cannot be overly stiff,

𝑅 1.4𝑀⊙ ≤ 13km

• Accurate R measurements 
(here assuming accurately 
determined mass)
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[Annala, Gorda, Kurkela, AV, PRL 120 (2018), 
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How about quark matter?
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Recent work: Implement interpolation starting from
speed of sound, and classify results in terms of max(𝑐𝑠

2) 

and the latent heat of the deconfinement transition

[Annala, Gorda, Kurkela, Nättilä, Vuorinen, Nature Physics (2020)]

Interesting because of tension between standard lore in 
nuclear physics and experience from other contexts
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Setting nontrivial upper limits for speed of sound leads to 
increasingly constrained results; contrary to common
lore, even sub-conformal (𝑐𝑠

2 < 1/3) EoSs viable

Low-𝑐𝑠 EoSs suggest two-phase structure of the EoS band
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Comparison with viable NM EoSs and QGP critical region 
strengthens link between bend and deconf. transition

Distinguishing feature between phases: slope 𝛾 ≡
𝑑 ln 𝑝

𝑑 ln 𝜖
≈

1 in nearly conformal QM, ~2.5 in sub-𝑛𝑠 nuclear matter



Obvious questions:
1) Is the two-slope structure only a property of the 

band, or does it persist more differentially – and for 
larger values of max(𝑐𝑠

2)?
2) Where do the centers of NSs with different masses 

lie, i.e. does quark matter exist inside NSs?
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Plan for investigation: 

1) Generate a large (~500.000) ensemble of viable EoSs
with speed-of-sound method, allowing for 1st order 
transitions with arbitrary latent heats ∆𝜖

2) Compare behaviors of three key quantities – 𝛾, 𝑐𝑠
2, 

and 𝑝/𝑝FD – to all viable hadronic EoSs available

3) Identify approximative criterion for the onset of QM 
and quantify conditions for its presence and amount 
inside NSs of different masses
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Approximative criterion 
for the onset of QM 



• In maximal-mass stars, quark core is present in a vast 
majority of stars – and always sizable if max(𝑐𝑠

2) ≲ 0.5

• Purely hadronic NSs possible only if max(𝑐𝑠
2) ≳ 0.7 and

transition first order

 If transition a crossover, quark cores inevitable!
47
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Recent simultaneous MR-measurements [1] and limits 
drawn from EM counterparts of GW170817 [2] in 
excellent agreement with low-𝑐𝑠 EoSs
[1] Nättilä et al., Astronomy & Astrophysics 608 (2017)
[2] Margalit and Metzger, Astrophys. Journal 850 (2017); Radice and Dai, Eur. Phys. J. A55 (2019)



Final thoughts
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• How to remedy for the absence of lattice methods at 
high density?
o No single method available everywhere; tools such 

as CET & pQCD useful but in separated regimes

• How to optimally exploit observational info on NSs?
o Model-independent interpolation of the EoS offers 

systematic framework for including observations 

• Do QM cores exist inside NSs, and if so, in which stars?
o For massive enough stars, matter in their cores 

apprears to have characteristics resembling QM
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