

Gravity seminar, University of Southampton, December 2020

Impact of recent neutron star observations on the dense matter equation of state

Jérôme Margueron iP2i Lyon

Combining together nuclear physics and astro-observations to better understand dense matter properties.

Complemented by EDF, EFT, etc...

Density dependence of the energy around n_{sat}

Compressible liquid-drop: $B(\rho) \approx B(\rho_0) + \frac{1}{2} K_{\infty} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^2$

Incompressibility

Expression
$$E_{sym} = \frac{\partial^2 E/A}{\partial I^2} \approx \frac{E}{A}(I=1) - \frac{E}{A}(I=0)$$

Difference betw

Difference between PNM and SNM

> [Ex: Somasundaram+ arXiv:2009.04737]

Empirical Bethe-Weizsäcker mass formula:

$$B(N,Z) = B_{v}A - B_{s}A^{2/3} - \frac{1}{2}B_{sym}\left(\frac{N-Z}{N+Z}\right)^{2} - \frac{3}{5}B_{Coul}\frac{e^{2}}{r_{0}}\frac{Z}{A^{1/3}} + 12\delta(A,Z)A^{-1/3}$$

Empirical Bethe-Weizsäcker mass formula:

$$B(N,Z) = B_{v}A - B_{s}A^{2/3} - \frac{1}{2}B_{sym}\left(\frac{N-Z}{N+Z}\right)^{2} - \frac{3}{5}B_{Coul}\frac{e^{2}}{r_{0}}\frac{Z}{A^{1/3}} + 12\delta(A,Z)A^{-1/3}$$

Slope of the symmetry energy (density dependence):

$$L_{sym} = 3\rho_0 \frac{\partial E_{sym}}{\partial \rho}$$

Nuclear Empirical Parameters (NEP)

$$\frac{E}{A}(n,\delta) \approx e_{\text{sat}}(n) + e_{\text{sym},2}(n)\delta^2 + e_{\text{sym},4}(n)\delta^4 + \dots$$

with $\delta = (n_n - n_p)/(n_n + n_p)$

where the isoscalar and isovector terms are expressed as a Taylor expansion in x:

$$e_{sat} = E_{sat} + \frac{1}{2}K_{sat}x^{2} + \frac{1}{6}Q_{sat}x^{3} + \frac{1}{24}Z_{sat}x^{4} + \dots$$
 with $x = (n - n_{sat})/(3n_{sat})$

$$e_{sym} = E_{sym} + L_{sym}x + \frac{1}{2}K_{sym}x^{2} + \frac{1}{6}Q_{sym}x^{3} + \frac{1}{24}Z_{sym}x^{4} + \dots$$

The **nuclear empirical parameters** (NEP) capture the (topological) properties of the EoS around n_{sat} .

	Small uncertainties						Large	Large uncertainties				
P_{α}	Esat	E_{sym}	n _{sat}	L_{sym}	K _{sat}	K _{sym}	Q_{sat}	Q_{sym}	Z_{sat}	Z_{sym}	m_{sat}^*/m	$\Delta m^*_{sat}/m$
	MeV	MeV	fm ⁻³	MeV	MeV	MeV	MeV	MeV	MeV	MeV		
$\langle P_{\alpha} \rangle$	-15.8	32	0.155	60	230	-100	300	0	-500	-500	0.75	0.1
$\sigma_{P_{lpha}}$	±0.3	± 2	± 0.005	±15	± 20	±100	±400	±400	± 1000	± 1000	±0.1	±0.1
-												

[JM, Casali, Gulminelli, PRC 2018]

There are correlations among these parameters

Small impact at T=0

Impact of high order NEP on correlations

[JM, Gulminelli PRC 2019]

What is a neutron star?

Main properties:

- M # 1 2 M_o Average density # 10^{15} g cm⁻³
- R # 10 14 km B # 10^{12} 10^{16} G
- Aftermath of a core-collapse supernovae,
- Isolated or in binary,
- Could be a pulsar: from radio to / or γ -rays,
- X-ray emission from accretion disk,
- Fast spinning.

What is a neutron star?

Main properties:

M # 1 - 2 M_o Average density # 10^{15} g cm⁻³

- Aftermath of a core-collapse supernovae,
- Isolated or in binary,
- Could be a pulsar: from radio to / or γ -rays,
- X-ray emission from accretion disk,
- Fast spinning.

Neutron star composition:

Requires the knowledge of dense matter equation of state.

-> Two main questions for nuclear physicists:

- How accurate is the nuclear physics knowledge?
- Is there a phase transition to hyperon matter or quark matter at high density?

Probing extreme matter physics with GW

Questions to be answered:

What is the nuclear interaction in dense, isospin asymmetric matter, hot?
Which new particles appear at supra-saturation densities?
At which density occurs the deconfinement from hadrons to Quarks-Gluons Plasma (QGP)?
How neutrinos propagate and what are the transport properties of extreme matter?
Are BNS the main astrophysical site for the r-process?

EoS [nuclear] <=> (M,R) [astro]

A semi-agnostic approach for the nuclear EoS

The **nuclear empirical parameters** (NEP) capture the properties of the EoS around n_{sat} :

$$e_{sat} = E_{sat} + \frac{1}{2}K_{sat}x^{2} + \frac{1}{6}Q_{sat}x^{3} + \frac{1}{24}Z_{sat}x^{4} + \dots$$

$$e_{sym} = E_{sym} + L_{sym}x + \frac{1}{2}K_{sym}x^{2} + \frac{1}{6}Q_{sym}x^{3} + \frac{1}{24}Z_{sym}x^{4} + \dots$$
with $\delta = (n_{n} - n_{p})/(n_{n} + n_{p})$ and $x = (n - n_{sat})/(3n_{sat})$

Semi-agnostic approach (Meta-model):

$$e(n, \delta) = t(n, \delta) + v(n, \delta)$$
Potential energy

Kinetic energy

(Fermi gas)
$$v(n, \delta) = \sum_{\alpha=0}^{N} \left(v_{\alpha}^{is} + \delta^2 v_{\alpha}^{iv} \right) \frac{x^{\alpha}}{\alpha!} u(x),$$

A semi-agnostic approach for the nuclear EoS

The **nuclear empirical parameters** (NEP) capture the properties of the EoS around n_{sat} :

$$e_{sat} = E_{sat} + \frac{1}{2}K_{sat}x^{2} + \frac{1}{6}Q_{sat}x^{3} + \frac{1}{24}Z_{sat}x^{4} + \dots$$

$$e_{sym} = E_{sym} + L_{sym}x + \frac{1}{2}K_{sym}x^{2} + \frac{1}{6}Q_{sym}x^{3} + \frac{1}{24}Z_{sym}x^{4} + \dots$$
with $\delta = (n_{n} - n_{p})/(n_{n} + n_{p})$ and $x = (n - n_{sat})/(3n_{sat})$

Semi-agnostic approach (Meta-model):

$$e(n, \delta) = t(n, \delta) + v(n, \delta)$$
Potential energy
(Fermi gas)
$$v(n, \delta) = \sum_{\alpha=0}^{N} \left(v_{\alpha}^{is} + \delta^2 v_{\alpha}^{iv} \right) \frac{x^{\alpha}}{\alpha!} u(x),$$
Directly
related to NEP

A semi-agnostic approach for the nuclear EoS

Neutron stars masses

NS masses estimation: $M \in [1.17:2]M_{\odot}$

Minimum masses: $1.174(4)M_{\odot}$ [Ozel & Freire 2016]

Maximum masses:

+ PSR J1614-2230: $M = 1.908(16)M_{\odot}$

[Arzoumanian et al. 2018, first Demorest et al.]

+ PSR J0348+0432: $M = 2.01(4)M_{\odot}$

[Antoniadis et al., 2013]

- + Few observed high mass NS with large error-bars:
 - + MSP J0740+6620: $M = 2.14(10)M_{\odot}$ (Shapiro delay) [Cromartie et al., 2019]
 - + PSR J2215+5135: $M = 2.27(15)M_{\odot}$ (« redback », magnesium lines) [Linares et al. 2018]

Neutron star radii

Radius estimation: $R_{1.4} \in [10:14]$ km for a 1.4 M_{\odot} NS

How to extract a radius?

+ **Thermal emission** from qLMXB (quiescient Low-Mass X-ray binaries)

[Guillot 2013, Ozel 2016, Bogdanov 2016, Steiner 2018]

+ X-ray bursts

[Poutanen 2013, Ozel 2016, Nattila 2017]

- Gravitational waves from binary NS mergers
 [LVC PRL 2017, Tews PRC 2018, ...]
- + NICER mission

[Watts 2019 preliminary results]

Future: ATHENA mission
 [Barcons 2017]

(my own) **classification: small** radii (10-11 km), **average** radii (12-13 km), **large** radii (>14 km).

Neutron star diversity

Binary (+NS) diversity

quiescent Low Mass X-ray binaries

7 sources (quiescent Low Mass X-ray binaries) in globular clusters:

- constant flux, purely H atmosphere,
- Low magnetic fields —> almost pure thermal components,
- In globular clusters —> accurate distances.

Black body like emission: F # $T^4(R_{inf}/D)^2$

with
$$R_{inf} = R/\sqrt{1 - 2GM/(Rc^2)}$$

-> get information on M and R

[Rutledge et al. 1999]

quiescent Low Mass X-ray binaries

7 sources (quiescent Low Mass X-ray binaries) in globular clusters:

- constant flux, purely H atmosphere,
- Low magnetic fields —> almost pure thermal components,
- In globular clusters —> accurate distances.

Globular R.A.^a Decl.^a XMM Exp. Chandra Exp. S/N Group^b Distances Distances [8] Cluster host (J2000)(J2000)time (ks) time (ks) Dist #1 (kpc) Dist #2 (kpc) A,A' 47Tuc (X-7) 00:24:03.53 -72:04:52.2181 122 4.53 ± 0.08 [1] 4.50 ± 0.06 0 M2818:24:32.84 -24:52:08.4327 113A,A' 5.5 ± 0.3 [2,3] 5.50 ± 0.13 0 NGC 6397 17:40:41.50 -53:40:04.682 A,A' 2.51 ± 0.07 [4] 2.30 ± 0.05 340 0 $\omega \, \mathrm{Cen}$ 13:26:19.78 -47:29:10.936 29149B,B' 4.59 ± 0.08 [5] 5.20 ± 0.09 B,A' M1316:41:43.75 +36:27:57.736 7.1 ± 0.62 [6] 7.10 ± 0.10 2955M3021:40:22.16 -23:10:45.949 32B,B' 8.2 ± 0.62 [6] 8.10 ± 0.12 0 NGC 6304 17:14:32.96 -29:27:48.197 28B,B' 6.22 ± 0.26 [7] 5.90 ± 0.14 0

RecentGAIApublicationsDRII 2018

[Baillot d'Étivaux+, ApJ 2019]

quiescent Low Mass X-ray binaries

7 sources (quiescent Low Mass X-ray binaries) in globular clusters:

- constant flux, purely H atmosphere,
- Low magnetic fields —> almost pure thermal components,
- In globular clusters —> accurate distances.

Modeling of the X-ray spectra with Xspec:

- **spectrum model** includes: « pile-up » [Davis 2001, Bogdanov 2016], « TBgas » absorption and « nsatmos » for the atmosphere [Heinke 2006] + « power-law ».
- **parameters**: pile-up parameter α , hydrogen column density on the line site $n_{H,22}$ (10²² cm⁻²), powerlaw normalisation, distance to the star D (kpc), surface effective temperature T_{eff} (K), mass of the stars M (M_{\odot}).

quiescent Low Mass X-ray binaries

7 sources (quiescent Low Mass X-ray binaries) in globular clusters:

- constant flux, purely H atmosphere,
- Low magnetic fields —> almost pure thermal components,
- In globular clusters —> accurate distances.

Exemple: constant radius model [Guillot 2013]

Target Excluded	R _{NS} (km)
NONE (Run 7)	$9.1^{+1.3}_{-1.5}$ km
WITHOUT M28	8.4 ^{+1.5} _{-1.3} km
WITHOUT NGC 6397	$10.7^{+1.7}_{-1.4}$ km
WITHOUT M13	$8.6^{+1.5}_{-1.3}$ km
WITHOUT ω Cen	$8.7^{+1.5}_{-1.4}$ km
WITHOUT NGC 6304	$9.0^{+1.5}_{-1.4}$ km

—> very **low radii** (8-11 km)

With latest X-ray spectra model and new data :

—> Is it compatible with nuclear physics?

Is there a **contradiction** between nuclear physics expectations and observations?

If confirmed, this contradiction may be solved by advocating **phase transition(s)**

—> producing **smaller radii**

But first, we should **cross-check** the observational analysis.

—> employing the meta-model directly **inside** the observational analysis.

7 sources (quiescent Low Mass X-ray binaries) in globular clusters:

- constant flux, purely H atmosphere,
- Low magnetic fields —> almost pure thermal components,
- In globular clusters —> accurate distances.

Simultaneous analysis assuming a **single EoS** for all qLMXB (here the **nuclear meta-model**)

EoS directly implemented in the data analysis (*first time!*):

- **Observational** (emission model) parameters: M, D, T, n_H, ...
- Nuclear EoS parameters: Lsym, Ksym, Qsat, etc...
- Functional relation between M and R through the EoS: $M \rightarrow_{(EoS)} R$.

—> Fitting X-ray spectra provides the whole set of **observational + EOS parameters**. ~50 free parameters, ~1000 data

- —> use of Bayesian method + MCMC (Markov-Chain Monte Carlo)
 - Gaussian prior on the distances (recent publications, Gaia DRII-2018)
 - Gaussian prior on the nuclear parameter Lsym (50 ± 10 MeV).

Bayesian analysis with prior: Lsym = 50 ± 10 MeV Ksym [-400:200] MeV Qsat [-1300:1900] MeV

Posteriors: Lsym = 38 ± 10 MeV Ksym = -91 ± 80 MeV Qsat = 350 ± 500 MeV

First extraction of Ksym and Qsat from data.

A recent analysis of pygmy GDR concludes: $Ksym = -120 \pm 80 \text{ MeV} [Sagawa 2019]$

 —> The new analysis is compatible with nuclear physics. (with same chi2 as previous analyses).
 Average radii preferred.

—> The comparison with other approaches (GW170817, AT2017gfo) provides a consistent understanding of the data.

—> But more recent GW170817 analyses prefer **lower radii:** + $R_{1.4} = 11^{+0.9}_{-0.6}$ km [Capano, Tews+ nature 2020] + $R_{1.4} \approx 11$ km [Güven+ arXiv:2001.10259]

Sensitivity analysis

Framework	Sources	Distances	prior	$L_{ m sym}$	K_{sym}	$Q_{ m sat}$	$R_{1.45}$	χ^2_{ν}	nb. of	d.o.f.
			$L_{ m sym}$	(MeV)	(MeV)	(MeV)	(km)		param.	
1	all	Dist #2	yes	$37.2^{+9.2}_{-8.9}$	-85_{-70}^{+82}	318^{+673}_{-366}	12.35 ± 0.37	1.08	49	1126
2	all	$Dist \ \#1$	yes	$38.3^{+9.1}_{-8.9}$	-91^{+85}_{-71}	353^{+696}_{-484}	12.42 ± 0.34	1.07	49	1126
3	all	$Dist \ \#1$	yes	$38.6^{+9.2}_{-8.7}$	-95_{-36}^{+80}	300	12.25 ± 0.30	1.07	48	1127
4	all	Dist #1	no	$27.2^{+10.9}_{-5.3}$	-59^{+103}_{-74}	408^{+735}_{-430}	12.37 ± 0.30	1.07	49	1126
5	all/47-Tuc	$Dist \ \#1$	yes	$43.4^{+9.7}_{-9.3}$	-66^{+137}_{-102}	622^{+763}_{-560}	12.57 ± 0.41	1.08	43	700
6	$\mathrm{all/NGC6397}$	Dist #1	yes	$42.6^{+9.9}_{-9.5}$	-77^{+129}_{-96}	623^{+757}_{-544}	12.58 ± 0.40	1.09	43	961
7	$\mathrm{all}/\mathrm{M28}$	Dist #1	yes	$42.5^{+9.5}_{-9.5}$	-80^{+124}_{-91}	597^{+717}_{-510}	12.46 ± 0.37	1.07	43	846
8	А	$Dist \ \#2$	yes	$38.6^{+9.4}_{-8.9}$	-91^{+81}_{-76}	343^{+805}_{-431}	12.18 ± 0.29	1.04	21	874
9	A'	$Dist \ \#2$	yes	$37.5^{+9.0}_{-8.9}$	-88^{+76}_{-70}	263^{+764}_{-361}	12.22 ± 0.32	1.06	29	945
10	В	$Dist \ \#2$	yes	$49.12^{+10.0}_{-10.0}$	-6.66^{+137}_{-138}	804^{+709}_{-675}	12.88 ± 0.43	1.19	28	255
11	В′	$Dist \ \#2$	yes	$50.3^{+9.8}_{-9.6}$	-1^{+134}_{-143}	881^{+671}_{-705}	12.98 ± 0.40	1.18	23	178

[Baillot d'Étivaux+, ApJ 2019]

Outlook:

Include phase transition Confront with other observations

Probing extreme matter physics with GW

What is the **nuclear interaction** in dense, isospin asymmetric matter, hot? Which **new particles** appear at supra-saturation densities? At which density occurs the **deconfinement** from hadrons to Quarks-Gluons Plasma (QGP)? How **neutrinos** propagate and what are the **transport properties** of extreme matter? Are BNS the main astrophysical site for the **r-process**?

Tidal deformability

- Tidal field E_{ij} from companion star induces a quadrupole moment Q_{ii} in the NS
- Amount of deformation depends on the stiffness of EOS via the tidal deformability $\Lambda.$

Post-Newtonian expansion of the waveform: Tidal effect enters at 5th order. Hinderer+ 2008, Blanchet, Damour

 \rightarrow +E-M 300 $\leq \Lambda \leq$ 800

[Tews, JM, Reddy, EPJA special issue on GW (2019)] A = 200 A = 400 A = 800 A = 1600 Meta

 $Q_{ij} = -\Lambda(\mathrm{EOS}, m)m^5 \mathcal{E}_{ij}$

Confront EoS / GW

Required GW accuracy to improve our knowledge:

 $\Delta \Lambda \approx 200\text{-}300 \implies \text{Probe EOS from 1 to } 2n_{\text{sat}}$ Confirm or rule out nuclear physics $\widetilde{\Delta \Lambda} \approx 50\text{-}100 \implies \text{Probe matter composition above } 2n_{\text{sat}}$

Using the full structure of the Λ -pdf

LVC, PRX 9 (2019)

Impact of 2 analyses from raw data:

- + LVC, PRX 9 (2019)
- + De et al., PRL 121 (2019)

—> Bayesian analysis

Impact of 2 prior sets:

#1: small ranges defined from global nuclear physics analysis (JM 2018)#2: large ranges (included non-zero probabilities)

GW170817 → 70 ≤ L ≤ 720 (90% CL) → 70 ≤ L ≤ 500 (90% CL)

Using the full structure of the Λ -pdf

Impact of 2 analyses from raw data: LVC, PRX 9 (2019) De et al., PRL 121 (2019)

Impact of 2 prior sets:

#1: small ranges defined from global nuclear physics analysis (JM 2018)#2: large ranges (included non-zero probabilities)

Using the full structure of the Λ -pdf

Impact of 2 analyses from raw data: LVC, PRX 9 (2019) De et al., PRL 121 (2019)

Impact of 2 prior sets:

#1: small ranges defined from global nuclear physics analysis (JM 2018)#2: large ranges (included non-zero probabilities)

Stringent constraints on NS radii

Direct comparison of the GW waveforms to the raw data, with EoS modeling + $M_{\text{total}} \leq M_{\text{thresh}} (\approx 2.3 M_{\odot})$.

—> Low NS radii also seems to be preferred.

Richness & complexity of multi-messenger analysis

In summary

Thermal emission from qLMXB:

Could predict **low radii**. Could also be compatible with nuclear physics (**average radii**).

GW170817 + multi-messenger:

Requires improved precision for $\tilde{\Lambda}$. More detailed analyses: tend to prefer **small radii** (~11 km). Extended GW+EM analysis: prefer **average radii** (12-13 km).

NICER:

Data from PSR J0030+0451: **average radii** seems to be preferred...

Tension seems to **emerge** between various observational signals. —> to which extend it signs the existence of a **phase transition**?

Conclusion and outlook

Multi-messenger observation: The BNS GW + kilonovae EM signal + GRB (+ neutrinos?). Variety of GW sources: BNS, BH-NS, CCSN, continuous emission, etc... (Futur) post-merger GW signal: investigation of phase transitions.

Future upgrades and new telescopes (a lot of new data): GW interferometers: upgrades of LIGO-Virgo (KAGRA, LIGO India). E-M follow-up: GRANDMA, ZTF \rightarrow (future) LSST. 3rd generation (~2030-2040): Cosmic Explorer, Einstein Telescope. Space interferometer (LISA ~2035): low frequencies (trigger future mergers).

LSST

Blooming future —> answering fundamental questions about dense matter