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Motivation: Classical GR

• Off shell and covariant approximation of GR.

• Which effects are really relativistic?

• Action for Newtonian gravity.

• Post-Newtonian expansion: weak field and non-relativistic.
But there is no need to take a weak field limit. What is
strong non-relativistic gravity?

• Universal method to define non-relativistic approximations
of any relativistic field theory.
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Motivation: Quantum Gravity

• Bronstein cube

• Is non-relativistic quan-
tum gravity a well-
defined limit of string
theory/holography?

• Why would NR quan-
tum gravity require a UV
completion?

• What does it tell us about
holography if it is not
restricted to relativistic
gravity theories like GR?
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Outline

• How to expand GR in 1/c: non-relativistic geometry and
gauge symmetries and algebras

• Solutions: weak and strong limits of Schwarzschild and
AdS/dS spacetime

• 1/c expansions of Lagrangians

• Backreaction and matter couplings: Schrödinger–Newton
equation

• Comments on holography and string theory
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c-dependence of GR

• A convenient way to make the c-dependence of GR manifest

is to write gµν = −c2TµTν +Πµν and gµν = − 1
c2T

µT ν +Πµν .

• Signature of Πµν is (0, 1, . . . , 1).

• Light cones in tangent space have slope 1/c:

Ea
µ (spatial vielbeins labelled by a)

Tµ

1/c

• Write 1/c = ǫ/ĉ where ĉ is the speed of light. The expansion
is then in the dimensionless quantity ǫ. We set ĉ = 1.
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c-dependence of GR

• Goal: write the Einstein–Hilbert action in terms of Tµ and Πµν .

• Requires a new choice of connection Cρ
µν called the

‘pre-non-relativistic’ connection defined as

Cρ
µν = −T ρ∂µTν +

1

2
Πρσ (∂µΠνσ + ∂νΠµσ − ∂σΠµν)

• This connection has torsion proportional to ∂µTν − ∂νTµ and

satisfies:
(C)

∇µTν = 0 =
(C)

∇µΠ
νρ

• In terms of Tµ, Πµν the EH Lagrangian is [Hansen, JH, Obers, 2019]

LEH =
c6

16πG
E

[

1

4
ΠµνΠρσ (∂µTρ − ∂ρTµ) (∂νTσ − ∂σTν) +

1

c2
Πµν

(C)

Rµν

+
1

4c4
ΠµνΠρσ (LTΠµρLTΠνσ − LTΠµνLTΠρσ)

]
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1/c expansion

• So far we just reformulated GR in different variables. We will
now assume that we can Taylor expand Tµ and Πµν in 1/c:

Tµ = τµ+
1

c2
mµ+

1

c4
Bµ+O(c−6) , Πµν = hµν+

1

c2
Φµν+O(c−4)

• This is what leads to the covariant 1/c expansion.

• Note here only even powers. For odd powers see [Ergen,

Hamamci, Van den Bleeken, 2020].

• This leads to the metric expansion:

gµν = −c2τµτν+hµν−2τ(µmν)+c
−2
(

Φµν −mµmν − 2τ(µBν)

)

+O(c−4)

• 1/c expansion of the metric was pioneered by [Dautcourt,

1990/97] and generalised in [Van den Bleeken, 2017].
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Weak NR limit of Schwarzschild

• Schwarzschild line element with factors of c reinstated:

ds2 = −c2
(

1− 2Gm

c2r

)

dt2 +

(

1− 2Gm

c2r

)−1

dr2 + r2dΩS2

• Weak limit: consider m independent of c2.

τµdx
µ = dt , hµνdx

µdxν = dr2 + r2dΩS2

mµdx
µ = −Gm

r
dt , Φµνdx

µdxν =
2Gm

r
dr2

• Point mass in flat space with Newtonian potential Φ = −Gm
r .

• Absolute time t: τ is exact.
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Strong NR limit of Schwarzschild

• Strong limit: m = c2M ; M independent of c2 [Van den Bleeken, 2017].

τµdx
µ =

√

1− 2GM

r
dt , hµνdx

µdxν =

(

1− 2GM

r

)−1

dr2+r2dΩS2

mµdx
µ = 0 = Φµνdx

µdxν

• This strong gravity expansion of the Schwarzschild metric is
not captured by Newtonian gravity, but is still described as a
Newton–Cartan geometry.

• This provides us with a different approximation of GR as
compared to the post-Newtonian expansion.

• τ is no longer exact but τ ∧ dτ = 0 (hypersurface orthogonality).
Strong limit captures gravitational time dilation: clocks tick
slower/faster depending on position on a constant time slice.
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Gauge structure

• Consider Einstein–Cartan formalism.

• Poincaré algebra generators: H, Pa, Ba, Jab (so(d))

[H ,Ba] = Pa , [Pa , Bb] =
1

c2
Hδab , [Ba , Bb] = − 1

c2
Jab

• Cartan connection: Aµ = HTµ + PaE
a
µ +Baωµ

a + 1
2Jabωµ

ab

(ωµ
a , ωµ

ab) make up the spin connection.

• Transformation: δAµ = LΞAµ + ∂µΣ+ [Aµ,Σ]

Σ = Baλ
a + 1

2Jabλ
ab

• No GR torsion: Fµν |H = 0 = Fµν |Pa
. Solved by writing spin

connection in terms of vielbeins (and derivatives).

• Expanding vielbeins Tµ and Ea
µ in 1/c2 leads to an algebra

expansion where the new generators are T (m) = T ⊗ c−2m
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Algebra expansion

• This leads to the infinite dimensional algebra:

[

H(m), B(n)
a

]

= P (m+n)
a ,

[

P (m)
a , B

(n)
b

]

= δabH
(m+n+1)

[

B(m)
a , B

(n)
b

]

= −J (m+n+1)
ab

n counts the order in the c−2 expansion.

• We can quotient this algebra by setting to zero all
generators with level n > L for some L [Khasanov, Kuperstein,

2011].

• At level n = 0 the algebra is isomorphic to the Galilean
algebra which is the Inönü–Wigner contraction of the
Poincaré algebra. We will consider the algebra up to level
n = 1, i.e. by truncating all level two and higher generators.
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Level one algebra

• H ≡ H(0), Pa ≡ P
(0)
a , Ga ≡ B

(0)
a , Jab ≡ J

(0)
ab , (Ga Galilean

boost) and N ≡ H(1), Ta ≡ P
(1)
a , Ba ≡ B

(1)
a , Sab ≡ J

(1)
ab .

[H ,Ga] = Pa , [Pa , Gb] = Nδab

[N ,Ga] = Ta , [H ,Ba] = Ta , [Ga , Gb] = −Sab
[Sab , Pc] = δacTb − δbcTa , [Sab , Gc] = δacBb − δbcBa

Left out commutators with Jab [Hansen, JH, Obers, 2018/19].

• Modding out Ta, Ba and Sab gives Bargmann algebra

• Only modding out Ta, Ba in 3D gives extended Bargmann
used in Chern–Simons theories [Papageorgiou, Schroers, 2009];
[Bergshoeff, Rosseel, 2016]; [JH, Lei, Obers, 2016] with Sab = Sǫab.

• Cartan formalism: Ta related to Φµν . Quotienting to

Bargmann is only possible when Φµν decouples (dτ = 0).
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Geometry

• Consider again the metric expansion:

gµν = −c2τµτν+hµν−2τ(µmν)+c
−2
(

Φµν −mµmν − 2τ(µBν)

)

+O(c−4)

• Inverse metric expands as: gµν = hµν +O(c−2) with τµh
µν = 0.

• We can view the 1/c expansion as an expansion around a
geometry with degenerate metrics τµτν and hµν where all the

higher order fields mµ and Φµν are like gauge connections.

• Expanding the generator of infinitesimal diffeos:

Ξµ = ξµ + 1
c2 ζ

µ +O(c−4) leads to gauge transformations for the

subleading fields mµ and Φµν wrt subleading diffeos ζµ.

• hµν is not a ‘metric’ because it transforms under ‘local Galilean

boosts’: shifts of hµν and mµ that leave hµν − 2τ(µmν) invariant.
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NR limits of AdS/dS spacetimes

• global coord.: ds2 = −c2 cosh2 ρdt2 + l2
(

dρ2 + sinh2 ρdΩ2
d−1

)

• Corresponding type II NC geometry (mµ = 0 = Φµν):

τµdx
µ = cosh ρdt , hµνdx

µdxν = l2
(

dρ2 + sinh2 ρdΩ2
d−1

)

• AdS(+)/dS(-): ds2 = −
(

c2 ±H2r2
)

dt2 + dr2

1±H2r2

c2

+ r2dΩ2
d−1

radius l = c
H with H independent of c.

• The resulting NC geometry is the Newton–Hooke space:

τ = dt , hµνdx
µdxν = d~x · d~x , m = ±1

2
H2~x2dt

• Using NC gauge transformations this is also:

AdS : τ = dt′ , h′µνdx
µdxν = cos2(Ht)d~x′ · d~x′ , m′ = 0

dS : τ = dt′ , h′µνdx
µdxν = e2Htd~x′ · d~x′ , m′ = 0
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Type I vs Type II Newton–Cartan geometry

• The NC geometry just described is called type II.

• Type I is obtained by removing Φµν and by changing the

gauge transformation of mµ to δmµ = ∂µΛ. This is what is

ordinarily called the NC geometry and it can be obtained by
applying the Cartan formalism to the Bargmann algebra
[Andringa, Bergshoeff, de Roo, Panda, 2011].

• On shell Newtonian gravity [Trautman, 1963]:

R̄µν = 8πG
d− 2

d− 1
ρτµτν , dτ = 0

we used a type I, NC metric compatible connection Γ̄ρ
µν .

• This equation has been known for a long time and is
invariant under type I NC gauge transformations, so it
seemed reasonable to look for a type I invariant action.
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Type I vs Type II Newton–Cartan geometry

• The algebra expansion does not lead to the Bargmann
algebra and so the off shell gauge structure is not type I.

• It is not consistent to set dτ = 0 off shell.

• Type II becomes type I if and only if we are on shell and
dτ = 0 as then Φµν decouples and the gauge

transformations for mµ coincide.

• To find an action formalism for NR gravity we need to
expand the EH Lagrangian.
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Lagrangian expansions

• Expanding Lagrangians: L(c, φ, ∂µφ) where

φ = φ(0) + c−2φ(2) + · · ·

• Assuming the overall power of the Lagrangian is cN we

define L̃(σ) = c−NL(c, φ, ∂µφ) where σ = c−2

• Taylor expand L̃(σ) around σ = 0, i.e.

L̃(σ) = L̃(0)+σ
(

∂L̃
∂σ

|σ=0 + φ(2)

[

∂L̃(0)
∂φ(0)

− ∂µ

(

∂L̃(0)
∂∂µφ(0)

)])

+· · ·

• The eom of the NLO field of the NLO Lagrangian is the eom
of the LO field of the LO Lagrangian.
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EH Lagrangian

LEH =
c6

16πG
E

[

1

4
ΠµνΠρσ (∂µTρ − ∂ρTµ) (∂νTσ − ∂σTν) +

1

c2
Πµν

(C)

Rµν

+
1

4c4
ΠµνΠρσ (LTΠµρLTΠνσ − LTΠµνLTΠρσ)

]

• Connection: Cρ
µν = −T ρ∂µTν +

1
2Π

ρσ (∂µΠνσ + ∂νΠµσ − ∂σΠµν)

• Expanding: LEH = c6

16πG

[

LLO + σLNLO + σ2LN2LO +O(σ3)
]

LLO =
e

4
hµνhρσ (∂µτρ − ∂ρτµ) (∂ντσ − ∂στν)

LNLO = ehµνŘµν +
δLLO

δτµ
mµ +

δLLO

δhµν
Φµν

where the connection is Γ̌ρ
µν = Cρ

µν |σ=0.
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Non-relativistic gravity

• For the eom of the N2LO Lagrangian involving only NLO fields
we can use τ ∧ dτ = 0 off shell: LNRG = LN2LO|τ∧dτ=0 + LLM =

≡ e

16πG

[

hµρhνσKµνKρσ − (hµνKµν)
2 − 2mν (h

µρhνσ − hµνhρσ) ∇̌µKρσ

+ΦhµνŘµν +
1

4
hµρhνσFµνFρσ +

1

2
ζρσh

µρhνσ(∂µτν − ∂ντµ)

−Φρσh
µρhνσ

(

Řµν − ∇̌µaν − aµaν −
1

2
hµνh

κλŘκλ + hµνe
−1∂κ

(

ehκλaλ

)

)

]

[Hansen, JH, Obers, 2020]

• Kµν is the extrinsic curvature, F = dm− a ∧m and a is

essentially the derivative of the lapse function N in τ = NdT .

• In 3D, if we force dτ = 0 with a LM then this becomes a Chern–
Simons theory for the extended Bargmann algebra [Papageorgiou,

Schroers, 2009]; [Bergshoeff, Rosseel, 2016]; [JH, Lei, Obers, 2016].
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Point Particles

• The proper time particle Lagrangian is

L = −mc
(

−gµνẊµẊν
)1/2

• Expand the metric and scalars Xµ = xµ + 1
c2 y

µ +O(c−4)

• The action of a particle on type II TNC geometry

L = −mc2τµẋµ+m
(

(∂ντµ − ∂µτν) ẋ
νyµ +

1

2

h̄µν ẋ
µẋν

τρẋρ

)

+O(c−2)

• The yµ EOM forces dτ = 0. Coupling to NRG gives Newtonian
gravity and geodesics obeying Newton’s second law:

ẍµ + Γ̄µ
νρẋ

ν ẋρ = 0 , τµẋ
µ = 1
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Coupling to matter

• The NRG Lagrangian appears at order c2 and so couples to

the c2 order of the expansions of the matter Lagrangians.

• If we add L = −m
∫

dλτµẋ
µδ(x− x(λ)) (which is the c2 and

LO term in the expansion of the massive point particle
Lagrangian) then we recover Newtonian gravity coupled to a
point particle.

• The xµ eom forces dτ = 0 and in this case Φµν decouples

on shell from the other NC fields.

• The EOM for the type I NC fields can be summarised as

R̄µν = 8πG
d− 2

d− 1
ρτµτν , ρ = m

∫

dλ
δ(x− x(λ))

e
, dτ = 0
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Point ‘particles’ for strong gravity

• Geodesics when τ ∧ dτ = 0. Different expansion:

Xµ = xµ +
1

c
yµ +O(c−2) , τµẋ

µ = 0

• In this case the action is (τµy
µ is a Lagrange multiplier)

S =

∫

dλL = −mc
∫

dλ

[

(

d

dλ
(τµy

µ)− ẋνaντµy
µ

)2

− hµν ẋ
µẋν

]1/2

• Fixing worldline reparametrisation symmetries, the EOM
involving xµ are, using τ = NdT (time function T ):

ẍµ + Γ̌µ
νρẋ

ν ẋρ =
1

2
hµσ∂σN

−2 ,
1

2
hµν ẋ

µẋν − 1

2
N−2 = E

• This is identical to what we know from GR and from it we
can derive the GR contribution to perihelion precession.
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Scalar Fields

• Free massive complex scalar field φ = 1√
2
ϕeiθ

L = − 1

2c

√−g
[

gµν∂µϕ∂νϕ+ ϕ2
(

gµν∂µθ∂νθ +m2c2
)]

• We expand the modulus and phase of φ as

ϕ = ϕ(0)+c
−2ϕ(2)+O(c−4) , θ = c2

(

θ(0) + c−2θ(2) +O(c−4)
)

• Expanding the Lagrangian we find that on shell we must
have ∂µθ(0) = −mτµ so that dτ = 0.

• The Schrödinger field ψ =
√
mϕ(0)e

iθ(2) propagates on a

type I NC background sourcing NC gravity with mass
ρ = mψψ∗ leading to the Schrödinger–Newton equation:

i∂tψ(t, x) =

(

− 1

2m
~∂2 −m2G

∫

d3x′
ψ(t, x′)ψ⋆(t, x′)

|~x− ~x′|

)

ψ(t, x)
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Structure of the EOM

• For τ ∧ dτ = 0 we obtain something more general: strong
NRG (Φµν does not decouple on shell).

• Natural gauge choice:

τ = Ndt , hµνdx
µdxν = γijdx

idxj , m = Φdt−N−1γijN
idxj

with N the lapse function, γij an invertible Riemannian

metric, Φ Newton’s potential and N i the shift vector.

1). EOM I: spatial derivatives of N and γij . Time

dependence through integration constants.

2). EOM II: time dependence of N and γij coupled to spatial

derivatives of the NLO fields: Φ, N i and Φij .

• See also [Van den Bleeken, 2019].
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Comments

• FLRW also solves the eom of NRG coupled to a fluid.

• The Tolman–Oppenheimer–Volkoff solution for a fluid star is
a solution of NRG coupled to a fluid.

• It passes the three classical GR tests: gravitational redshift,
perihelion and bending of light.

• For Maxwell there are two expansions that agree with the
known on shell electric and magnetic limits.

• Kerr geometry and odd powers of 1/c.

• What is a controlled way of doing this at any order in 1/c:
maybe better in a first order formalism?

• Hamiltonian analysis and asymptotic symmetries.

• Applications to astrophysics?
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Strings

• Can we construct a string theory whose worldsheet beta
functions correspond to NR gravity?

• NR strings go back to [Gomis, Ooguri, 2000] and [Danielsson, A.

Guijosa and M. Kruczenski, 2000] for flat target spaces.

• These strings are obtained from 1/c2 expansion of the form

gµν = c2
(

−T 0
µT

0
ν + T 1

µT
1
ν

)

+Π⊥
µν in non-trivial Kalb–Ramond

backgrounds. The worldsheet is still a CFT.

• In general curved backgrounds [Bergshoeff, Gomis, Yan, 2018];
[Harmark, JH, Menculini, Obers, Oling, 2019]. These target spaces are
described by type I NC geometry with an additional circle
that strings must wind.

• Beta functions: [Yan, Yu, 2019] and [Gallegos, Gürsoy, Zinnato, 2019]

• So far no string theory is known for type II NC backgrounds.
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Holography

• Limits of Chern–Simons theories [JH, Lei, Obers, Oling, 2017]

• Near BPS limits of strings on AdS5 × S5 and spin-matrix
limits of N = 4 SYM [Harmark, Orselli, 2014].

• Duality between NR strings and quantum mechanical limits
of N = 4 SYM [Harmark, JH, Menculini, Obers, Yan, 2018].

• The worldsheet theories are non-relativistic, e.g.

LLL =
Q

4π

[

cos θφ̇− 1

4

(

θ′2 + sin2 θφ′2
)

]

Landau–Lifshitz sigma model for near BPS limit in SU(2)

sector. Spin chain momentum is zero
∫ 2π
0 dσ sin θφ′ = 0.

• String moves on a NC-like target space R× S2 and is pure

winding along an additional S1.
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Outlook

• Is there a well-defined corner called NRQG? Does it have a
string theory description and if so why would it need one?
Can it be holographic?

• Can we use the 1/c expansion to learn more about quantum

mechanics in gravitational backgrounds? [Pikovski, Zych, Costa,

Brukner, 2015]

• Can we systematically compute post-Newtonian corrections
to gravity coupled to generic matter systems using the 1/c
expansion?

• Is strong NR gravity a useful starting point for certain
astrophysical problems? Can we study the 2-body problem
in that regime?

• What can we say about asymptotic symmetries in NR
gravity and first law type relations?
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