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Short introduction

The cosmological model

What do we know so far? At cosmological scales the Universe is:
@ homogeneous
@ isotropic
@ mostly composed of unknown ingredients

The first two conditions fix the metric to FLRW

ds? = —dt? + a0 (dr* + rPdQ?) (1)
1-— K3r2

Further observations show compatibility with zero spatial
curvature.
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Short introduction
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Short introduction

Inflation: a period with 4 > 0. Was first introduced to tackle
some “problems”

@ monopoles from GUT [Guth]
@ particle horizon (isotropy) [Kazanas| and flatness [Guth]
@ other more exotic relics such as domain walls

Later it was realized that it predicted small anisotropies =
mechanism for structure formation [Mukhanov]|

However, the likelihood of initial conditions, parameter values,...,
requires knoweledge of probability densities [Wald, Sloan,. ]
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Short introduction

o Early universe cosmology: Assume

g = 8o tegu)t+ - (2)
¢) = ¢l T ety + (3)
and then solve
G(O) = T(o), D¢J(0) + V’ijo) =0 (4)
Gy = Ta), D¢J(1) + V’(J1) =0 (5)

o First order quantities are connected to observables
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Short introduction

Split the metric into scalar, vector and tensor degrees of freedom.
After canonical quantization

o scalar degrees R = R(¢(1), (1)) correspond to

(RiRi) = (2m)°3(k + k') Pr(k) (6)
e tensor h = h(g(1)) degrees correspond to

(hichir) = (2m)°5(k + K')Py(k) (7)
@ vector modes decay for scalar fields

For the rest focus only on background quantities.
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Short introduction

Single-field inflation

Assume simple Lagrangian density

1
L=+—-g <R - §8M<Z>8“<Z> - V> (8)
Substitute g — g gy, K3 = 0 and é(t, x') — ¢(t) =
minisuperspace Lagrangian

é+1é2
a 2\a

Lms = a°

+ (;&2 - v> (9)

EOM (with H = 4/a)

1. . 1.
3H> =Z¢° + V H=—=¢
FO°+V, 9
6 + 3H6 + Vg =0
~~ ~~— ~~
acceleration Hubble friction  potential gradient
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Short introduction

@ Similarities with parachute fall
X+bx+mg=0 (12)

terminal velocity: X =0< x=—mg/b
e For inflation it corresponds to the slow-roll velocity. Hubble
friction balances gradient = slowly varying motion

_Air
Resistance
or "Drag”

Gravity
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Short introduction

Phase space plot

1 207 do/dt

Figure: Numerical solution for a massive quadratic field (arXiv:1309.2611)§
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Short introduction

AV(d)
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Figure: Starobinsky model (most favorable)
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Short introduction

@ Short introduction

© Methods to solve the Klein-Gordon
@ Exact solutions
@ Dynamical system

© Two-field solutions
@ Multi-field equations of motion
@ Bifurcations
@ Stability criteria

@ Domain walls for multiple fields

e Summary
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Methods to solve the Klein-Gordon n
Exact solutions

Dynamical system

Klein-Gordon is
@ non-linear
@ second order in time

= no general analytical solutions. However, autonomous so can
apply reduction of order

@ Transform as first order system

y=2¢ (13)
y=-3Hy -V, (14)
% (15)

@ Time reparameterization t — ¢ (gi) #0): d/dt — yd/d¢o %/o
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Methods to solve the Klein-Gordon n
Exact solutions

Dynamical system

yy¢=—3Hy — Vg4 (16)
1
H,¢> = —5)/ (17)

with the Friedman constraint 3H? = %yz +V

@ Klein-Gordon first order but non-autonomous = not an
improvement

@ Solve the inverse problem: given a solution ys, which V
satisfies the ODE
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Methods to solve the Klein-Gordon n
Exact solutions

Dynamical system

o Eliminating y gives V for some H
V =3H?> - 2H? (18)
Known as the superpotential method [Salopek, Bond]

@ H can be eliminated by defining u = y/H. Used in dark
energy models and dynamical systems
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Methods to solve the Klein-Gordon R
Exact solutions

Dynamical system

e Important quantity e = —H/H? = 3K /(K + V):
3> 0 < e < 1. Study evolution of this variable

@ Time and field redefinition

t—>N=Ina, u:é:qﬁ' (19)
H
and Klein-Gordon becomes
¢ =u (20)
u’—lu3 + 3u + E’w—lu2 (InV),=0
2 v ) 2 ?¢
~——~~"_ Hubble friction 3H¢
acceleration ¢ gradient V4
(1%
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Methods to solve the Klein-Gordon R
Exact solutions

Dynamical system

o What do we gain? Note that € = 1/2u? and so

¢ = sv2e (22)
d=—-(3—¢€ |2 +5V2(InV) 4 (23)
with s = sign(¢)
If (In V) 4 =const then 3 critical points:

@ = 1(InV),, = ey (scaling solution)
@ ¢ = 3 (kinetic domination)

scaling stable for (InV) 4 <6 & €y <3
kinetic stable for (In V) 4 > 6 < ey >3

Side note: separable ODE = general analytical solution
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Methods to solve the Klein-Gordon R
Exact solutions

Dynamical system

o define p=(InV) 4. For p1 < pp = €] < €, = €1 < e2. For
field-dependent p appropriate exponentials bound evolution

@ rate of growth for inflation can be estimated using
exponentials. Specifically for slowly varying p

P<len —a <1 (24)

i.e. the slow-roll conditions are equivalent to an exponential
with a slowly-varying exponent. The slow-roll solution
(late-time) is close to a scaling solution, which slowly varies
with time

@ Slow-roll models imitate solutions which have proper
attractors = quasi-attractors
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Methods to solve the Klein-Gordon R
Exact solutions

Dynamical system

Phase space plot revisited

e-folding time 18/32



Methods to solve the Klein-Gordon R
Exact solutions

Dynamical system

Key points so far

@ Exact solutions can be constructed via reduction of order

e Formulated in dynamical systems terms p = (In V') 4 controls
evolution of ¢

e With differential inequalities an estimate for growth of € can
be found

@ Slow-roll models are small deformations of scaling solutions
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Multi-field equations of motion
Two-field solutions Bifurcatiol

Stability criteria

@ Multiple scalar fields with minimal derivative couplings.
Minisuperspace matter Lagrangian

1 ..
tn=a* (300’ - V) (25)
where G|, behaves as a metric

e Non-minimal models with L, = /—gf(¢)R can be brought
in previous form via a conformal transformation g — Q(¢)g
Jordan frame — Einstein frame [Kaiser, Sfakianakis]
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Multi-field equations of motion

Two-field solutions

o EOM
Di¢? +3H¢? + V7 =0 (26)
H= _%g”é’qﬁf (27)
3H? = %Q/J¢I<Z5J +V (28)

where D; is the covariant time derivative associated with G

e Solutions with ¢/ ~ 0? Based on previous discussion can look
for scaling two-field solutions

&/
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Multi-field equations of motion
Two-field solutions Bifu i

Stability criteria

Figure: The one-parameter “attractor” solution of angular inflation %,
where V = %mixz + %mﬁ@z and Gy = Wéu.
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Multi-field equations of motion
Two-field solutions Bifurcations

Stability criteria

If an one-parameter (approximate) solution exists then align
coordinates such that x = 0, while ¢ is evolving

G+T5,0% + - +3Hp+ V¢ =0 (29)
KA T80 + -+ 3HY + VX =0 (30)

Solution requires ¥ = 0 and F;d)gﬁ +VX=VX=0
With more complicate argument: <;5 ~0= Dtd) ~0

Inflaton is subject to vanishing covariant acceleration, while
the “heavy” field is stabilized at a critical point of its
effective potential
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Multi-field equations of motion
Two-field solutions Bifurcations

Stability criteria

@ Bifurcations: alteration in stability of critical points
@ Prototypical example:

ox’
I _ 2 — _— = — 2
x'=—x(x*—a) o =2 3x (31)

© 2 < 0 then x = 0 only critical point ( stable)

@ a > 0 two more critical points at x = ++/a (stable), and x =0
(unstable)

e Eq. (31): normal form of a pitchfork bifurcation
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Multi-field equations of motion
Two-field solutions Bifurcations
Stability criteria

|
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initial critical point becomes unstable. #stable — #unstable
remains the same = 2 new stable CP
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Multi-field equations of motion
Two-field solutions Bifurcations

Stability criteria

@ If the effective gradient has more critical points then stability
may depend on several model parameters (length of curvature,
masses,..)

@ An appropriate choice of parameters guarantees pitchfork
bifurcations

@ This was known as geometrical destabilization [Renaux-Petel,
Turzinsky]; a geodesic solution becomes unstable and two others
may appear. If not account properly can lead to wrong
predictions
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Multi-field equations of motion

Two-field solutions Bifurcations

Stability criteria
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Figure: Sidetracked model: ds® = dx? + (1 + ’Z—:) d¢? and
V = 3m2x?+ 3m3¢°. Left: Effective gradient. Right: Evolution on the
¢ — x plane
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Multi-field equations of motion
Two-field solutions Bifurcations
Stability criteria
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Figure: Hyperinflation model: ds? = dx? + cosh® (X) d¢? and

= 1m?¢? + Im2x22. Left: Effective gradient. Right: Evolution on
the ¢ — x p/ane
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Multi-field equations of motion
Two-field solutions Bifurcations

Stability criteria

@ Dynamical system and linearization:
x="f(x), ox=J0x (32)
Eigenvalues of J determine local behaviour around a solution.

e If Re(\;) < 0 = system asymptotically stable. If one zero,
special treatment

o Note that eigenvalues of 8y = Ady, where dy(iy = f(iy0X(i
provide no information about (32)
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Multi-field equations of motion
Two-field solutions Bifurcations

Stability criteria

ds® = g*(¢)dx* + f2(x)d¢?, (33)

that includes the commonly used of a metric with an isometry.
Linearizing Klein-Gordon

o (V. 3X),x > 0: defines a mass (M) which coincides with the
effective mass of isocurvature perturbations on super-Hubble
scales (12) only when g = 1, that is for problems with
isometry.

@ (3—¢€)> —(Ing)": defines a critical value for € beyond which
motion becomes unstable.

Thus, background stability is not always the same as stability of
cosmological perturbations "%/0
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Domain walls for multiple fields

@ Solutions of Einstein’s equations with a spacelike killing vector
ds? = dz? + e"?ds?_, (34)
If subspace Minkowski and A(z) — 0 at the boundary = AdS

@ Domain walls < cosmology [Skenderis et al.]

o (Approximate) solutions mentioned earlier will have a domain
walls analogue. RG flow < slow-roll parameter €
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Summary

@ We presented exact solutions and dynamical systems analysis
for the Klein-Gordon equation

@ We demonstrated the resemblance between the slow-roll
approximation and scaling solutions

@ We presented two-field solutions for non-trivial field manifolds

@ We proposed a unification scheme of different (viable)
inflationary models based on their attractors and bifurcations.
This can be extended to domain wall solutions
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