(Slowly-varying) Attractors and Bifurcations in Multi-field Inflation

Perseas Christodoulidis

based on 1811.06456 and work with Diederik Roest and Evangelos Sfakianakis 1903.03513, 1903.06116

University of Groningen

Southampton, 2019

The cosmological model

What do we know so far? At cosmological scales the Universe is:

- homogeneous
- isotropic
- mostly composed of unknown ingredients

The first two conditions fix the metric to FLRW

$$ds^{2} = -dt^{2} + \frac{a(t)^{2}}{1 - K_{3}r^{2}} \left(dr^{2} + r^{2}d\Omega^{2} \right)$$
(1)

Further observations show compatibility with **zero** spatial curvature.

Short introduction

Methods to solve the Klein-Gordon Two-field solutions Domain walls for multiple fields Summary

Figure: The standard cosmological model (NASA WMAP Science Team)

Inflation: a period with $\ddot{a} > 0$. Was first introduced to tackle some "problems"

- monopoles from GUT [Guth]
- particle horizon (isotropy) [Kazanas] and flatness [Guth]
- other more exotic relics such as domain walls

Later it was realized that it predicted small anisotropies \Rightarrow mechanism for structure formation [Mukhanov]

However, the likelihood of initial conditions, parameter values,..., requires knoweledge of probability densities [Wald, Sloan,..]

security of exercise and regenering we wanted the security of the particle physics and gravit of a constant of the particle physics and gravit of a constant of the particle physics and gravit

• Early universe cosmology: Assume

$$g = g_{(0)} + \epsilon g_{(1)} + \cdots$$
 (2)

$$\phi^{J} = \phi^{J}_{(0)} + \epsilon \phi^{J}_{(1)} + \cdots$$
 (3)

and then solve

$$G_{(0)} = T_{(0)}, \qquad \Box \phi^{J}_{(0)} + V^{J}_{(0)} = 0 \qquad (4)$$

$$G_{(1)} = T_{(1)}, \qquad \Box \phi^{J}_{(1)} + V^{J}_{(1)} = 0 \qquad (5)$$

イロト イボト イヨト イヨト

• First order quantities are connected to observables

. . .

Split the metric into scalar, vector and tensor degrees of freedom. After canonical quantization

• scalar degrees $R = R(\phi_{(1)}, g_{(1)})$ correspond to

$$\langle R_{\boldsymbol{k}}R_{\boldsymbol{k}'}\rangle = (2\pi)^3 \delta(\boldsymbol{k} + \boldsymbol{k}') P_R(\boldsymbol{k})$$
 (6)

• tensor $h = h(g_{(1)})$ degrees correspond to

$$\langle h_{\boldsymbol{k}} h_{\boldsymbol{k}'} \rangle = (2\pi)^3 \delta(\boldsymbol{k} + \boldsymbol{k}') P_h(\boldsymbol{k})$$
(7)

A D > A D > A D > A D >

• vector modes decay for scalar fields

For the rest focus only on background quantities.

Single-field inflation

Assume simple Lagrangian density

$$\mathcal{L} = \sqrt{-g} \left(R - \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V \right)$$
(8)

Substitute $\boldsymbol{g} \rightarrow \boldsymbol{g}_{FRW}$, $K_3 = 0$ and $\phi(t, x^i) \rightarrow \phi(t) \Rightarrow$ minisuperspace Lagrangian

$$L_{ms} = a^3 \left[\frac{\ddot{a}}{a} + \frac{1}{2} \left(\frac{\dot{a}}{a} \right)^2 \right] + a^3 \left(\frac{1}{2} \dot{\phi}^2 - V \right) \tag{9}$$

EOM (with $H \equiv \dot{a}/a$)

• Similarities with parachute fall

$$\ddot{x} + b\dot{x} + mg = 0 \tag{12}$$

terminal velocity: $\ddot{x} = 0 \Leftrightarrow \dot{x} = -mg/b$

 For inflation it corresponds to the slow-roll velocity. Hubble friction balances gradient ⇒ slowly varying motion

Short introduction

Methods to solve the Klein-Gordon Two-field solutions Domain walls for multiple fields Summary

Phase space plot

Short introduction

Methods to solve the Klein-Gordon Two-field solutions Domain walls for multiple fields Summary

Short introduction

2 Methods to solve the Klein-Gordon

- Exact solutions
- Dynamical system

3 Two-field solutions

- Multi-field equations of motion
- Bifurcations
- Stability criteria

4 Domain walls for multiple fields

5 Summary

Exact solutions Dynamical system

Klein-Gordon is

non-linear

econd order in time

 \Rightarrow no general analytical solutions. However, autonomous so can apply reduction of order

• Transform as first order system

$$y = \dot{\phi}$$
 (13)

$$\dot{y} = -3Hy - V_{,\phi} \tag{14}$$

$$\dot{H} = -\frac{1}{2}y^2 \tag{15}$$

イロト イヨト イヨト

• Time reparameterization $t
ightarrow \phi$ $(\dot{\phi}
eq 0)$: $d/dt
ightarrow yd/d\phi$

12/32

Exact solutions Dynamical system

$$yy_{,\phi} = -3Hy - V_{,\phi}$$
(16)
$$H_{,\phi} = -\frac{1}{2}y$$
(17)

イロト イボト イヨト イヨト

with the Friedman constraint $3H^2 = \frac{1}{2}y^2 + V$

- Klein-Gordon first order but **non-autonomous** \Rightarrow not an improvement
- Solve the **inverse problem**: given a solution y_{sol} which V satisfies the ODE

Exact solutions Dynamical system

• Eliminating y gives V for some H

$$V = 3H^2 - 2H_{,\phi}^2 \tag{18}$$

Known as the superpotential method [Salopek, Bond]

• *H* can be eliminated by defining *u* = *y*/*H*. Used in dark energy models and dynamical systems

university of u

Exact solutions Dynamical system

- Important quantity $\epsilon \equiv -\dot{H}/H^2 = 3K/(K+V)$: $\ddot{a} > 0 \Leftrightarrow \epsilon < 1$. Study evolution of this variable
- Time and field redefinition

$$t \to N = \ln a$$
, $u = \frac{\phi}{H} = \phi'$ (19)

and Klein-Gordon becomes

Exact solutions Dynamical system

• What do we gain? Note that $\epsilon=1/2u^2$ and so

$$\phi' = s\sqrt{2\epsilon} \tag{22}$$

$$\epsilon' = -(3 - \epsilon) \left[2\epsilon + s\sqrt{2\epsilon} (\ln V)_{,\phi} \right]$$
(23)

with $s = {
m sign}(\dot{\phi})$

- scaling stable for $(\ln V)_{,\phi} < 6 \Leftrightarrow \epsilon_V < 3$
- kinetic stable for $(\ln V)_{,\phi} > 6 \Leftrightarrow \epsilon_V > 3$
- Side note: separable ODE ⇒ general analytical solution

Exact solutions Dynamical system

- define p = (ln V),φ. For p₁ < p₂ ⇒ ε'₁ < ε'₂ ⇒ ε₁ < ε₂. For field-dependent p appropriate exponentials bound evolution
- rate of growth for inflation can be estimated using exponentials. Specifically for slowly varying *p*

$$p' \ll 1 \Leftrightarrow \eta_V - \epsilon_V \ll 1 \tag{24}$$

- i.e. the slow-roll conditions are equivalent to an exponential with a slowly-varying exponent. The slow-roll solution (late-time) is close to a scaling solution, which slowly varies with time
- Slow-roll models imitate solutions which have proper attractors ⇒ quasi-attractors

Exact solutions Dynamical system

Phase space plot revisited

Exact solutions Dynamical system

Key points so far

- Exact solutions can be constructed via reduction of order
- Formulated in dynamical systems terms $p = (\ln V)_{,\phi}$ controls evolution of ϵ
- $\bullet\,$ With differential inequalities an estimate for growth of $\epsilon\,$ can be found
- Slow-roll models are small deformations of scaling solutions

Multi-field equations of motion Bifurcations Stability criteria

• Multiple scalar fields with minimal derivative couplings. Minisuperspace matter Lagrangian

$$\mathcal{L}_m = a^3 \left(\frac{1}{2} \mathcal{G}_{IJ} \dot{\phi}^I \dot{\phi}^J - V \right) \tag{25}$$

where \mathcal{G}_{IJ} behaves as a **metric**

• Non-minimal models with $L_{\rm gr} = \sqrt{-g}f(\phi)R$ can be brought in previous form via a conformal transformation $g \to \Omega(\phi)g$ Jordan frame \to Einstein frame [Kaiser, Sfakianakis]

Multi-field equations of motion Bifurcations Stability criteria

EOM

$$D_t \dot{\phi}^J + 3H \dot{\phi}^J + V^{,J} = 0$$
 (26)

$$\dot{H} = -\frac{1}{2} \mathcal{G}_{IJ} \dot{\phi}^I \dot{\phi}^J \tag{27}$$

$$3H^2 = \frac{1}{2}\mathcal{G}_{IJ}\dot{\phi}^I\dot{\phi}^J + V \tag{28}$$

where D_t is the covariant time derivative associated with \mathcal{G}

• Solutions with $\ddot{\phi}^{\prime}\approx$ 0? Based on previous discussion can look for scaling two-field solutions

Figure: The one-parameter "attractor" solution of angular inflation where $V = \frac{1}{2}m_{\chi}^2\chi^2 + \frac{1}{2}m_{\phi}^2\phi^2$ and $\mathcal{G}_{IJ} = \frac{\alpha}{(1-\chi^2-\phi^2)^2}\delta_{IJ}$.

miversity of groningen groningen facily of visions and responses was vestaforme institute for particle physics and growing

22 / 32

Multi-field equations of motion Bifurcations Stability criteria

• If an **one-parameter** (approximate) solution exists then align coordinates such that $\dot{\chi} = 0$, while ϕ is evolving

$$\ddot{\phi} + \Gamma^{\phi}_{\phi\phi}\dot{\phi}^2 + \dots + 3H\dot{\phi} + V^{,\phi} = 0$$
⁽²⁹⁾

$$\ddot{\chi} + \Gamma^{\chi}_{\phi\phi}\dot{\phi}^2 + \dots + 3H\dot{\chi} + V^{,\chi} = 0$$
(30)

- Solution requires $\ddot{\chi}=0$ and $\Gamma^{\chi}_{\phi\phi}\dot{\phi}^2+V^{,\chi}\equiv V^{,\chi}_{
 m eff}=0$
- With more complicate argument: $\ddot{\phi} pprox 0 \Rightarrow D_t \dot{\phi} pprox 0$
- Inflaton is subject to vanishing covariant acceleration, while the "heavy" field is stabilized at a critical point of its effective potential

Multi-field equations of motion Bifurcations Stability criteria

- Bifurcations: alteration in stability of critical points
- Prototypical example:

$$x' = -x(x^2 - a) \qquad \frac{\partial x'}{\partial x} = a - 3x^2 \tag{31}$$

- **1** a < 0 then x = 0 only critical point (stable)
- 3 a > 0 two more critical points at $x = \pm \sqrt{a}$ (stable), and x = 0 (unstable)
- Eq. (31): normal form of a pitchfork bifurcation

イロン イロン イヨン イヨン

Multi-field equations of motion Bifurcations Stability criteria

initial critical point becomes unstable. #stable – #unstable remains the same \Rightarrow 2 new stable CP

Multi-field equations of motion Bifurcations Stability criteria

イロト イヨト イヨト

26 / 32

- If the effective gradient has more critical points then stability may depend on several model parameters (length of curvature, masses,..)
- An appropriate choice of parameters guarantees pitchfork bifurcations
- This was known as geometrical destabilization [Renaux-Petel, Turzinsky]; a geodesic solution becomes unstable and two others may appear. If not account properly can lead to wrong predictions

Multi-field equations of motion Bifurcations Stability criteria

university o

27 / 32

イロト イヨト イヨト

Figure: Sidetracked model: $ds^2 = d\chi^2 + (1 + \frac{\chi^2}{L^2}) d\phi^2$ and $V = \frac{1}{2}m_{\chi}^2\chi^2 + \frac{1}{2}m_{\phi}^2\phi^2$. Left: Effective gradient. Right: Evolution on the $\phi - \chi$ plane

Multi-field equations of motion Bifurcations Stability criteria

Figure: Hyperinflation model: $ds^2 = d\chi^2 + \cosh^2\left(\frac{\chi}{L}\right) d\phi^2$ and $V = \frac{1}{2}m^2\phi^2 + \frac{1}{2}m^2\chi^2\frac{\phi}{L}$. Left: Effective gradient. Right: Evolution on the $\phi - \chi$ plane

university of groningen activ division and engineering warverse physics and growing 28 / 32

Multi-field equations of motion Bifurcations Stability criteria

• Dynamical system and linearization:

$$\dot{\mathbf{x}} = f(\mathbf{x}), \qquad \dot{\delta \mathbf{x}} = \mathbf{J} \cdot \delta \mathbf{x}$$
 (32)

Eigenvalues of J determine local behaviour around a solution.

- If Re(λ_i) < 0 ⇒ system asymptotically stable. If one zero, special treatment
- Note that eigenvalues of $\delta \mathbf{y} = \tilde{A} \delta \mathbf{y}$, where $\delta y_{(i)} = f_{(i)} \delta x_{(i)}$ provide no information about (32)

A D > A D > A D > A D >

$$ds^{2} = g^{2}(\phi)d\chi^{2} + f^{2}(\chi)d\phi^{2}, \qquad (33)$$

that includes the commonly used of a metric with an isometry. Linearizing Klein-Gordon

- $(V_{\rm eff}^{,\chi})_{,\chi} > 0$: defines a mass (M) which coincides with the effective mass of isocurvature perturbations on super-Hubble scales (μ_s^2) only when g = 1, that is for problems with isometry.
- (3 − ϵ) > −(ln g)': defines a critical value for ϵ beyond which motion becomes unstable.

Thus, background stability is not always the same as stability of cosmological perturbations

A D > A D > A D > A D >

• Solutions of Einstein's equations with a spacelike killing vector

$$ds^2 = dz^2 + e^{A(z)} ds_{n-1}^2$$
(34)

If subspace Minkowski and $A(z) \rightarrow 0$ at the boundary \Rightarrow AdS

- Domain walls \Leftrightarrow cosmology [Skenderis et al.]
- (Approximate) solutions mentioned earlier will have a domain walls analogue. RG flow \Leftrightarrow slow-roll parameter ϵ

- We presented exact solutions and dynamical systems analysis for the Klein-Gordon equation
- We demonstrated the resemblance between the slow-roll approximation and scaling solutions
- We presented two-field solutions for non-trivial field manifolds
- We proposed a unification scheme of different (viable) inflationary models based on their attractors and bifurcations. This can be extended to domain wall solutions

32 / 32