

3D X-RAY HISTOLOGY REVOLUTIONISING BIOMEDICAL IMAGING

µ-VIS X-RAY IMAGING CENTRE

microtomographic Volume Imaging at Southampton

OPPORTUNITIES IN 3D VOLUME IMAGING AT THE UNIVERSITY OF SOUTHAMPTON

The μ -VIS X-Ray Imaging Centre is University of Southampton's dedicated centre for CT and founding partner of the National Research Facility for lab-based X-ray CT (NXCT). The centre combines state-of-the-art equipment and 25 years of experience, plus the expertise of 40+ academic staff from across the University, offering a unique integrated resource for advanced 3D imaging.

THE BENEFITS OFFERED BY CT IMAGING:

- The ability to comprehensively visualise inaccessible and/or opaque materials and structures in 3D
- High spatial resolution (to submicrometre level if necessary)
- Detailed 3D (volume) parameterisation for characterisation and modelling
- Non-destructive

CONSULTANCY SERVICES

μ-VIS offers a range of services to external institutions (academic and industrial) including:

- feasibility assessments
- experimental design and planning
- 3D volume imaging
- image analysis (visualisation and morphometry)
- metrology
- assembly analysis
- image-based modelling
- correlative imaging
- in situ/in operando imaging
- training

COMPUTATIONAL FACILITIES

High-performance workstations for development and optimisation of novel analysis and workflows.

- workstations with up to 1 TiB RAM & 128 threads
- dedicated fast data transfer network
- high speed storage with over 700 TB raw capacity
- leading commercial and open-source software

CT IMAGING EQUIPMENT

LARGE-SCALE SCANING

2x customised walk-in bays up to 450kVp

- · imaging volumes in excess of 1x1x2 m
- · sample weight up to 200 kg & large user labyrinth
- 225 kVp, 300 kVp, 450 kVp X-Ray sources
- ~3 µm up to 300 kV, 50 µm at 450 kVp & 1 mm up to 1500W
- . 4 MP & 9 MP Flat Panel detectors + CLDA detector
- · helical scanning, laminography, scatter compensation

MID-SCALE AND HIGH-THROUGHPUT SCANNING 3x all-purpose CT and radiographic inspection systems up to 225 kVp

- · resolution down to 1.5 µm
- · samples to ~300 mm and 50 kg
- 10x & 14x automatic sample exchange racks

HIGH-RESOLUTION SCANNING

1x sub-micron resolution X-ray microscopy system

- · 30 -160 kVp, magnification objectives up to 40x
- o.7 µm true spatial resolution
- · phase-enhanced contrast imaging mode

BIOMEDICAL IMAGING AND X-RAY HISTOLOGY (XRH) 2x in-house designed systems

- · optimised for biomedical imaging & XRH
- resolution down to 1.5 µm
- samples up to ~300 mm and up to 15 kg
- · high-throughput and cryo-imaging
- · 4 MP & 7.5 MP FP detectors
- · photon-counting detector

PRECLINICAL IMAGING

2x small animal in vivo imaging systems

* Systems managed by the Biomedical Imaging Unit

- · correlative X-ray + fluorescence/luminescence imaging
- ~10 µm in vivo spatial resolutions
- · integrated physiological monitoring
- · gating mode

MANUFACTURERS

Nikon Metrology UK Ltd | diondo | Zeiss | Dectris PerkinElmer | Deben | Oxford Cryosystems

The μ-VIS Approach:

Imaging:

- system flexibility
- automation
- advanced methods

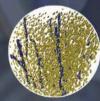
Data handling:

- fast, cost-effective
 HPC (GPGPU)
- end-to-end workflow, interoperability

Computer vision:

- -training
- established resources
- advanced algorithm implementation

CAPABILITIES & APPLICATIONS


Uniquely flexible, multiscale high-energy µCT

'walk in' custom-built bays equipped with multiple sources and detectors; designed for versatility and large-scale imaging

SCATTER COMPENSATION

single-slice and volume scatter-free imaging modes for stunning image sharpness and contrast of dense structures

HIGH RESOLUTION

sub-µm spatial resolution and phase-enhanced constrast capability

4D-CT

time-resolved ex-situ and in situ µCT imaging of deformation and/or failure mechanisms within samples

in situ TESTING

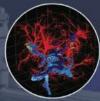
number of *in situ* rigs (incl. load, environment, and flow control) that can be mounted within lab-CT and SR-CT systems

SRµCT

25 years of experience at worldwide synchrotron facilities

X-RAY VIDEOGRAPHY

real-time X-Ray imaging for functionality inspection


PANEL-SHIFT RADIOGRAPHY

horizontal and vertical field of view expansion resulting in up to ~9,000 x 10,000 pixels (c. 1.6 x 2.0 m) detector size

'CRYO' CT

sub-zero degrees imaging of frozen specimens, tissue imaging in OCT, imaging in 'chilled' environment, etc

DATA PROCESSING & ANALYSIS

access to high-performance workstations with multiple 3D image analysis software packages

APPLICATIONS

3D (volume) visualisation

Defect analysis

FE model generation (meshing)

Densitometry and porosity characterisation

Actual-nominal comparison

Petro-physical characterisation

CT metrology

Process evolution (time-resolved imaging)

Digital Volume Correlation (DVC)

RESEARCH AREAS

3D X-ray Histology

Biomedical engineering

Pharmaceutical technology

Biomaterials

Tribology & Failure analysis

Manufacturing engineering

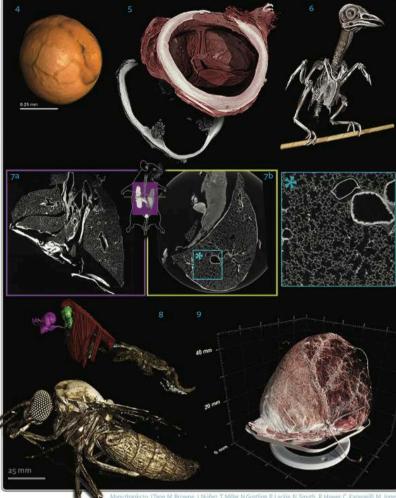
Additive manufacturing Engineering materials

and structures

GALLERY

- μ-CT image of an artificial residuum/socket interface
- CoCrimplant in human tibia specimen
- Cortical microstructure of murine bone: canals in red & osteocyte lacunae in yellow
- 4. Zebrafishembryo
- Single slice and 3D rendering of a porcine heart valve
- 6. Magpie (juvenile)
- Unstained FFPE mouse lung imaging. Coronal ^a & transverse ^b single XRH slices
- 8. Culicoides biting midge
- 'Cryo'-imaging of fresh-frozen inflated porcine lung biopsy

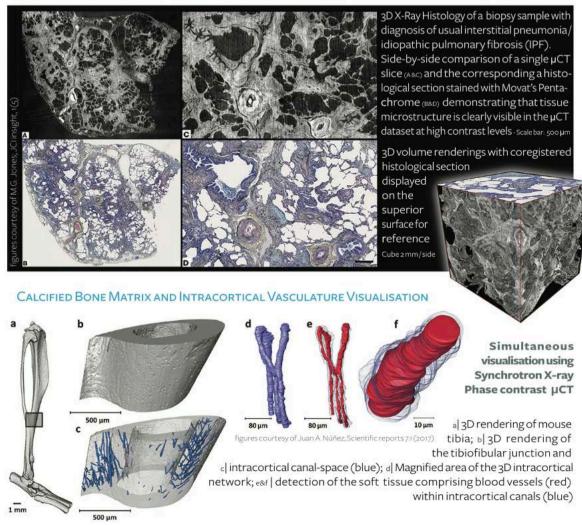
VIDEOS


scan and follow the QR codes; from left to right:

- 1. X-ray µCT of a magpie juvenile
- 2. µCT imaging, segmentation and reconstruction of a mouse embryo
- 3. X-ray µCT of a biting midge
- 3D X-Ray Histology and analysis of a squamous cell carcinoma
- Horse placenta microstructure imaged by 3D X-ray Histology
- 6. μCT to Virtual Reality (VR) at μ-VIS X-Ray Imaging Centre

To find out more about μ -VIS and how to gain access to our facilities and expertise please email us or visit our website

muvis@southampton.ac.uk www.xrayhistology.org www.muvis.org



CASE STUDIES

3D Correlative Imaging of Human Lung Tissue

IMAGE-BASED MODELLING FOR EVIDENCE-BASED PROSTHETIC SOCKET DESIGN

Development of computer models to let prosthetists predict socket fit, validated against Digital Volume Correlation strain measurements.

X-CT is being used to perform DVC to visualise the strain inside a novel residual limb model, simulating transtibial amputation.

Custom load frame with sawbones
(left) & (right)
analogue model mounted on a
Deben actuator for in situ testing

DVC showing clear distinctions between in-plane shear (£xz, £yz) strain in sagittal and coronal views for Total Surface Bearing socket(top) and Patellar Tending Bearing socket(totom)

In-Plane Shear Strain

O.1

O.08

O.04

O.02

O.04

O.08

figures courtesy of J. Steer and A. Dickinso

