

INSIDE INFORMATION. ADVANCED X-RAY COMPUTED TOMOGRAPHY

μ-VIS X-RAY IMAGING CENTRE

microtomographic Volume Imaging at Southampton

OPPORTUNITIES IN 3D VOLUME IMAGING AT THE UNIVERSITY OF SOUTHAMPTON

The μ -VIS X-Ray Imaging Centre is University of Southampton's dedicated centre for CT and founding partner of the National Research Facility for lab-based X-ray CT (NXCT). The centre combines state-of-the-art equipment and 25 years of experience, plus the expertise of 40+ academic staff from across the University, offering a unique integrated resource for advanced 3D imaging.

THE BENEFITS OFFERED BY CT IMAGING:

- The ability to comprehensively visualise inaccessible and/or opaque materials and structures in 3D
- High spatial resolution (to submicrometre level if necessary)
- Detailed 3D (volume) parameterisation for characterisation and modelling
- Non-destructive

CONSULTANCY SERVICES

μ-VIS offers a range of services to external institutions (academic and industrial) including:

- feasibility assessments
- experimental design and planning
- 3D volume imaging
- image analysis (visualisation and morphometry)
- metrology
- assembly analysis
- image-based modelling
- correlative imaging
- in situ/in operando imaging
- training

COMPUTATIONAL FACILITIES

High-performance workstations for development and optimisation of novel analysis and workflows.

- workstations with up to 1 TiB RAM & 128 threads
- dedicated fast data transfer network
- high speed storage with over 700 TB raw capacity
- leading commercial and open-source software

CT IMAGING EQUIPMENT

LARGE-SCALE SCANING

2x customised walk-in bays up to 450kVp

- imaging volumes in excess of 1x1x2 m
- · sample weight up to 200 kg & large user labyrinth
- 225 kVp, 300 kVp, 450 kVp X-Ray sources
- ~3 µm up to 300 kV, 50 µm at 450 kVp & 1 mm up to 1500W
- · 4 MP & 9 MP Flat Panel detectors + CLDA detector
- helical scanning, laminography, scatter compensation

MID-SCALE AND HIGH-THROUGHPUT SCANNING 3x all-purpose CT and radiographic inspection systems up to 225 kVp

- · resolution down to 1.5 µm
- samples to ~300 mm and 50 kg
- 10x & 14x automatic sample exchange racks

HIGH-RESOLUTION SCANNING

1x sub-micron resolution X-ray microscopy system

- 30 -160 kVp, magnification objectives up to 40x
- · 0.7 µm true spatial resolution
- phase-enhanced contrast imaging mode

BIOMEDICAL IMAGING AND X-RAY HISTOLOGY (XRH) 2x in-house designed systems

- · optimised for biomedical imaging & XRH
- resolution down to 1.5 µm
- samples up to ~300 mm and up to 15 kg
- · high-throughput and cryo-imaging
- · 4 MP & 7.5 MP FP detectors
- · photon-counting detector

PRECLINICAL IMAGING

2x small animal in vivo imaging systems

*Systems managed by the Biomedical Imaging Unit

- · correlative X-ray + fluorescence/luminescence imaging
- ~10 μm in vivo spatial resolutions
- · integrated physiological monitoring
- · gating mode

MANUFACTURERS

Nikon Metrology UK Ltd | diondo | Zeiss | Dectris PerkinElmer | Deben | Oxford Cryosystems

The μ-VIS Approach:

Imaging:

- system flexibility
- automation
- advanced methods

Data handling:

- fast, cost-effective HPC (GPGPU)
- end-to-end workflow, interoperability

Computer vision:

- -training
- established resources
- advanced algorithm implementation

CAPABILITIES & APPLICATIONS

Uniquely flexible, multiscale high-energy uCT

'walk in' custom-built bays equipped with multiple sources and detectors; designed for versatility and large-scale imaging

SCATTER COMPENSATION

single-slice and volume scatter-free imaging modes for stunning image sharpness and contrast of dense structures

HIGH RESOLUTION

sub-µm spatial resolution and phase-enhanced constrast capability

4D-CT

time-resolved ex situ and in situ µCT imaging of deformation and/or failure mechanisms within samples

in situ TESTING

number of *in situ* rigs (incl. load, environment, and flow control) that can be mounted within lab-CT and SR-CT systems

SRµCT

25 years of experience at worldwide synchrotron facilities

X-RAY VIDEOGRAPHY

real-time X-Ray imaging for functionality inspection

PANEL-SHIFT RADIOGRAPHY

horizontal and vertical field of view expansion resulting in up to ~9,000 x 10,000 pixels (c. 1.6 x 2.0 m) detector size

Non-conventional CT

incl. phase-enhanced contrast CT phase-retrieval tomography, laminography and limited angle CT

DATA PROCESSING & ANALYSIS

access to high-performance workstations with multiple 3D image analysis software packages

APPLICATIONS

3D (volume) visualisation

Defect analysis

FE model generation (meshing)

Densitometry and porosity characterisation

Actual-nominal comparison

Petro-physical characterisation

CT metrology

Process evolution (time-resolved imaging)

Digital Volume Correlation (DVC)

RESEARCH AREAS

Engineering materials and structures

Additive manufacturing

Biomedical engineering

Tribology

Failure analysis

Manufacturing Engineering

Civil engineering

Biomaterials

GALLERY

- X-ray projection of tibia implanted with CoCr unicompartmental knee arthroplasty device
- Sectioned injector tip from a marine diesel engine
- Visualisation of grain boundaries and cracks through aluminium alloy
- Cavitation damage on metallic impellor blades
- Extracted surface mesh (.stl) of an automotive gearbox housing
- 6a. Overview scan of CFRP composite/metallic wing section structure
- 6b. Local region of interest showing ply damage
- 6c. Sub-micron resolution imaging to resolve individual fibres in the CFRP
- 6d. CLARITy: CFRP and metallic airframe slice using CLDA scatter-reduction imaging
- 7 a/b. Axial slice of intact composite tail rotor blade (1.25 m tall + 0.20 m wide) scanned at 40 µm resolution across entire cross section using panel shift modality

VIDEOS

scan and follow the QR codes; from left to right:

- Multiscale imaging CFRP composite
- 2. Real-time plant-root growth
- 3. 3D strain mapping using DVC
- 4. Time-series of CFRP failure
- 5. Train ballast imaging & modeling
- 5. Virtual archeological excavation of a roman coin hoard

To find out more about μ -VIS and how to gain access to our facilities and expertise please email us or visit our website

muvis@southampton.ac.uk www.muvis.org

CASE STUDIES

DEFECT DETECTION IN STEEL WELD

ACTUAL-NOMINAL COMPARISON OF ADDITIVE MANUFACTURED COMPONENT

RESISTOJET PROPULSION SYSTEMS

X-CT enabled non-destructive materials and manufacturing verification of metal additive manufactured resistojet heat exchanger components. Surface mesh generation was used for coordinate measurements, actual-nominal comparison and wall-thickness assessment.

figures courtesy of F. Romei

DAMAGE VISUALISATION IN CFRP

